diff --git a/lynx/end_to_end_overlap.ipynb b/lynx/end_to_end_overlap.ipynb index 4ab54f1..62c8870 100644 --- a/lynx/end_to_end_overlap.ipynb +++ b/lynx/end_to_end_overlap.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 14, + "execution_count": 145, "metadata": {}, "outputs": [], "source": [ @@ -30,7 +30,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 146, "metadata": {}, "outputs": [ { @@ -52,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 147, "metadata": {}, "outputs": [], "source": [ @@ -92,13 +92,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 148, "metadata": {}, "outputs": [], "source": [ "# overlapp\n", "data_a = {\n", - " labels_name_a[0]: [0, 0, 0], # 22.64\n", + " labels_name_a[0]: [0, 0, 37.8], # 22.64\n", " labels_name_a[1]: [0, 0, 0], # 22.64\n", " labels_name_a[2]: [0, 0, 0], # 37\n", " labels_name_a[3]: [0, 0, 0], # 37\n", @@ -106,7 +106,7 @@ " labels_name_a[5]: [0, 0, 0], # 22.64\n", "}\n", "data_a_diff = {\n", - " labels_name_a[0]: 70, # 22.64\n", + " labels_name_a[0]: 46.6, # 22.64\n", " labels_name_a[1]: 70, # 22.64\n", " labels_name_a[2]: 70, # 37\n", " labels_name_a[3]: 70, # 37\n", @@ -168,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 149, "metadata": {}, "outputs": [], "source": [ @@ -177,7 +177,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 150, "metadata": {}, "outputs": [], "source": [ @@ -204,7 +204,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 151, "metadata": {}, "outputs": [ { @@ -213,16 +213,18 @@ "Text(0.5, 1.0, '(a) Single-node, single parallel')" ] }, - "execution_count": 20, + "execution_count": 151, "metadata": {}, "output_type": "execute_result" } ], "source": [ "label_set = set()\n", + "\n", "for idx, (x_label, y_data) in enumerate(data_a.items()):\n", + " diff_value = data_a_diff[x_label]\n", " positions = group_positions[idx]\n", - " for i, (pos, value, diff_value, color, edgecolor, hatch, label) in enumerate(\n", + " for i, (pos, value, color, edgecolor, hatch, label) in enumerate(\n", " zip(\n", " positions,\n", " y_data,\n", @@ -237,6 +239,7 @@ " else:\n", " local_label = label\n", " label_set.add(local_label)\n", + "\n", " ax[0][0].bar(\n", " pos,\n", " value,\n", @@ -246,24 +249,33 @@ " hatch=hatch,\n", " edgecolor=edgecolor,\n", " )\n", + " ax[0][0].bar(\n", + " pos,\n", + " diff_value - value,\n", + " width=bar_width,\n", + " color=\"#E3E3E3\",\n", + " label=None,\n", + " edgecolor=edgecolor,\n", + " bottom=value\n", + " )\n", "\n", "ax[0][0].set_xticks(list(group_centers.values()))\n", "ax[0][0].set_xticklabels(list(data_a.keys()))\n", "\n", - "ax[0][0].set_ylim(0, 85)\n", - "ax[0][0].set_yticks([0, 40, 80])\n", - "ax[0][0].set_yticklabels([\"0\", \"40\", \"80\"], rotation=90, ha=\"center\", va=\"center\")\n", + "ax[0][0].set_ylim(0, 100)\n", + "ax[0][0].set_yticks([0, 50, 100])\n", + "ax[0][0].set_yticklabels([\"0\", \"50\", \"100\"], rotation=90, ha=\"center\", va=\"center\")\n", "\n", "ax[0][0].tick_params(axis=\"x\", bottom=False, labelsize=g_label_fontsize, pad=1)\n", "ax[0][0].tick_params(axis=\"y\", left=True, labelsize=g_label_fontsize, pad=5)\n", "\n", - "ax[0][0].set_ylabel(\"Peak Memory (GB)\", fontsize=g_label_fontsize)\n", + "ax[0][0].set_ylabel(\"Comm-Time Ratio(%)\", fontsize=g_label_fontsize)\n", "ax[0][0].set_title(\"(a) Single-node, single parallel\")" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 152, "metadata": {}, "outputs": [ { @@ -272,13 +284,16 @@ "Text(0.5, 1.0, '(b) Two-node, single parallel')" ] }, - "execution_count": 21, + "execution_count": 152, "metadata": {}, "output_type": "execute_result" } ], "source": [ + "total_label = \"Non-Overlap Communication\"\n", + "\n", "for idx, (x_label, y_data) in enumerate(data_b.items()):\n", + " diff_value = data_b_diff[x_label]\n", " positions = group_positions[idx]\n", " for i, (pos, value, color, edgecolor, hatch) in enumerate(\n", " zip(\n", @@ -297,13 +312,25 @@ " hatch=hatch,\n", " edgecolor=edgecolor,\n", " )\n", + " ax[0][1].bar(\n", + " pos,\n", + " diff_value - value,\n", + " width=bar_width,\n", + " color=\"#E3E3E3\",\n", + " label=total_label,\n", + " edgecolor=edgecolor,\n", + " bottom=value\n", + " )\n", + "\n", + " if total_label is not None:\n", + " total_label = None\n", "\n", "ax[0][1].set_xticks(list(group_centers.values()))\n", "ax[0][1].set_xticklabels(list(data_b.keys()))\n", "\n", - "ax[0][1].set_ylim(0, 85)\n", - "ax[0][1].set_yticks([0, 40, 80])\n", - "ax[0][1].set_yticklabels([\"0\", \"40\", \"80\"], rotation=90, ha=\"center\", va=\"center\")\n", + "ax[0][1].set_ylim(0, 100)\n", + "ax[0][1].set_yticks([0, 50, 100])\n", + "ax[0][1].set_yticklabels([\"0\", \"50\", \"100\"], rotation=90, ha=\"center\", va=\"center\")\n", "\n", "ax[0][1].tick_params(axis=\"x\", bottom=False, labelsize=g_label_fontsize, pad=1)\n", "ax[0][1].tick_params(axis=\"y\", left=True, labelsize=g_label_fontsize, pad=5)\n", @@ -313,7 +340,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 153, "metadata": {}, "outputs": [ { @@ -322,13 +349,14 @@ "Text(0.5, 1.0, '(c) Single-node, hybrid parallel')" ] }, - "execution_count": 22, + "execution_count": 153, "metadata": {}, "output_type": "execute_result" } ], "source": [ "for idx, (x_label, y_data) in enumerate(data_c.items()):\n", + " diff_value = data_c_diff[x_label]\n", " positions = group_positions[idx]\n", " for i, (pos, value, color, edgecolor, hatch) in enumerate(\n", " zip(\n", @@ -358,24 +386,33 @@ " hatch=hatch,\n", " edgecolor=edgecolor,\n", " )\n", + " ax[1][0].bar(\n", + " pos,\n", + " diff_value - value,\n", + " width=bar_width,\n", + " color=\"#E3E3E3\",\n", + " label=None,\n", + " edgecolor=edgecolor,\n", + " bottom=value,\n", + " )\n", "\n", "ax[1][0].set_xticks(list(group_centers.values()))\n", "ax[1][0].set_xticklabels(list(data_c.keys()))\n", "\n", - "ax[1][0].set_ylim(0, 85)\n", - "ax[1][0].set_yticks([0, 40, 80])\n", - "ax[1][0].set_yticklabels([\"0\", \"40\", \"80\"], rotation=90, ha=\"center\", va=\"center\")\n", + "ax[1][0].set_ylim(0, 100)\n", + "ax[1][0].set_yticks([0, 50, 100])\n", + "ax[1][0].set_yticklabels([\"0\", \"50\", \"100\"], rotation=90, ha=\"center\", va=\"center\")\n", "\n", "ax[1][0].tick_params(axis=\"x\", bottom=False, labelsize=g_label_fontsize, pad=1)\n", "ax[1][0].tick_params(axis=\"y\", left=True, labelsize=g_label_fontsize, pad=5)\n", "\n", - "ax[1][0].set_ylabel(\"Peak Memory (GB)\", fontsize=g_label_fontsize)\n", + "ax[1][0].set_ylabel(\"Comm-Time Ratio(%)\", fontsize=g_label_fontsize)\n", "ax[1][0].set_title(\"(c) Single-node, hybrid parallel\")" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 154, "metadata": {}, "outputs": [ { @@ -384,13 +421,14 @@ "Text(0.5, 1.0, '(d) Two-node, hybrid parallel')" ] }, - "execution_count": 23, + "execution_count": 154, "metadata": {}, "output_type": "execute_result" } ], "source": [ "for idx, (x_label, y_data) in enumerate(data_d.items()):\n", + " diff_value = data_d_diff[x_label]\n", " positions = group_positions[idx]\n", " for i, (pos, value, color, edgecolor, hatch) in enumerate(\n", " zip(\n", @@ -409,13 +447,22 @@ " hatch=hatch,\n", " edgecolor=edgecolor,\n", " )\n", + " ax[1][1].bar(\n", + " pos,\n", + " diff_value - value,\n", + " width=bar_width,\n", + " color=\"#E3E3E3\",\n", + " label=None,\n", + " edgecolor=edgecolor,\n", + " bottom=value,\n", + " )\n", "\n", "ax[1][1].set_xticks(list(group_centers.values()))\n", "ax[1][1].set_xticklabels(list(data_d.keys()))\n", "\n", - "ax[1][1].set_ylim(0, 85)\n", - "ax[1][1].set_yticks([0, 40, 80])\n", - "ax[1][1].set_yticklabels([\"0\", \"40\", \"80\"], rotation=90, ha=\"center\", va=\"center\")\n", + "ax[1][1].set_ylim(0, 100)\n", + "ax[1][1].set_yticks([0, 50, 100])\n", + "ax[1][1].set_yticklabels([\"0\", \"50\", \"100\"], rotation=90, ha=\"center\", va=\"center\")\n", "\n", "ax[1][1].tick_params(axis=\"x\", bottom=False, labelsize=g_label_fontsize, pad=1)\n", "ax[1][1].tick_params(axis=\"y\", left=True, labelsize=g_label_fontsize, pad=5)\n", @@ -425,23 +472,23 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 155, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 24, + "execution_count": 155, "metadata": {}, "output_type": "execute_result" } ], "source": [ "fig.legend(\n", - " ncol=3,\n", + " ncol=4,\n", " loc=\"upper center\",\n", " frameon=False,\n", " shadow=False,\n", @@ -452,23 +499,23 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 156, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAEIoAAAbKCAYAAAC3+Sn5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs3Xd0VNX39/HPpBAICb33Ik1BAUHgi1SRJk3pvSNNpYOiFAURBOmE0ENv0jvSUYpIlyK9IzVACqnz/MFDfsSZSSbJJJNJ3q+1shZzzr377hsy905O7tnHYDQajQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECi52TvBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAdCkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4CApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAgKRQAAAAAAAAAAAAAAAMChbd68WTdu3LB3GgAAAAAAAAAAAAAAJAiD0Wg02jsJAAAAAAAAwNENGb9SL/xfxni/6hWKqXHNsibtv+74U7sPnbdFagmC85A8U6fUTwOaxVdqAAAAdlercUc9ffrM3mnAjtKnT6vtv863dxqAidOnT+u9995TixYttGzZMnung2QoeMAA6cULe6cBe/L0VIrx4+2dRbw6efKk/Pz84hzHyclJLi4ucnV1VerUqeXh4aGMGTPKzc3NBlk6roMHD8Zpf2dnZ7m6usrV1VVubm5Knz690qdPrxQpUtgoQwAAAAAAAAAAkNi42DsBAAAAAAAAICl44f8yVoUi1v92QkHBoWpVr0Kk9sY1yyooOFTb9p+xVYrxivNIHvLlyxejFXoLFiyof/75R05OTvGYlXlGo1HFihXTxYsXrd4nb968un79evwlBcCiBQsWqGPHjjaL1759ey1YsMBm8SSugYAkPX36TE98KRSBpK9z587y8fGxWbwqVapo165dUW6zb98+ffTRR7E+xrx589SuXTuNGDFCI0eOjHWc/xo+fLhGjBhhs3jxZdq0aZKkNWvW6N9//1XWrFntnBGSnRcvKBSBJG/YsGE6d+6cnj9/rkePHsnW61N5enoqV65cyp8/v4oVK6Z3331XFSpUUKFCheIc2xHujx06dJDRaJSvr6+ePHlis7jp0qVTwYIFVahQIZUrV07VqlXTe++9Z7P4gDUMBoNN47E+HgAAAAAAAAC8YjAyYgoAAAAAAADEWa+RC2NVKOK12pVLmBQnkKSlmw45VHGC5HwenqlTavrwdvGdml2FhYXJz89PN27c0J49e/Tzzz/rzp07Ue6zcuVKNW3aNIEy/D/r169Xo0aNotymYcOG6t27t0qXLq306dPb/IFlADEXEhKiu3fvaseOHRo9erRVhRneeecddevWTeXLl1eePHmULl06ubm52fw9zTUQkD6o/hmFIpK5DOnS6ujuNfZOI97dvHlT165d06VLl3Tw4EGtWbNGL2I4Abxy5cpq27atihYtqmzZsumtt96Kcnt/f39dunRJfn5+unTpkiZMmKC///7b4vYpUqRQixYtVKtWLeXJk0fvvPOO0qdPH9EfFBSkmzdvauPGjRozZowePXoUbc4VKlRQx44dVaZMGeXKlUuenp7xck+1tadPnypXrlwKCAiQJI0ePVrffPONnbNCchP8+ecUikjuPD2Vwtvb3lkkmAcPHmjOnDkaOXKkgoOD4/VYOXPmVP369dWmTRtVrFgxTrEc5f54/fp1TZ48WZMnT46XCfHvvvuuBg4cqNatWyf6+zySjteFUP766y9NnjxZmzZtinaf1KlTq3v37qpRo4aKFCmizJkzK2XKlHJxYY08AAAAAAAAAJAoFAEAAAAAAADYRFwLRUjJu8hCYhTT80gOhSL+6+nTp/r444/1119/WdymbNmyOnr0aAJm9UqlSpV08OBBi/19+vTRxIkTEzAjADH16NEjlStXTlevXrW4zZdffqnx48fL1dU1ATN7hWsgkiMKRSC5FIr4r4CAAE2YMEE//fRTRDGCqDRq1Ehr1qyJ08TL58+fq2TJkrp27ZrZ+L/88ovy589vVaxr166pdOnS8vX1tbjN2LFjNXDgQIecLDphwgQNGDAg4nXevHl19epVOTk52TErJDcUikByKxTx2urVqy0Wx3NxcVGJEiVUpkwZlSlTRsWLF1emTJmUKVMmpU2bVoGBgfL19dXVq1d15swZHThwQNu3b4/yflWmTBn99NNP+uijj+KcuyPcH3/++WcNGjTIbF+RIkXUoUMHvfPOO3rrrbeUI0cOeXh46MWLF3rw4IEOHz6szZs369dff1VYWJjZGOXKldOKFSuUN2/e+DwNwKw+ffpo8uTJFvuLFSumzZs3W/2ZFwAAAAAAAACSIwpFAAAAAAAAADZgi0IRUvItspBYxeQ8kmOhCEk6ceKESpcuHeU2u3fvVrVq1RIoI+no0aMqV66cxX5XV1c9fvxYnp6eCZYT4mbDhg1KkyaNqlatau9UkMCmTJmir776ymzfBx98oEOHDtl1EijXQCQ3FIpAci0