import marimo __generated_with = "0.9.17" app = marimo.App(width="medium") @app.cell def __(): import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression import numpy as np return LinearRegression, np, plt @app.cell def __(plt): plt.rcParams['font.family'] = 'Times New Roman' plt.rcParams['font.size'] = 16 return @app.cell(hide_code=True) def __(LinearRegression, np, plt): x = np.arange(4) fig, ax = plt.subplots(figsize=(7, 4), ncols=3, nrows=2, layout="constrained", dpi=300) c_1 = (230 / 255, 241 / 255, 243 / 255) c_2 = (75 / 255, 116 / 155, 178 / 255) c_3 = (255 / 255, 223 / 255, 146 / 255) c_4 = (230 / 255, 109 / 255, 104 / 255) # tp = 8 * l * b * h * (d-1)/d # pp = 2 * b * h * (d - 1) x = [2, 3, 4, 5, 6, 7, 8] ticks = [2, 3, 4, 5, 6, 7, 8] ticks_label = ["2", "3", "4", "5", "6", "7", "8"] y = [5605.27, 8103.95, 10500.86, 12340.55, 15104, 16361.64, 19575.52] model = LinearRegression() model.fit(np.array(x).reshape(-1, 1), np.array(y).reshape(-1, 1)) py = [i * model.coef_[0] + model.intercept_ for i in x] ax[0][0].plot(x, y, color=c_4, label="LoRAPP", marker="s") ax[0][0].plot(x, py, color="black", label="Perfect Linear Scaling", linestyle=":") ax[0][0].set_xticks(ticks) ax[0][0].set_xticklabels(ticks_label) ax[0][0].set_ylabel("Throughput (tokens/s)", fontsize=14) ax[0][0].set_yticks([0, 10000, 20000]) ax[0][0].set_yticklabels(["0", "10k", "20k"], rotation=90, ha="center", va="center") ax[0][0].tick_params(pad=7) ax[0][0].set_title("(a) TinyLlama-1.1B", fontsize=14) ax[0][0].tick_params(axis="y", which="major", pad=10) ax[0][0].set_xlabel("Number of GPUs", fontsize=14) y = [1214.44, 1813.77, 2363.19, 2813.11, 3300.74, 3923.94, 4460] model = LinearRegression() model.fit(np.array(x[1:]).reshape(-1, 1), np.array(y[1:]).reshape(-1, 1)) py = [i * model.coef_[0] + model.intercept_ for i in x] ax[0][1].plot(x, y, color=c_4, marker="s") ax[0][1].plot(x, py, color="black", linestyle=":") ax[0][1].set_xticks(ticks) ax[0][1].set_xticklabels(ticks_label) ax[0][1].set_yticks([0, 2000, 4000]) ax[0][1].set_yticklabels(["0", "2k", "4k"], rotation=90, ha="center", va="center") ax[0][1].tick_params(pad=7) ax[0][1].set_title("(b) Llama-2-7B", fontsize=14) ax[0][1].set_xlabel("Number of GPUs", fontsize=14) y = [0, 977, 1280, 1600, 1918.28, 2260, 2513] model = LinearRegression() model.fit(np.array(x[1:]).reshape(-1, 1), np.array(y[1:]).reshape(-1, 1)) py = [i * model.coef_[0] + model.intercept_ for i in x] ax[0][2].plot(x[1:], y[1:], color=c_4, marker="s") ax[0][2].plot(x[1:], py[1:], color="black", linestyle=":") ax[0][2].plot(x[0], y[0], color="r", marker="x") ax[0][2].text( 2, 0, "OOM", fontsize=12, va="bottom", ha="left", color="r", style="italic" ) ax[0][2].set_xticks(ticks) ax[0][2].set_xticklabels(ticks_label) ax[0][2].set_yticks([0, 1e3, 2e3, 3e3]) ax[0][2].set_yticklabels(["0", "1k", "2k", "3k"], rotation=90, ha="center", va="center") ax[0][2].tick_params(pad=7) ax[0][2].set_title("(c) Llama-2-13B", fontsize=14) ax[0][2].set_xlabel("Number of GPUs", fontsize=14) ax[1][0].set_title("(d) TinyLlama-1.1B", fontsize=14) ax[1][1].set_title("(e) Llama-2-7B", fontsize=14) ax[1][2].set_title("(f) Llama-2-13B", fontsize=14) ax[1][0].set_xlabel("Rank of LoRA adapters", fontsize=14) ax[1][1].set_xlabel("Rank of LoRA adapters", fontsize=14) ax[1][2].set_xlabel("Rank of LoRA adapters", fontsize=14) ax[1][0].set_ylabel("Throughput (tokens/s)", fontsize=14) y_0 = [10525.52, 10467.51, 10315.85, 10286.17] x_0 = [4, 8, 16, 32] y_1 = [2309.40, 2258.73, 2252.43, 2242.80] x_1 = [16, 32, 64, 128] y_2 = [1245.79, 1244.60, 1224.91, 1207.40] x_2 = [16, 32, 64, 128] ax[1][0].plot(x_0, y_0, "s-", color=c_4) ax[1][0].set_ylim(0, 11000) ax[1][0].set_xticks(x_0) ax[1][0].set_yticks([0, 5000, 10000]) ax[1][0].set_yticklabels( ["0", "5k", "10k"], rotation=90, ha="center", va="center" ) ax[1][0].tick_params(pad=7) ax[1][1].plot(x_1, y_1, "s-", color=c_4) ax[1][1].set_ylim(0, 11000) ax[1][1].set_xticks([32, 64, 128]) ax[1][1].set_yticks([0, 5000, 10000]) ax[1][1].set_yticklabels( ["0", "5k", "10k"], rotation=90, ha="center", va="center" ) ax[1][1].tick_params(pad=7) ax[1][2].plot(x_2, y_2, "s-", color=c_4) ax[1][2].set_ylim(0, 11000) ax[1][2].set_xticks([32, 64, 128]) ax[1][2].set_yticks([0, 5000, 10000]) ax[1][2].set_yticklabels( ["0", "5k", "10k"], rotation=90, ha="center", va="center" ) ax[1][2].tick_params(pad=7) fig.legend( ncol=2, bbox_to_anchor=(0.8, 1.1), fancybox=False, framealpha=0.0, fontsize=14, ) # plt.show() plt.savefig("scalability.pdf", bbox_inches="tight", dpi=1000) return ( ax, c_1, c_2, c_3, c_4, fig, model, py, ticks, ticks_label, x, x_0, x_1, x_2, y, y_0, y_1, y_2, ) if __name__ == "__main__": app.run()