U8dqpU6fUsGFD3bhxI8rtNm3apE8++STOx+vZs6e8vLwiXru4uGjixInq3bt3jGP169fPYpGgJk2aaNWqVbHO057Cw8NVuHBhXblyJVL7+vXr1aBBAztlheSIQhFIroUiJCl37ty6ffu2SXuVKlW0d+/eGMUKCgrSpk2bNHbsWP35558Wt6tTp47mz5+vrFmzxjTdSBL7/TEgIEDp06dXcHCwSV/79u21YMGCaGNcunRJPXv21G+//Wa2P0OGDNq+fbvKlCkT13SBGHn69KkyZcqk8PBws/1nzpxR8eLFEzgrAAAAAAAAAHAsLJ8AAAAAAAAAJCLb9p/R0k2HTNpb1aug2pVL2CGj2OE8ko9SpUopV65cUW4zbty4BMrmlZ9//jnK/nfeeYcJ0g4kNDRUPXr0iPHkEiQNFSqYFut5rV69enZfKZxrIAAkL++99572798f7arb169ft8nxbt68GfFvZ2dnLVu2LFZFIqSo76mOXFBh69atJkUiJGnGjBl2yAYAkqf333/fZrHc3NzUuHFjHT16VKtWrVKOHDnMbrd161aVKlVK+/fvj9PxEvv90d3dXcWKFYtTjEKFCmnbtm3q3r272f4nT56oZs2aOnfuXJyOA8RU+vTpVbRoUbN9BQoUoEgEAAAAAAAAAFiBQhEAAAAAAABAIpNUihNwHslHkSJFouzftm2bzpw5kyC5XL16VWvXro1ym9y5cydILrCNjRs36u7du/ZOA3aSJ08ei3358+dPwEws4xoIAMlLnjx5tGvXLmXMmNHiNjNnzpTRaIzTcU6dOqVt27ZFvPby8lKTJk1iHc8R7qmxMXXqVLPtO3bsMFtAAgBge9EVz4utJk2a6OzZs6pdu7bZ/nv37umjjz7Spk2bYn0MR7g/2uL76+zsrOnTp6tu3bpm+58+faqWLVsqKCgozscCYsLSezCxvP8AAAAAAAAAILGjUAQAAAAAAACQCCWV4gScR/KQKVOmiH8bDAaz24wbNy5Bcpk4caLCwsKizMXDwyNBcoFtTJ482d4pwI48PT0t9qVPnz4BM7GMayAAJD8FCxbUypUr5eLiYrb/7NmzmjNnTqzjBwYGqk2bNhHX9AEDBqhr166xjic5xj01pi5duqQdO3aY7TMajZo5c2YCZwQAyVPq1KnjLXb69Om1efNmi/fB0NBQNW3aVHv27IlVfEe4P9rq++vk5KQ5c+YoVapUZvtPnz4tb29vmxwLsJal92Bief8BAAAAAAAAQGJHoQgAAAAAAAAgkUoqxQk4j6TPzc0t4t916tQxu83y5ct169ateM3jyZMnmj9/viQpRYoUqlGjhtntUqRIEa95wHYOHz6sffv22TsN2FHKlCkt9r157bEnroEAkDxVr15dP/74o8X+QYMG6e7du7GK3b17d509e1aSVKtWLY0dOzZWcd7kCPfUmJo+fbqMRqPF/vnz5+vly5cJmBEAJE9R3WNswcnJSd7e3urUqZPZ/pcvX6pRo0a6ceNGjGM7wv3Rlt/f7Nmzq3Pnzhb7J06caLNjAdaw9POdWN5/AAAAAAAAAJDYUSgCAAAAAAAASMSSSnGC5HAe1SsUs0NGicObq9Z//vnnSpMmjck2oaGh+uWXX+I1Dy8vL/n7+0uSWrZsqRw5csTr8RC/wsLC1LdvX3unATtzcrL8pyxLq7gnNK6BAJB8DRgwwGJhHl9fX33++ecxjjl9+nQtXLhQkpQ/f34tW7YsyvuhtRzhnhoT/v7+WrBgQZTbPH78WCtWrEiYhAAgGXvzd6L4PMbMmTNVpUoVs/3Pnz9Xu3btFB4eHqO4jnB/tPX3t2HDhhb7rl+/rvPnz9v0eEBULL0HE8v7DwAAAAAAAAASOwpFAAAAAAAAAIlcciiykBTOo3HNsnbIJvFJkyaNunXrZrZvzpw5evr0abwcNygoSFOnTo14PWDAgHg5DhLOTz/9pMOHD9s7DSBGuAYCQPJiMBjk4+OjjBkzmu3ftGmTfHx8rI536NChiEJZKVOm1OrVq5U+fXqb5JrULFy4UM+ePZMk1apVS2XKlDG7nZeXV0KmBQCIR66urlq0aJHSpk1rtn///v2aMmVKAmfleCpWrBhl/7FjxxIoEwAAAAAAAAAAEFcUigAAAAAAAAAcQFIvspBUzgOvfPXVV3J1dTVp9/Pz04wZM+LlmIsWLdK///4rSapTp46KFy8eL8dBwjh06JBGjhxp7zSAWOEaCADJS44cOTR9+nSL/X369NGdO3eijXP//n01adJEISEhkqSpU6eqdOnSNsszqXnze/7FF1+oV69eZrc7cuSITpw4kVBpAQDiWe7cuTVq1CiL/aNHj5afn18CZuR4UqVKpTRp0ljsf/DgQQJmAwAAAAAAAAAA4oJCEQAAAAAAAICDSOpFFpLKeUDKlSuXWrZsabZv6tSpevnypU2PZzQa9csvv0S8HjhwoE3jI2GdO3dO9erVi5gkCTgaroEAkPw0b95cTZs2Ndvn6+urbt26Rbl/aGiomjVrprt370qSOnbsqC5dutg8z6Riz549+vvvvyVJb731lurWrasWLVooQ4YMZrePqpAHAMDxdOvWTfny5TPb9+jRI02dOjVhE3JA7u7uFvvCwsISMBMAAAAAAAAAABAXFIoAAAAAAAAAHEhSL7KQVM4D0oABA8y2//vvv/Lx8bHpsTZv3qzz589Lkt5//31Vq1bNpvGRcC5evKiaNWvqyZMn9k4FiBOugQCQ/MyYMUNZs2Y127dlyxbNnz/f4r79+/fXgQMHJEklS5bUjBkz4iXHpOLNCcC9evWSwWBQypQp1alTJ7PbL1u2TM+ePUuo9AAA8SxFihTq3bu3xf6JEycqNDQ0ATNyLOHh4Xr48KHF/ixZsiRgNgAAAAAAAAAAIC4oFAEAAAAAAAA4mKReZCGpnEdyV6JECdWuXdts3/jx4xUeHm6zY40fPz7i35YmZ8eHhw8fysvLS02bNlXRokWVJk0aubq6KmvWrCpRooQ6duyoVatWKSAgwKbH/f333zVs2DBVrlxZ+fPnl6enp9zc3JQ1a1a9//776tq1q1auXKnAwECbHleSjh07puHDh6tOnToqUKCAMmTIIBcXF3l4eChnzpyqUqWK+vbtq+3bt8f4/3j79u2qWLGi7ty5Y7b/5s2bOnjwoNmvBw8eRBn76NGj6tWrlzJmzCiDwWDS7+/vr7Fjx+rdd99VypQplSlTJjVv3lyXLl2K0TlI0pUrVzRmzBjVr19f+fLlk4eHh1xdXZUhQwaVLl1aHTp00JIlS/TixYsYxzYnODhYS5cuVeXKlWUwGDRixAiz2718+VI+Pj765JNPlDVrVrm6uipz5syqWbOmfHx8WDHUxpLDNRAAEFmmTJnk7e1tsb9v3766ffu2SfvSpUs1ZcoUSVK6dOn066+/KmXKlPGWp6O7deuWNmzYIEny8PBQx44dI/p69Ohh9rNeQECAFixYkFApAgASQPv27eXq6mq27+HDh9q9e3cCZ+Q4rly5EuUYQIkSth+XPXPmjIYNG6aaNWsqV65ccnd3l5ubmzJnzqxy5crp888/15o1axQUFBSjuFeuXNGFCxdi/BUSEhJl3EePHlkVJ6ZjfseOHdO3336ratWqKVeuXEqVKpVSpUqlvHnzqmLFivruu+905MiRGMX8r+vXr+uHH35QoUKFZDAYtHfv3kj9RqNRy5YtU5UqVeTp6SkPDw9VrVpVO3fujNNxHU2+fPlkMBhi/BWd69evWxWnQ4cOUcbZu3evWrRoITc3N1WtWtXidjt37lSbNm2UL18+ubm5KW3atCpXrpx+/PFH+fr6xuybAgAAAAAAAMAhudg7AQAAAAAAAAAxt23/GUmviiq86fXr1/2JXVI6D7cULmpcs6y9U0lUBg4cqG3btpm0X758WWvWrFGTJk3ifIy//vpL+/btk/TqAd+mTZvGOWZ07t27p+HDh2vBggVmHyx/8OCBHjx4oLNnz2rBggXKli2bhg8frq5du8rZ2TnWx926dauGDx+uP//8M6LNw8NDmTNn1qNHjyKOe/z4cc2ZM0eenp7q06ePBgwYoDRp0sT6uJJ04MAB9evXT8eOHTPb7+/vL39/f929e1f79+/XpEmTVKBAAY0ePVotWrSIMvaNGzc0cuRILViwQEaj0eJ28+fPt7gS9/z5800esL59+7YWL14sHx8fXbhwwWLckydPqkmTJrpy5UpEW1BQkFauXKnt27fr4MGDKl68eJTnIEmHDh3S8OHDLT5Y//TpUz19+lQnTpyQj4+PPDw81LVrV3333XdKnz59tPH/68qVK/L29tb8+fP16NGjKLf99ddf1a9fP928eTNS+6NHj7Rz507t3LlTU6ZM0fr165UrV64Y5wLzkuo1EABgWcOGDdW2bVstWrTIpO/Zs2fq2rWrtm7dGtF25swZde3aVZJkMBi0cOFCFShQIMHydUReXl4Rk1vbtWuntGnTRvQVKFBAtWrVMnv/nTlzpr766qsEyxMAEL8yZcqkihUrmkyCf23lypWqWbNmwiblINatW2exL3PmzCpdurTNjrV161aNGDFCR48eNdv/6NEjPXr0SEePHtWsWbOUMWNG9enTR/3791eqVKmijf/RRx/pxo0bMc7r2rVrypcvn8X+adOmaeTIkdHG2bNnT5ST+F/77bff9M0330Qa03vTzZs3dfPmTf3xxx8aNWqUqlWrpnHjxqlMmTLRxpakFy9eaPXq1fLx8dH+/fstjq89efJELVq0MBm72rdvn/bv368FCxaoXbt2Vh3T0e3fv1+//vqrJkyYYLForSQ5Ozvrxx9/VOvWrZUjR45o4+bLl0+BgYG6ceOGhg4dql9//TVSf6VKlTRy5EiVK1fOZN+nT5/Kx8dH3t7eUY5lStKpU6fUs2dP/fHHH5Hag4ODdfToUR09elSTJk3SqlWrVKVKlWhztsX7aMSIEVa9b9q3b08RNwAAAAAAAMCGnOydAAAAAAAAAIDY2bb/jJZuOmTS3qpeBdWubPuV3+JLUjmP3YfO2zuFRKd69eoWHy7/+eefbXKMN+P07ds3ToUYrLFy5Uq9/fbbmj17toxGo5o2bap58+Zp586d2rhxo7777jvlzp070j73799Xjx49VL9+fb148SLGxwwJCdGXX36punXrRjxQ/sEHH2jPnj169uyZrl69qmfPnungwYORHvx98eKFfvjhB6VNm9bi6nUuLi6qW7dulMf/9ttvVbVq1YgiEU5OTmrRooWWLFmi3bt3a+3atfr666+VNWvWSPtdvXpVLVu21Lfffhtl/OHDh2v+/PlRFomwVkBAgBYvXqyPP/5YefPm1ddffx3lg9WHDx9WlSpVIhWJeNOzZ8/09ddfR3vMHj166H//+1/Eg/aFChXSyJEjtXnzZm3btk2zZs3SZ599Fmm1Uz8/P02cOFFFihTRli1brDq/0NBQrV27VrVq1VKhQoX0888/R1kkIjg4WJ07d1aTJk1MikT81/Hjx1WzZs1Y/YzCvKR4DQQARG/KlCnKmTOn2b5t27Zp7ty5kiRfX199+umnEStRDxkyRPXr10+wPB1RUFCQZs+eHfG6d+/eJtv06tXL7L4XLlzQrl274i03AEDCq127tsW+Nwsz4f8EBwdHupf+V8+ePWUwGOJ8nMePH6tx48aqW7duRJGIkiVLaty4cdq2bZs2b96s6dOnq2bNmnJycoq033fffafixYvryJEj0R7n+PHj2rx5sz755JNotx00aJDu3Lkjo9EYZZEI6dWE96CgIP3zzz9q0KBBpL5MmTJp/vz5unPnTrQT8F++fKnOnTvr448/1p9//qkcOXJowIABWr16tXbv3q3FixerTZs2SpEiRaT99uzZowoVKmjmzJkWY4eHh2vnzp1q27atsmXLpk6dOmnfvn0Wx9cePXqkSpUqWSxwajQa1adPH7NFcZOiPHnyqG/fvjp58qSKFClicbtu3bpp0KBBypkzp9XvjZQpU6pIkSIaM2ZMpPZKlSrpt99+U7Vq1eTu7h7RfuTIEXXs2FE5c+ZU3759oy0SMX36dH3wwQcmRSL+6+HDh6pbt65OnToV5XZnz57V6dOnNXLkSGXMmDHKbZ2cnDRr1iw9efLE5H303Xff6eLFi6pVq5bJfmnSpNHw4cN14cIFzZo1K8pjAAAAAAAAAIgZCkUAAAAAAAAADiypFFlIKucBUwMHDjTbfvToUYurPlrr+vXrWr16tSQpffr06ty5c5ziRefHH39U8+bN5evrqw8++EB///23Vq5cqY4dO6pGjRqqV6+evv/+e126dEl9+vQx2X/r1q2qVKmS/Pz8rD5maGioGjRooKlTp0a0ffrppzp48KCqVq0a8TC9wWBQxYoVtWfPHnXs2NHq+GFhYRZXM5Sk/v37a/To0QoPD5ckpUiRQuvXr9eyZcvUqlUrVatWTY0aNdKPP/6oS5cumX0QePTo0dq4caPFYyxYsEBGozHSV968eU22Gz58uMl2r786dOigs2fPKmvWrGrbtq1+++23iJwtuXr1qurXr6/nz59Hud21a9cs9j1+/FiVKlWKeHA/RYoUmjx5ss6fP69hw4apbt26qlWrlrp27apff/1V58+fN1kx8OHDh6pXr56mTZsWZR5TpkxR3rx59dlnn2nHjh3RFtZ49uyZatSooXnz5kW53Zte5w3bSUrXQACAddKlS6c5c+ZY7O/Xr59u3LihNm3aRBSrql69un744YeEStFhLV++PKJIVo0aNVSsWDGTberWrWtx8qeXl1d8pgcASGBlypSx2Hf37l09fPgwAbNxDGPHjtWlS5fM9mXJksXseFZMXbt2TWXKlNGaNWskvZogvnTpUp04cUIDBw5UrVq1VLduXfXs2VPbt2/Xn3/+aTJR/+rVq6pSpUpEDEsyZMigunXratOmTZo4caLF7d5//32NHTtWOXLksPo8UqRIoUKFCmny5MkRbS4uLtq4caM6dOigHDlyRFk4wNfXV1WqVNG8efNkMBg0ZMgQXb58WT///LMaN26satWqqXXr1lq0aJH+/vtvlSgReQw8NDRUPXr0MPsZMTw8XIUKFVLNmjW1ePHiiMJjlgQHB6t+/fo6d+5clNs9ffpUz549i3KbpCZTpkxavXq13NzczPa//fbbsY79ZjFWFxcX+fj4RCoK8ttvv6lUqVIqX768FixYoMDAwCjjvS7m0bt3bwUHB1uVQ0BAgDp37hzlOKmHh4dKlCihYcOG6fTp03rnnXcsbvvee++pa9euSp8+vUmfs7OzChcurFGjRkVqz549u/744w+NGDFCRYoUMSmMAgAAAAAAACBuKBQBAAAAAAAAOLikUmQhqZwHImvatKnZSf+SNG7cuDjFnjhxosLCwiRJPXr0UOrUqeMULyrTpk3T0KFDJUm1atXS/v37VbhwYbPburm5aeLEiWbP79SpU+rUqZPVx/3888+1bdu2iNe5cuWSj4+PXF1dzW5vMBjk7e2t4sWLW8ztzS93d3dVqFDB7Lbr1q3TL7/8Eqlt8ODBqlevntntPT09tXLlSmXLls2k75tvvjG7jy0VLlxYK1as0MOHD+Xn5xepuMZ/hYSEqHnz5goMDNTKlSv19OlT/fjjj2YfVK5UqZLZGC9evFD16tV1/PhxSa++98uWLdOXX34pZ2dns/sULFhQ+/fvV/Xq1SO1G41GffHFF1Gu6mkwGNSiRQstWLBAY8aMUZo0aSxu++LFC9WuXVsHDhxQ+vTpNWjQIB06dEjPnz9XQECA/vrrL7Vp08bsvl5eXkymsaGkcg0EAMRM7dq11bVrV7N9z58/V9myZbV582ZJUs6cObV8+XKLnx/wf6ZPnx7x7y+++MLsNk5OTurevbvZvvXr1+vu3bvxkhsAIOGVLFkyyv6TJ08mSB6OYvny5RoxYoTZPicnJy1evFjp0qWL0zHu3LmjypUr6/r165JejUNt27ZNLVu2tLhP6dKldfjwYZOxrKCgIDVv3lxbt2616th9+vRR69atzfYVKFDAuhMw4/79+xH/7tWrl8qXLx/tPiEhIapTp46OHj0qSZo3b57GjBmjVKlSmd3+rbfe0u+//2429vDhw00KsDo5Ocnb21s3b95UYGCgdu3aZXbi/msDBw7U4cOH9d1338nX11erVq1S9uzZTbYrWrSoMmXKFO35JTXFixe3+N6IrrhGVI4dOxbx74YNGyp//vyR+t3c3PTuu+9q1qxZ8vb2NimY8l+9e/fW5MmT5eLiojZt2mjr1q16+PChgoKCdPnyZY0cOdLs2OZff/2lTZs2WZVzjhw5tG3bNrM/H5J08+ZNBQUFRRnj9c+9JKVNm1Y7duyIsvgEAAAAAAAAgLihUAQAAAAAAACQBCSVIgtJ5Tzwf5ydndW3b1+zfVu3btXZs2djFffp06eaN2+epFcP1VqaKGYLJ06cUP/+/SVJ+fLl08qVKy2uMvemAQMGqFq1aibtq1at0vLly6Pdf8uWLRHn+FrPnj3l6ekZ5X6urq6aMmWKSbvBYNC2bdv08uXLiC9/f39t2LDBbJxBgwaZtDVp0iTKY6dJk0bdunUzaT979mzEitnxJUWKFKpbt64yZcqk1KlTq3fv3qpRo4bZbceMGaMTJ05o3bp1atq0qdKlS6evv/5ahw8f1vvvvx+xXdWqVTVmzBizMbp27arTp09HvO7SpYs+++wzq/Jcu3atycPh0qvJ/ocPHza73xdffKEJEyaoffv2GjJkiEaPHm12u5CQEH322Wc6fPiwunTpoqtXr2rs2LEqX768PD09lSpVKpUuXVqLFi1Sz549TfYPCgrSwoULoz0PWCcpXAMBALEzYcIEi8WCXhdlcnV11apVq5Q5c+aETM0hHTlyRH/++ackKX/+/BaLl0lS586dzX5eDw0N1axZs+ItRwBAwsqYMWOUBfMuXLiQgNkkXuHh4Zo0aZLatm2r8PBwk34XFxfNnTtXH3/8cZyOExoaqubNm+v27dsRbcOGDbNYoPRN6dKl09atW5U2bVqTmM2aNdO1a9esyuHHH3+Ui4uLSfvVq1et2t+cLVu2SHr1uW3w4MFW7TN06NCI8Z1+/fqpQ4cO0e7j6empBQsWKGXKlJHajUajOnbsKD8/v0jtNWrUUO7cuZUyZUpVr149Yuzyv/bt26epU6dq2LBh+v7775U2bVo1adJEp06dUrNmzWQwGCS9GvNctmyZVeeXFPXv319vvfWWSfv69evNvm+ssXr16oh/mxsvrVSpknx8fNS1a1d169Yt0vb/NWLECM2YMUMVK1bU2bNntWjRItWuXVuZMmVSihQpVLBgQQ0bNkyLFy82u39UxWn/K1euXFqxYoXZQnaPHz/W5MmTLe7r5+cXMZbq5OSkZcuWWSxoDAAAAAAAAMA2KBQBAAAAAAAAJBFJpchCUjkP/J/OnTtbXNVu3LhxsYo5c+bMiAek27Ztq2zZssU6v6i8fPlSLVu2VHBwsCRp9OjRSpMmjVX7GgwGDR8+3Gzf6NGjZTQaLe5rNBrNPuAd1YS4N1WrVs1kFTqj0Wj1ZPLjx4/r0qVLJu3WnHvdunXNtsdlBb7Y+uCDD8y2//jjjxo2bJhJIYlSpUrp2LFjOn/+vC5duqQ9e/aYXU1z+fLlWrFiRcTrFClSWFx50Jw0adLol19+MWkPCwtTp06dol2ZT5Lq169vtn3atGnat2+fFi5cqNmzZ0e5GugPP/xgdjXL3377Ldrjw3qOfA0EAMSep6en5s2bFzH5zpzhw4dbNXkS0tSpUyP+3atXLzk5WX7cJVOmTGrWrJnZvtmzZys0NNTm+QEA7CNnzpwW+54+fZqAmSQ+4eHh2r59uypXrqy+ffuavf/lyJFDGzdutKqQQXTGjx+v33//PeJ15syZLRZONCdXrlxmx1b8/PzUpUuXKMfRXsuTJ4+aNm1q0n78+PFIBSxi4nWx18aNGyt79uzRbr97926NHz9e0qtiJpbGBs0pUqSIWrRoYdL++PFjeXl5RbmvpTGwMWPGqHr16ibf28yZM2vFihW6ffu2Tp8+rX/++UclS5a0OtekxtXVVd99951J+927d7V+/foYx7t+/XrE+Fq+fPmsKsRSvHhx5cuXz6T9+PHjGjlypHr37q29e/eajPm+qWnTpipXrpxJ+549e2JU8KJSpUr65ptvzPaNGDHCYkHgb7/9NuK9NmLECNWpU8fqYwIAAAAAAACIHQpFAAAAAAAAAElIUimykFTOA694eHioR48eZvuWL1+uW7duxShecHBwxEQxg8FgccU8W1iyZIkuXrwoSUqfPr3Zh82j8sEHH5idHHj27Fnt27fP4n7Hjh0zWfnS1dVVxYoVs/rY5ibHnT17NtJD+5ZYetg3qomOr1nK8f79+9Hua2sZMmQw2/7WW2/p66+/trhf0aJFza4iKEmBgYEmK0jWq1dPOXLkiFFujRo1Us2aNU3az58/rx9//DHa/XPnzm12gmRgYKDWrFmjtm3bRhsjQ4YMqlq1qkn72bNno90X1nPkayAAIG6qV6+uXr16WezfuXOnVZMek7sHDx5o1apVkiR3d3d17tw52n169uxptj22k/0AAImTp6enxb5nz54lYCb2Ex4ermfPnunWrVv666+/NHfuXPXs2VP58+dX7dq1zY4DeXp6qn///jp//rxq164d5xzu379vMpbRtm1bs8Upo9K7d2+98847Ju27d+/WggULrIph7rOX0WjUwoULY5SL9Gpy/etCqt27d7dqn+HDh0d8vmvRooXVBWdfMzfJX5KmT58e5X6WxsAMBoNmzZplcUwvR44cKlGihFxdXWOUZ1LUsmVL5c6d26T9559/jnGsuXPnRvwcdOnSxaoxVUnKmzevSduLFy/09ddfa+rUqXJxcYk2xmeffWbS5u/vr2vXrlmVw2vDhg3T+++/b9IeGBiozz//3KR93759mjJliqRXvwcNHTo0RscDAAAAAAAAEDsUigAAAAAAAACSmKRSZCGpnAde+eKLL+Tm5mbSHhISookTJ8Yo1pIlS3Tv3j1JryboFy1a1CY5mjN58uSIf3/88ccxfmg6VapUSpcundm+16vKmbNp0yaTtrRp01r1MPBrZcqUMdu+Z8+eaPe19BB75syZrdrXw8PDpN0eEzQsTUgYP358rB+Anzt3rm7evBmprWHDhrGKNWjQILPtU6dOlb+/f5T7Ojk5KXXq1CbtX331lerVq2d1DuYmINy7dy9Gqwwieo56DQQAxN3YsWMtFqDat29ftJP+IM2aNUvBwcGSXk06tfT5+k3ly5dXqVKlzPbNmDHDlukBAOwoqkIEz58/T8BMEp6Pj48MBoOcnZ2VLl065cmTR2XKlFGXLl3k5eVlMnaRIkUKVa1aVdOmTdOdO3c0fvz4GBcxsGT8+PF68eJFpLbYjJW4uLiob9++ZvvGjRtnVYGtihUr6r333jNpnzVrVozHOry9vSW9KopapUqVaLc/fvy4Dh48GPH6k08+idHxJFksRHrjxg1dvnzZ4n6W3gtfffWVChQoEOM8kiNXV1f169fPpP3QoUNRFvz9r7CwMM2bN0/Sq5/pTp06Wb2vufdkmTJlrCoq+5qlYiO3b9+2Oob0KvcFCxYoRYoUJn27du3S4sWLI14/f/5c7du3l9FoVKZMmbR48WKzBW4BAAAAAAAA2B4jcQAAAAAAAEASlFSKLCSV84CULVs2tW3b1mzf7Nmz5evra3WsCRMmRPx74MCBcU3NooMHD+rMmTMRr4sXLx6rOOYm80vS/v37Le5z9epVkzZzk8yjYinfv//+O9p9y5cvr/Tp05u0ubu7W3Vsc+f8enJfQrJUDCK2q2UajUZNnTrVpL18+fKxiletWjXlzJnTpP3p06fy8fGJdn9zkwAs/bxZki9fPpO2sLCwGL0nET1HvAYCAGzD3d1dvXv3ttg/ZMiQGK/um5yEhoZq5syZEa+j+l7+l7kVxaVXq5JfvHgxzrkBAOwvqon/MSm2mdQVK1ZMjx8/1p49e9SrVy95enraLLa/v7/mzp0bqc3Z2dliAdPoNGnSRClTpjRpv3DhgrZu3WpVjB49epi03bhxw2xhVksePnyotWvXSpI+//xzq/b5bzGq2IwlRjWuE9VYoq3HwJKrrl27KkOGDCbtY8aMsTrG5s2bdffuXUmvCnxmz57d6n3ja6xPkh4/fhyjONKrn+ERI0aY7RswYEBEYeAvvvhCN27ckCTNnz8/RucMAAAAAAAAIG4oFAEAAAAAAAAkUUmlyEJSOQ9I/fv3l8FgMGn38/OzelXfrVu3RhQ6KFeunCpVqmTTHN+0a9euSK+HDRsmg8EQ4y9Lq7XduXPH4rEfPHhg0vbflRmjY2ml5adPn0a7b9q0abVs2bKIh3pLliwZsRKeNcw90B8SEmL1/rbi7Oxs03gHDx7UP//8E6nNxcXF4irh0XFyclLr1q3N9q1YsSLa/S1NAoiJjBkzmm1/+fJlnGMjMke7BgIAbOPKlSsWJ1dJryZXdu7c2aoVspOjtWvXRnxurlatWowmXLZs2dLiZ2Jr770AgMQtMDDQYp+1xS4dVebMmXXw4EEdOHAg4qt58+Zmtz1//rwWLlwYL3msWbPGpPhhnjx5Yv39T5s2rRo0aGC2z5qxEklq06aN0qRJY9Lu5eVldR4LFixQcHCwUqVKpfbt21u1z3/HEvPkyRPjccQaNWpYjB/VWKKtx8CSq9SpU5stTLZ9+3adPHnSqhizZ8+O+He3bt1idPzEONY3aNAglS1b1qT933//1TfffKPVq1dHXF+++OIL1atXL1bHAQAAAAAAABA7FIoAAAAAAAAAkrCkUmQhqZxHcle0aFHVr1/fbN+UKVOselh1/PjxEf8eMGCAzXIz548//ojX+I8ePbLYlyJFCpO2Fy9eKDQ01Or45h6Il8yvTGdOrVq1dPfuXfn5+enEiRMqVqxYtPv4+flpwYIFevLkiUmfPSY/mpuUHxfr1683acuePbucnGL/55aqVauabT9y5Ei07wlbTAKw9PNgj8IeSZ2jXQMBAHEXEBCgzz77LGLypLliWpK0Z8+eGE1cTE6mTZsW8e8vv/wyRvu6u7urY8eOZvsWLlyogICAOOUGALC//xYoeFPWrFkTLhE7SJEihSpWrKgPP/ww4mvWrFnKnz+/2e0HDhyoixcv2jwPc2MluXLlilNMS2Ml+/bts2r/1KlTmy3usH37dl29ejXa/Y1GY8Rk/+bNm1ssPPWme/fu6fr161blF1tRjSXaegwsOfviiy/MFjoZM2ZMtPvevn1bW7dulSTlzZtXtWrVitGxE+NYn7Ozs3x8fOTm5mbSN3PmTHXp0kWS9O677+rnn3+O1TEAAAAAAAAAxJ6LvRMAAAAAAAAAEL+27T8j6VVRhTe9fv26P7FLKueR3A0cOFAbNmwwaf/333/l4+Ojzz//3OK+x48f1+7duyVJBQsW1GeffRZveRqNRh0+fDhS28CBAy2uaBgbUT3Abe6hfqPRqL///lvvvfeeVfEtraqZM2dO6xL8/1KnTh3tNocPH9bs2bO1cuVK+fn5xSh+fLL1Q/Kvf/7e5OnpGaeYpUqVMtseFBSkP//8U5UqVYpT/OhYegCdVc3jh6NcAwEAttGtWzedPn1aktSqVSs1btxYjRs3Nrvt4MGDVbduXeXLly8BM0zczpw5o/3790t6NdHOUsGlqPTo0UOTJk0y+Wzj6+urpUuXRkxsAwA4HqPRqDt37ljsz5s3bwJmkzikSZNGS5YsUeXKlU2KjQYEBKhNmzY6dOiQXFxs99hoQo6V3LhxQ7du3VLu3LmjjdGzZ09NnTo1UpvRaJSXl1e0k9n37NmjS5cuSXr1WcIahw6ZFjnes2ePTb/X2bJls9hHoQjbyZQpkzp37mzy87N69WpdvnxZb731lsV9582bp7CwMElS586d41RcNrbiY6yvWLFi+v777zV48OBI7eHh4Xr27JlSpUqlZcuWmS0mAQAAAAAAACB+USgCAAAAAAAASAaSSpGFpHIeydmHH36o8uXLmxRhkKQJEyaoa9euFh+gHT9+fMS/+/XrF68P2j5//lzPnz+P1JYlSxZ9+OGH8XbMN1WsWNHkYWRJOnr0qNWFIiytMli5cuU45faav7+/Fi9erBkzZkRMgHRxcVHjxo21e/duPX361CbHSSxCQkL0999/m7TH9QHobNmyKVu2bLp//75J3+3bt6Pc116TAPbu3atq1arFKUb79u21YMEC2yTkQBzlGggAiLupU6dqyZIlkqTixYtr9uzZcnd3V7NmzbRy5UqT7f38/NSlSxft3LmTiX7/35ufh3v27BmrFZYLFSqkjz/+WDt27DDp8/LyolAEADiwW7duKTg42GJ/0aJFEzCbxKNChQoaNmyYhg0bZtJ37NgxjRgxQqNGjbLJsW7cuGF2/CeuYyXvvvuunJycFB4ebtJ3+/ZtqwpFFC1aVNWqVdOePXsitc+fP18//PCDUqZMaXHfWbNmSZJKly6tDz74wKqcb926ZdJWvHhxZcqUyar9E5N8+fLpxo0bcYrh6AVI+/fvLy8vr0gFV8LDwzVu3LiIn4//Cg8P17x58yS9KtbQuXPnGB83Mf8e0L9/f61Zs0ZHjhwx6WvWrJnefvttO2QFAAAAAAAAgCfIAAAAAAAAgGRi2/4zWrrJdGWzVvUqqHblEnbIKHaSynkkZwMHDjTbfunSJa1du9Zs382bN7Vq1SpJr1Z169ixY7zlJ8nsQ+7Pnj2L12O+qV69emZXX1y2bJnVMV4Xb3iTh4eHPvnkkzjl9uDBA33zzTfKnTu3unfvrtOnTytnzpz64YcfdOvWLa1evVpp0qSJ0zESoxs3bpidgBIYGBjn2EWKFDHbbqnYBxybI1wDAQBx8/vvv6t///6SXq3s/euvv8rd3V2SNG3aNGXOnNnsfrt27ZK3t3eC5ZmY+fr6RhTakKTBgwfLYDDE6stckQhJOn78uNmJbgAAx3D8+HGLfe7u7ipevHgCZpO4fPPNNxaLnf7000/6448/bHKcS5cumW2P61iJu7u7xWIQMRkr6dmzp0nb48ePtWLFCov7PHz4MOJ3888//9zqY9l7LBG2lTdvXjVv3tyk3cfHR3fv3jW7z/bt2yMKbHzyySfKkSNHvOaY0JydneXj42O2yMrSpUt16tQpO2QFAAAAAAAAgEIRAAAAAAAAQDKSVIosJJXzSK4aNWqkt956y2zfzz//bLZ90qRJESu49ezZU6lSpYq3/CTzD3c/fPgwXo/5ptSpU6tfv34m7Xv37tWZM2esirF+/XqTtqFDhyp16tSxyunx48fq37+/8uXLpzFjxujp06d67733tGTJEl2/fl3ffvutsmXLFqvYjsDX19dsu5+fX5xjp02b1mz78+fP4xwbiY8jXAMBALF3//59NW3aVCEhIZKkefPmqXDhwhH9mTNn1rRp0yzuP3DgwDiv4JwUzJs3TwEBAfF+nBkzZsT7MQAA8ePw4cMW+ypWrChnZ+cEzCZxcXZ21pIlS5QuXTqTvrCwMLVt21YvXryI83ES+1hJo0aNzE7Wj+r+v2DBAgUHB8vT01OtWrWy+lj2HkuE7Q0ePNikLTg4WL/88ovZ7WfPnh3x727dusVbXvZUpEgRff/99ybtISEhat++fcTvQAAAAAAAAAASDoUiAAAAAAAAABuoXqGYvVOwWlIpspBUziM5cnJyilhh+b+OHDmiffv2RWp79uyZ5syZI0lKmTKlevfuHe85mpuUduLEiXg/7puGDBmiEiUi/ywbjUZ17dpV4eHhUe575coVLV++PFJb2bJlzRafsMbcuXNVqFAh/fLLLwoMDFTWrFm1aNEinThxQq1atZKLi0us4jqS4OBgs+22KOaQJk0as+2enp5xjo3ExxGugQCA2AkJCVHTpk117949SdKAAQPUuHFjk+2aNWtmtl16NbGyc+fO8ZpnYhceHh4xgdNgMGjdunU6cOBAnL569epl9lgrV67U48ePE/L0AAA2snnzZot9DRs2TMBMEqc8efJo5syZZvuuXr2qr776Ks7HSOxjJS4uLmYn7B89elTHjx83aTcajZo1a5YkqU2bNvLw8LD6WIlhLBG2VaJECdWtW9ek3dvb26QwyP3797Vx40ZJUu7cuVWnTp0EydEeLBUxPnXqlEaNGpXA2QAAAAAAAACgUAQAAAAAAABgA41rlnWo4gRJpchCUjmP5Kh9+/bKnDmz2b5x48ZFeu3t7R2xymGHDh0s7mdL5h5GP3XqlMUH4ONDypQptXHjRuXLly9S+5EjR9SpUyeFhoaa3e/hw4dq0qSJAgMDI9oKFy6sLVu2KEWKFDHKwdfXV/Xq1VOXLl0iHoCuXbu2zp49qzZt2shgMMTspBxY+vTpzbY/f/5cT548iVNsS6tkZsyYMU5xkXgl9msgACB2BgwYoIMHD0qSKleurDFjxljcdsaMGRbv9bt27ZK3t3e85OgItm7dqitXrkiSatWqpYYNG+rDDz+M09fXX39tdmX5ly9fat68eQl9igCAOLpw4YLOnj1rts/V1dViQabkpnnz5mrfvr3Zvvnz52vt2rVxim9prOT69etxiivZbqykW7duZgucTp8+3aRt9+7dunz5siSpe/fuMTqOubHEo0ePxigGEp/BgwebtPn5+WnatGmR2hYsWBAxVtu5c2c5OSXNR7MXLVqkRYsWSZLZz9Y//vgjBVIAAAAAAACABJY0RyMBAAAAAAAAO3C04gRJpchCUjmP5CZVqlTq3bu32b6tW7dGPOwfEhKiKVOmSJKcnJzUr1+/BMkvQ4YMJm1BQUE6cuRIghz/tbx58+rQoUOqXr16pHYfHx+VLVtWK1as0IMHDxQcHKzr169r6tSpevfdd3Xy5MmIbRs0aKBDhw4pU6ZMMTr2/fv3VaFChUgrdDZu3FgbN26McaykIKqJCOfOnYtTbHMPVkvS22+/Hae48aVq1aoyGo1x+lqwYIG9T8OuEvs1EAAQc0uXLo24ZmfPnl0rVqwwOynxtSxZsmjq1KkW+wcOHKibN2/aPE9H8ObEO0v3y5jKmTOnGjRoYLbP29tbRqPRJscBACSMqAoqNW7cWNmyZUvAbBK3adOmqWDBgmb7unXrpnv37sU6tqWxkufPn+v27duxjivZbqwke/bsatSokUn78uXL5evrG6lt1qxZkqQKFSro3XffjdFxzI0lHjhwIEYxEovr16/HedwnqahcubLKly9v0j5lyhQFBARIkoxGo+bMmSPp1c9t586dEzTHhHLp0iX17NlTktSsWTOTQqeSFBoaqvbt2ydosWUAAAAAAAAguaNQBAAAAAAAAGBDjlacIKkUWUgq55Hc9OrVS+7u7ibtRqNRP//8syRp2bJlunPnjiSpYcOGKlSoUILkZulB97lz59okfmBgoK5du2bVttmyZdOuXbv0/fffR2o/efKkWrRooaxZs8rNzU358+fXl19+qfv370uS3n//fS1fvlzr1683+7B6dPnVqlVLFy5ciGjLly+fFi5cGOWEx6Qsc+bMFlfK/Pvvv+MU29/f36TNzc1NxYoVi1NcxM3IkSO1fv36eIufmK+BAICYOXPmjLp27SpJcnFx0YoVK6yaoNqyZUs1bNjQbN+LFy/UpUsXm+ZpL7169dKhQ6a/r5lz6dIlbd++XZJUsGBB1alTx2Z5vJ7Y9l9XrlyJOCYAIPF7+PBhxKTs/3JyctKQIUMSOKPYicn9MS48PDy0dOlSs+M5jx49UqdOnWIdu1ChQjIYDGb74mOsJG/evBbHZqLSq1cvk7aAgIBIRSwfPnyodevWSZJ69OgR42OYK6p65coV7d27N8axzLl06ZJCQ0NtEgvSoUOHzP5cmDN48GCTtkePHmn27NmSpN27d+vKlSuSpDp16ihXrly2SzSRCA4OVosWLeTn56c8efLI29tbffr0UcWKFU22PXPmjEaOHGmHLAEAAAAAAIDkiUIRAAAAAAAAgI05WnGCpFJkIamcR3KSMWNGdezY0WzfsmXLdOvWLY0fPz6ibeDAgQmVmlKmTKmiRYuatK9cuVJPnz6Nc/xly5apSpUqVm+/Z88eTZw4UdmzZ9eBAwe0dOlSde/eXbVq1VLp0qVVsmRJVa9eXS1bttSkSZN08uRJHTt2TM2bN49Vft9//71Onz4dqW3IkCFmJ7UnFwaDwezDz9KrB8LjwtzkhypVqihlypRxiovYe/jwocaMGWN2ooetJOZrIADAer6+vvr0008jVhQeO3asKlWqZPX+M2fOtDjhcefOnRET0BzVmTNn5OXlpdy5c1u1/fTp0yNWoe7Ro4ecnGz3WMtHH31ksejSjBkzbHYcAED8GjlypPz8/Mz2tW7dWu+9914CZxRzMb0/xtUHH3xgUoD0tW3btmn69Omxips+fXq98847ZvviY6ykVq1asYpVtWpVvf322ybtM2fOjPjcMX/+fAUHBytjxoxq2rRpjI9RsmRJs+3e3t4xjmVO586dLf4fIubGjx+v4OBgq7Zt2LCh2XHiCRMmKCQkJNLn9W7dutksx8RkyJAhOn78uJydnbVkyRKlS5dOTk5Omj9/vlKlSmWy/bhx43Ts2DE7ZAoAAAAAAAAkPxSKAAAAAAAAAOKBoxUnSCpFFpLKeSQn/fr1k7Ozs0l7SEiImjZtqjNnzkiSKlasqAoVKiRobuYm+AUGBuq7776LU1yj0aipU6eqePHiVm2/du1a1a5dW0FBQdq5c6c+/PBDtWzZUl5eXtq2bZv++usvnThxQrt27dLSpUv11VdfxWlSREBAgGbOnGnSXrdu3VjHTCqqVq1qtn3Hjh1xWtXx/v37Jm0NGjSIdTzE3ZQpU5QxY0b973//i9fjJOZrIAAgekajUW3bto1YQbhJkybq169fjGJky5ZNkydPttg/YMAA3bx5M0552tO4ceNUrlw5q1ZW9vf3j1jZ293dPU4rnJtjMBjUvXt3s32bN2926O8zACQXBw8elJeXl9m+TJkyRSq2l5jF5P5oK4MHD7ZYtHTgwIG6cOFCrOJaGivZvHlzrOK9Zuuxkh49epi0Xbx4Ubt27ZLRaIyY7N++fftYFe4sXbq02QKrq1at0pEjR2Ke8BtOnjypAwcOWD2WiKj9888/Wr9+vZo0aWLV9gaDQYMGDTJpv3XrliZNmqS1a9dKknLlypUkx0+3bNmiSZMmSZKGDh2qDz/8MKKvUKFC+vHHH032CQ0NVYcOHRQUFJRQaQIAAAAAAADJFoUiAAAAAAAAABv4dcefJm2OVpwgqRRZSCrnkVwUKFBAn332mdm+Nx+iHjBgQEKlFKFy5cpm22fMmKF9+/bFOu6KFSt08uRJffTRR9Fuu3HjRjVr1kzBwcEaPny4xVUabWnv3r3y9fU1ac+ePXuc4r5eoTG2wsLC4rS/LbRu3Vqurq4m7b6+vtqzZ0+s4/53MkaqVKnUqlWrWMdD3Dx+/FiTJ0/Wp59+KoPBEK/HSszXQABA9H744Qdt2rRJklSkSBHNmzcvVnHatm2revXqme17/vy5OnXqFOfPUvZw/vx5LV26VI0bN7Zq+4ULF+rZs2eSpFatWil9+vQ2z6lDhw5mJ3+Gh4fbbMVvAED8uH//vlq1aqXw8HCz/d7e3sqSJUsCZxVzMb0/2oqTk5MWL15s9v4aGBio1q1bKzg4OMZxO3ToYLb977//1qVLl2Ic73U+/y3glDNnTtWuXTtW8SSpXbt28vDwMGmfMWOGdu/ercuXL8tgMOjzzz+PVXxXV1ezBR7DwsLUqVOnOE2YHzJkiJydnS0W+kDMjBgxQmnSpFH16tWt3qd169bKmTOnSfuQIUMi3jedOnUyWwzUkd27d08dOnSQ0WjU//73Pw0bNsxkm6+++spsweW///5bw4cPT4g0AQAAAAAAgGSNQhEAAAAAAACADew+dD5JFCdIKkUWksp5JBcDBw6Msr9w4cJxWjEwtho1aqR06dKZtBuNRrVq1UqXL1+OccxHjx5pwIABcnV1Vdu2baPc9sKFC2rRooVCQ0MlvXogOSFcv37dbLu54hExEZNCD+Yeqn7x4kWcjv8mS5NKopMtWzaLk/qjWgk8Kk+ePDFZJbNFixbxMjHSEdljUuzXX3+tFy9eWL2yZFwl1msgACBq69at04gRIyRJqVOn1po1a+Tp6RnreN7e3mY/e0rSrl27IlbxjS173FP79Omj8PBwqybCGo3GSOfYq1eveMkpQ4YMFj/PzZo1Sy9fvoyX4wJAUhbb37Fj4vnz52rQoIFu3bpltn/o0KEWr+9RSez3R8lyjrHJPVeuXJo9e7bZvuPHj2vw4MExjvn++++rXLlyZvtiO1Zy/vx5k5+rbt26xWkSfpo0adSmTRuT9g0bNuj777+XJFWrVk2FCxeO9TE6duxotv3cuXPq0KFDrIqgLlu2TNu3b1e9evWUNWvWGO+fEO/PuEjo9+Dvv/+u5cuXq0GDBmaLwVqSIkUK9e3b16T99ffXyclJXbp0sVmeiUF4eLjatGmjhw8fKm3atFq6dKnZ96DBYND8+fPl7u5u0jd+/PhIhVABAAAAAAAA2B6FIgAAAAAAAAAbSSrFCTgPxNSbqw3GZuXBsmXLRrkiXv/+/eXkFPPhbEu5WJujh4eHxVUE7969q6pVq+qff/6xOp+AgAA1a9ZMd+7cUfPmzaNd5XLQoEEKCAiIeG1pMoStvV7F+b8OHz4cp7gx+dlIlSqVSZul7/X9+/fVtWtXk2ILkuXiFH5+flbn8l+vV3H8ry1btuj8+fMxjrd58+ZIr1OkSKHvvvvOqn0dcWXxmIpqxc2QkBCbH++3337TnDlzlDlzZrOrIZqTVK+BAADL/vzzT7Vp0ybiXjxz5ky9/fbbcYqZI0cOTZgwwWL/119/rZMnT8Y6fkLfU+fNm6cdO3aodOnSyp8/f7Tbb9iwIeLzXunSpVWyZEmb5/SapYJtjx490qJFi+LtuACQVEV1j7GFR48eqUaNGvrzzz/N9nft2lU//PBDrGIn9vujZPvf7Ro3bqzOnTub7Zs0aZLWrl0b45jffvut2fb58+fryZMnMY7337GSjBkzqk+fPjGO8189e/Y0aQsLC9P+/fslSd27d49T/GbNmilXrlxm+5YvX6527drF6Ofq6NGjEWOTvXv3jnLb+BgDSwiW3oPx8f7z9/dX165dZTQarS7U8qbPP//cYmHX2rVrK3fu3HFNMVGN9Y0ZM0a7d++W9Or3nbx581rctmDBghozZoxJe1hYmDp06EAxNgAAAAAAACAeUSgCAAAAAAAAsKGkUpyA80BMvFnM4M1/x8TAgQPNtmfJkkXt2rWLc17WtJvz5ZdfKk2aNGb77ty5o9KlS2vatGnRPsR76dIlVa9eXXv27JG7u7tGjx4d5fZ37tzRxo0bI7U1adJE06dP17lz5+Tr66vg4OB4WRUwQ4YMZtunTJkS7b5BQUEaOHCg2aIW/v7+Jm2WJnlky5bNpG3fvn169OhRpLbw8HB9+eWXOnTokNl9LD1sfv36dbPt1ihZsqS+/PJLk3aj0aihQ4fGON7KlSsjve7du7fVk0UCAwNN2kJDQ2OcgzmJpZjAixcvLPb5+vra9FgXL15Uq1atZDQa1ahRI6tXKk3K10AAgKm///5bn3zyScRnmxYtWphdnTo2OnXqpA8//NBsX1BQkJo1a6bnz5/HKnZC3lN///33iMmM1kzCMxqNGjFiRMTrJk2a2DSf//roo4/k4eFhtu+nn36Kl4mJAJCUPX36NN5iHzt2TGXKlLE4ftCnTx95e3vLYDDEKn5ivj++Zm48Jap2a0yePFmFCxc229e2bVudOnUqRvHq1aunTz/91KQ9ICBAo0aNilEso9GoVatWRWobPny4xfG5mChRooTFz1rZsmVTo0aN4hTf1dVVQ4YMsdi/dOlSlS1bVidOnIg21pIlS1SjRg29ePFC9erVU40aNaLcPj7GwBKCpfegrd9/YWFhateunc6fPy9PT0/VrFkzxjE8PDzMFhuRpG7dusU1RUmJZ6xv3759Gj58uCSpdevWatGiRbT79O7dWxUqVDBpv3DhQpTvCwAAAAAAAABxQ6EIAAAAAAAAwMaSSnECzgPWunfvntl/x0TdunXNrsLcu3dvpUyZMs55venu3btWx8iRI4e8vb0t9vv7++uLL75Q4cKFNWrUKB07dkwPHjxQSEiI7t+/r82bN6tjx44qUaKEjhw5IunVw+158uSJ8riXLl0yabtz54569+6td955R+nTp5ebm5ucnZ1lMBhkMBjk5OQkFxcXubm5ycPDQxkyZFCuXLlUrFgxValSRT179tTy5cvNPnD8pnfffdds+86dOzVu3DiL+23dulWlSpXS+PHjzRawuHHjRsS/jUajevbsqSVLlpiNVbRoUZO2gIAA1apVS0ePHpW/v7+OHj2qevXqadWqVfruu+/Mxrlz547Z9l27dlk8D2t8//33KlCggEn72rVrtWLFCqvjHDx4UJs2bYp4XaJEiWiLiLwWFhZmdlXOqCa5xERsVvyMD7dv37bY93rVcVs4evSoqlWrpocPH0qK2QTVpHwNBABE9t/7hfSqsIAtmStI9dqlS5fUpk2bWBULS6h76pYtW1SnTp2Iz5zW3FOXLFmikydPRry2NIHTVlxdXVWmTBmzfVevXo3y8z8AwNSbv+/byrNnzzRgwACVL1/ebHwPDw8tWbJEEydOjHWRCClx3x9fs/Q7XGBgYKyLdKROnVpLly6Vq6urSZ+/v7/q1q2ry5cvxyjm1KlTlT59erPtv//+u9VxlixZojNnzkS8rlmzZkSBDVuwNNG/c+fOZr8fsYlfu3Zti/2nTp1S2bJlVadOHS1dulQXLlyQv7+/AgICdPHiRc2ePVvlypVTmzZt9OLFC3l4eGjSpEnRHje+xsDim6X3oC3ff35+fmrSpInWrFkj6VVhEzc3t1jF+vLLL5UqVapIbTly5FC9evXinKckPXjwwKQtocf67t27p5YtWyosLExZs2a1qniwJDk5OcnLy8ts4dUpU6Zo586dMcoXAAAAAAAAgHUoFAEAAAAAAADEg6RSnIDzQHRCQkL0999/R7w+ffp0rOIYDAYNGDAgUpu7u7vFh7djmtebzp07F6NVglu0aKEuXbpEuc3ly5f13XffqWzZssqaNatSpEih7Nmzq169elqwYEHEqn4NGzbUwIEDoz3mO++8I3d3d6tzlF4VXwgLC1NwcLD8/f319OlT3blzRxcuXND+/fvl5eWlli1bKkeOHJo8ebKMRqPZOGXLllWWLFnM9g0ePFjt27fX6dOnFRQUpJs3b2r+/PmqWLGi6tatq/Pnz6tp06bKmTOnyb67d+/WyZMndfPmTbVo0UJeXl6qVq2a2ePUrVvXbPvx48dVrlw5eXh4qFy5ctq6datq1KihZs2amWz7/Plz+fj4mI0zduzYKCeDRMfDw0Nr165V6tSpTfq6dOkSURQkKvfv31fHjh0jXmfJkkWrV6+2uijAhQsXFBYWZtIe0wk6z549M9t+8eLFGMWJL4cOmV67X1u6dGm0hU+i8/DhQw0ZMkQffvhhRGGF9OnTW/zZ/K/kcA0EALz6nDV16lRVqVIlUpGINGnSKG/evDY9Vv78+aPs37hxo/r06RPjuFHdU+fPnx+r4hNvunHjhrp27ap69epFTGYrXry4xdXKX3v48KH69esXqc3FxSVOuVgjqlXJhw4dGqfPigCQnAQEBOjw4cNm+16+fBmjFewl6fz58xoyZIjy5s2rCRMmmP2997PPPtPp06fVqlWrWOX8psR6f3zt5cuXFn+3kxSp0FJMvf/++xo1apTZvrt376patWoxip8zZ04tX77cZJJ4aGiomjRpYlXhiQsXLqhv374RrwsXLqxFixbFqRjIfzVu3FhZs2aN1Obk5KRu3brZJL7BYJCPj49y5MhhcZuwsDBt27ZNrVu3VrFixeTh4aHUqVOraNGi6tatm44ePRqxrY+PjwoWLBjlMY1Go6ZNm2a2b9OmTdq+fXvsTiaePXv2TOfPnzfbd/nyZe3fvz9O8cPCwrRy5UqVKFFC69ati2hv3LhxrGNmyZIl0nieJHXq1MlscYTYOHfunEnbzZs3LY7jmhOXsb6goCA1btw4Yoxs5MiRypAhg9XHfu+998x+f41Go9q0aUPxUgAAAAAAACAexP9f1wEAAAAAAIBkwDO16cTe3/+6JLcULmpcs2yk9lb1KsgthYt2HzL/EGRiw3lYx9zPQHIwc+ZM+fv7R7xes2aNxowZo3Tp0sU4VuvWrTV06NCIB1E7deqkjBkzxiovb2/vSHm9yd/fX0uWLFGHDh2sjufl5aUnT55ErDwXGx988IEWLlxo1cPtmTNn1pw5c9S+fXubT+j29fVVnz59dOjQIS1ZssTkQWYXFxf1799fgwcPNrv/woULtXDhQpP2lClT6pdfflGPHj1UtmxZk5UMAwMDVapUqYjXI0eOVMOGDc0eo27duqpWrZr27NkT5bkULlxYS5YsifieGo1GPXjwQL///ru+//57i6sp/vvvvypdurS+/vprffLJJ8qZM6fZog9Reffdd7VlyxZ98skn8vPzi2j38/PTRx99pBkzZqhdu3Zm9z1x4oRatWoVMUkiW7Zs2rlzp9UTRSRp+fLlZtt37typ69evK1++fNHGMBqN8vLyMts3f/58tW/f3up84sODBw80btw4i/3nzp3TBx98oA4dOihPnjxKkyaNUqZMKScnp0jvM6PRqNDQUAUFBcnX11ePHj3SlStXdPz4cR06dMjkPdagQQOrVxFNLtdA4LX06dPaOwXYWXL8GTh+/LgGDhyo3bt3m/Q9f/5cZ86cUYkStis+Z81EvqlTpyogIEBTpkyxqrjY69WpLdm1a5cqV66s5s2bK2fOnPLw8JCbm5vJ50Sj0aiQkBAFBQXp6dOnevDggS5fvqw///xTx44dM5lMG90kvICAAH322WeRim9Irz57V6hQIdrziq1Hjx7pjz/+sNj//Plz1a9fXzt37lSmTJniLQ8kMZ6e9s4A9pYMfwbCw8P15Zdf6vnz52b7jxw5Ik9PT5UoUULvvPOOihQpojx58ihz5sxKlSqVgoOD9fz5c127dk3nzp3T/v37LRYTcHZ2Vv369dW/f399+OGHNsk/sd4f3zR+/Hi9fPnSYv/MmTOtLnRozsCBA7Vjxw7t2rXLpO/27dv63//+pxEjRujLL7+0qrBlzZo1tXTpUrVu3VqhoaER7ffv39f//vc/+fj4qE6dOmb33b17t9q2batHjx5JkooUKaJdu3ZZLGYaWylSpFCXLl00evToiLY6deooT548NjtGlixZtHPnTlWvXl3//vtvrOP89NNP+uyzzyz2P3v2TCdPntSUKVO0YcMGs9uEh4erfv36+vLLL9WiRQu99dZbsRqziA9DhgyJctyzbt266t69u9577z1lyJBB7u7ucnZ2lpNT5PXxXhfO9fPz05MnT3Tz5k2dP39ee/fuNfmc6e7ubvFn0FoDBgyQt7e3wsLC5OTkFG2BYWvt2rXLJF/p1VjuqlWrzBbKNWfGjBlm2zds2KDHjx9bHGsKCwtTmzZtIhXQiargiSUlS5bUypUrTdofPHigBg0aaM+ePfJMhvdMAAAAAAAAIN4YAQAAAAAAAACIofv37xuHDRtmdHZ2NkqK9FW8eHHjjh07jCEhITGOO2bMGKMko7Ozs/Hq1asx3v/ff/81jhgxwuji4mKS15tfKVKkMI4ZM8b46NEjq2OHhYUZBw0aZDQYDFHGNvdVq1Yto5+fX4zP5/Dhw8ZixYrF+HjWfn3zzTdmjxsSEmKsXLmy1XGKFy9uPHPmTMT+Xbt2jXL7gQMHRnvud+7cMZYuXdpijOrVqxvv378faZ+4fC/27t0b4/8fo9FoPHPmjLFw4cJmY5YqVco4duxY45YtW4w7duwwzp071/jpp59G+vn8+OOPTc7DkrCwMOOtW7eMP/30U5Q/4wULFjRu3LjR+ODBA2NYWJhJnJcvXxpPnTplbNeuXZTfk+bNmxuPHz9uDAgIiNX3JjbCw8ON9+/fN86fP9+YO3fuePvZj+pr48aN0eaZHK+BAJCcPHjwwPjrr78aGzRoEO19I3/+/MZVq1YZ7927Z/a+aw1/f3/juXPnjCNHjjR7b7H0lTt3buOYMWOMJ06cMPmsGRYWZrx586Zx8uTJxgwZMtjlnvrm58PXwsPDjefOnTNOmDDBWKBAAYv71q1b17hy5UrjtWvXYv19/e/34/79+8b169cbS5YsaVX+WbNmNY4dO9Z49uxZY2BgYJxzAABHd+3aNeP58+eNR44cMc6dO9f4wQcfxOt9xNnZ2fjhhx8ax44da7xx44ZNziGx3h//69atW8a+fftaNQbVvn17482bN2P9Pblz544xY8aMUR4jU6ZMxq+++sq4bds247Nnz6KNuW/fPmP27NnNxqpcubJx8uTJxu3btxu3bdtm9PLyMn788ceRzrVVq1bG58+fx/qconPz5s1In7msGQeIjRs3bhjLlCkTq5/9mTNnRhm7atWqsf4ZHDFiRLycrzX8/f2N+/btM9avX98u77/GjRvH+RyuXr0a8fNau3btOMd78uSJcdmyZcZs2bJZzDt16tTGGTNmGK9fv252vCk0NNR47do149ixY6P8faJkyZLG3377zfj06dNI+1+5csVYu3Ztk+0LFSpkPHXqlNXnsnfvXovv/ddf7777rnHz5s3G8PDwuH7rAAAAAAAAABiNRoPRaDQKAAAAAAAAAIBo1KpVS3fu3JGvr6/u3r2r6IaX3d3dlSNHDrm5ualnz57q2bNntMfw9fVV7ty5VadOHbMrj9kirzcZDAblzJlTadKkUa5cuaxawfnAgQMaOHCgjhw5Eu22mTJl0ujRo9WlSxeT1e6sYTQa1a5dOy1evFitW7dW9uzZdfv2bT18+FBPnz7Vs2fPFBAQoMDAQAUFBSk0NFRhYWEmq1Va4ubmpqtXr5pdHc7Pz08tW7bUpk2bLO7v6uqqAQMGaPjw4XJzc4to//PPP1W+fHmTPFKmTKkJEyZY9bMgSYGBgZo9e7YWLlyoixcvysXFRR988IG6dOmiJk2ayGAwRNr+7NmzVsU1J3/+/EqdOnWs9n358qXGjx+vSZMm6fHjx1btU6JECY0cOVKffvqpVdsvXLhQHTp0iNHP92s+Pj5q166dJMnFxUVhYWExjlGtWjWzK6nbyqJFi9S1a9eIn2F78fT01MOHDyP9PL/GNRAAkofRo0fr22+/jfX+169fV968ea3efuTIkRoxYkSsj/emBQsW6NatWxo1apRCQkKs/kwYHwoXLqyLFy+atHfp0kVz586NUSxnZ2ft27dPFStWjFUuN27cUL58+WK175v27t2rKlWqxDkOADiqkiVL6tSpUzaL5+LiolSpUillypTKmDGjcuXKpdy5c+vtt9/W+++/r9KlSytt2rQ2OdaoUaMS9f1RkooXLy6j0ainT5/q/v37Mf79P2fOnEqXLp1y5swZ49/t1q1bZ/X4hCTly5dP165di3KbZ8+e6fvvv5e3t7f8/f2tiluxYkWNGjVKVatWtTqX2GrUqJHWr1+vPHny6Nq1a7Eat7NGaGioJk2apDFjxujJkyfRbv/hhx9qypQpKlWqVJTbXbt2zerv639lyZJFWbJkidW+sZUyZUoZjUYFBwcn6HH/a+nSpWrZsmWcYnzzzTcaM2aMJGnNmjUxeu+86caNGypQoECsrkkdO3bUvHnzJEkfffRRrMbsDAaDwsPDNWDAAE2YMCHKbbNmzarjx4+bHUOWpKNHj6pOnTpW/Yy/5ubmpk8//VTLli2LUd4AAAAAAAAAIqNQBAAAAAAAAADAKv/880+sH+aNyQPI169fV9q0aZU+ffp4z+tNKVKkUOHCha3e/tChQ1q9erUOHjyoy5cv6/nz5/Lw8FD27NlVokQJNWrUSPXq1ZOnp2esc+rVq5dmzJihRo0aac2aNSaFEaISFham4OBgBQYG6vHjx7pz547OnDmjDRs26LfffovYzsvLS927d7cYZ+PGjZo/f74OHz6sR48eKX369MqfP78++eQTtWnTRvnz57e439ChQ3XhwgVlzpxZn3zyiQYPHqyCBQta/w1wMIGBgdqwYYO2bdumkydP6vr16/Lz81OKFCmUIUMGFS1aVOXKlVOjRo1UpkyZGMX29fXV7du3Y5VXrly5lC5dOkmxL6aROnVqi//XyQXXQABIHh48eKAHDx7Eev8iRYrI1dU1wY73pjfv+YnVnTt39PTp0xjvF5eiXiEhIRYn5SZUDgAARCcuxS/fFNvf7S5evKiQkBCrtnVyctLbb79t1ba+vr5au3atdu7cqVOnTun27dvy9/dXqlSplDFjRhUvXlzly5dX06ZNVaRIkRjnHVs7d+5UzZo19cMPP8SpSJi1AgMD9euvv2rz5s06fvy4bt++reDgYGXOnFk5c+ZUlSpV9Omnn8a6MBYSRmhoqHLnzq379+8re/bsunnzplxcXGIVKy6fUdOnT6+cOXNKilvRkOLFi1v9+Tyq33P8/f2jLR5jDuONAAAAAAAAQNxRKAIAAAAAAAAAgERo6NCh+vHHH5UzZ06dO3dOadKksVlsLy8v9ezZU5L05ZdfavLkyTaLDQAAAAAAAABJzZo1a9S4cWNJ0jfffKPRo0fbOSMAAAAAAAAAyZ2TvRMAAAAAAAAAAACRTZ06VT/++KMkafLkyTYtEiFJPXr0UN68eSVJYWFhNo0NAAAAAAAAAEnNrFmzJEkGg0Fdu3a1czYAAAAAAAAAQKEIAAAAAAAAAAASlT/++EP9+vWTJBUsWFCfffZZvBwnU6ZMkqTcuXPHS3wAAAAAAAAASAquXr2qnTt3SpI+/vhj5cuXz74JAQAAAAAAAIAoFAEAAAAAAAAAQKLh7++vNm3aKDQ0VNKrh44NBoPNj/Py5Uv9888/kqTKlSvbPD4AAAAAAAAAJBVTp05VeHi4JKlbt252zgYAAAAAAAAAXqFQBAAAAAAAAAAAicQPP/yga9euRbxOkyZNvBxn7ty5evHihQoVKqQKFSrEyzEAAAAAAAAAwNHduXNH3t7ekqTcuXOrYcOGds4IAAAAAAAAAF6hUAQAAAAAAAAAAIlAUFCQvLy8IrWtXbtWL1++tOlxTp06pUGDBkmSxo0bZ9PYAAAAAAAAAJBUhIeHq1u3bgoMDJQk9enTRy4uLnbOCgAAAAAAAABeoVAEAAAAAAAAAACJwPXr1/X8+fNIbZcuXdKnn36qJ0+e2OQYBw4cULVq1RQQEKAWLVqoUaNGNokLAAAAAAAAAI7kxo0baty4sTJnzqxMmTKpVq1amjNnjnx9fSVJL168UJs2bbRlyxZJUs6cOfX555/bMWMAAAAAAAAAiMxgNBqN9k4CAAAAAAAAAIDkzt/fX5kzZ45Yne5NGTJkUN++fdWzZ09lyJAhxrHv3bunH374Qd7e3goPD1fVqlW1bds2ubm52SJ1AAAAAAAAAHAYwcHBKlmypM6fP2/S5+bmplKlSunChQsRRSMkafny5WrevHkCZgkAAAAAAAAAUaNQBAAAAAAAAAAAicRPP/2kr7/+2mK/s7OzKlSooBo1aqhYsWIqUqSIsmbNqtSpU8vd3V0hISHy8/OTr6+vLly4oLNnz2rHjh3at2+fwsPDJUkff/yxVq9erTRp0iTUaQEAAAAAAABAovH777/rww8/tHr7du3aycfHJx4zAgAAAAAAAICYo1AEAAAAAAAAAACJyLBhwzRq1CjZevjeyclJ/fr105gxY+Ti4mLT2AAAAAAAAADgKDZs2KCGDRtatW3FihW1c+dOpUqVKp6zAgAAAAAAAICYoVAEAAAAAAAAAACJzIEDB9S/f3/9+eefNolXtmxZTZw4URUrVrRJPAAAAAAAAABwVI8ePVKePHkUGBgY5XZ16tTR6tWr5e7unkCZAQAAAAAAAID1nOydAAAAAAAAAAAAiKxSpUo6cuSIVq1apdq1a8vFxSXGMVxdXVW3bl1t3rxZR44coUgEAAAAAAAAAEjKlCmTfvnlF4v9Hh4emjBhgjZv3kyRCAAAAAAAAACJlsFoNBrtnQQAAAAAAAAAALDswYMH2rlzp/766y+dOHFCt27d0rNnz/Ts2TNJkru7uzJnzqx8+fLp3XffVbly5VSzZk2lS5fOvokDAAAAAAAAQCK1detW/fTTTzp27JgMBoMKFy6shg0bqmfPnsqcObO90wMAAAAAAACAKFEoAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEE42TsBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWIdCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoJCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6CQhEAAABI9C5fvqyffvrJ3mlY9O+//2rSpEkKDg62dyrJ3oYNG1SmTBmlTJlSOXPm1MCBA/Xy5Ut7p4X/7+DBg2rdurXc3NxkMBh0/fp1e6cE2ITRaNT27dvVsGFDOTs7y2Aw2DslJIBbt26pZcuWSpcunVKnTq26devq7Nmz9k4L/9+9e/f0ww8/KHfu3DIYDBoxYoS9UwKShICAAM2dO1dlypSRwWBQ1apVbRI3JCREK1euVLVq1WQwGJQvXz6bxE1suDYBAAAAAAAkLTF5lsFoNGrbtm1q0KCBXf+eNH/+fJ0+fdouxwYAe3v27JkmT56sokWLymAwqEOHDvZOCQmA58kSN54nA+LHlStXNGjQIGXKlEkGg0ELFiywSdzk8jdvrk0AAMCRuNg7AQAAAMCSf//9V19//bUWLlyoUqVKaciQIfZOyazg4GD17dtXkydP1ujRo9WqVSt7p5QsLVy4UO3bt494fffuXY0fP14nT57U9u3b5eREnTx7ePHihRYvXiwvLy+dOXPG3ukANvX06VPNnz9fXl5eunz5sr3TQQK6f/++KlSooDt37kS0bd26VQcPHtThw4f19ttv2zG75G337t3y8vLSunXrFBoaau90gCTjwoUL8vLyko+Pj549e2azuLdu3dKsWbM0Z84c3b9/32ZxExuuTQAAAAAAAElLTJ5lePTokebPn6+ZM2fq6tWrCZileb///ru6dOmiNm3aaPTo0cqVK5e9UwKAeHfy5EnNmDFDS5YsUUBAgL3TQQLiebLEiefJgPgRFhamTZs2ycvLSzt27JDRaLRZ7OTwN2+uTQAAwFFRKAIAAACJjtFo1PTp0/Xtt9/q2bNnatCggaZPn27vtCzKnTu3Vq9erS5duqh169aaP3++vL29VaBAAXunFi+uXLmizZs369ChQ7pw4YJu3bqlFy9eyGg0ytPTU5kyZVKhQoX09ttvq2LFiqpUqZIyZMhgMd6OHTtUq1YtLVu2TC1atIhVTkFBQerbt6/Zvt9++01r1qxRkyZNYhUbsXPmzBnNmDFDixcvlp+fn73TAWzqr7/+0vTp07V8+XIFBgbaOx3YwahRoyIViXjtxYsXGjRokDZt2mSHrJIvX19f+fj4yMvLSxcvXrR3OkCSERISonXr1snLy0t79uyxWVyj0ajt27fLy8tLmzdvVlhYmM1iJyZcmwAAAAAAAJKemDzLcOjQIXl5eWnlypUKCgpK4EwtGzdunB49eqSFCxdq7dq1Gjt2rLp37y6DwWDv1ADApoKDg7Vq1SpNnz5dhw4dsnc6sAOeJ0t8eJ4MiB/379/XnDlzNGvWLN26dctmcZPL37y5NgEAAEdHoQgAAAAkKvfu3VP79u21c+dOubu7a8mSJWrVqpW904pW48aN9f7776tBgwb67bffVKJECY0bN069evWyd2o2s3btWk2YMEG///67xW2ePHmiJ0+e6J9//tHmzZv1888/y8nJSRUrVlTTpk3VpEkTZc+ePdI+U6ZMiXNuZ86c0ZMnTyz279u3jz/sJYCgoCCtXr1aXl5eUf6cAI7o5cuXWrlypaZPn66jR4/aOx3Y2d69ey327du3L+ESSeb++usveXl5admyZaz8A9jQrVu3NHv2bM2ZM0f37t2zWdzEtnJifOHaBAAAAAAAkDRZ8yyDv7+/li5dqhkzZujkyZP2STQaGTJk0Lp16zR+/HgNHjxYPXv21NKlS7V06VLlzp3b3ulZ1KFDB/n4+Ng7DaudOHFCJUuWtHcaQLJ048YNeXt7a86cOXr48KG904Ed8TxZ4sDzZED82bt3r2bMmKF169YpJCTEZnGTw9+8uTYBAICkhEIRAAAASDT279+vJk2a6OHDh8qTJ4/Wr1/vUH84z5cvn37//Xe1aNFCW7ZsUe/evfX7779r9uzZSp06tb3Ti7V//vlHnTp1MjsY6uLiomLFiilLlixKnTq1fH19de3atUhVicPDw3XgwAEdOHBAffv2VeXKlfXRRx8pderU2rx5s3777bc45+jk5BSnfsTdvXv39N577/FHdiRJu3fvVrNmzfT48WN7p4JEIqr7CvechNG2bVstXrzY3mkASY63t7d69eqlsLAwm8bdvHmzGjdunKhWTowPXJsAAAAAAACSJmueZVi3bp06dOigZ8+e2SfJGBowYICKFi2q5s2b6+DBgypVqpSWLl2qmjVr2js1AIi1r776StOmTVN4eLi9U0EiwPNk9sfzZED8qVSpkg4ePGjzuMnhb95cmwAAQFLDb7cAAABIFHx8fPTxxx/r4cOHKlCggP744w+HKhLxmqenp9atW6fPPvtMkrRs2TKVL19ed+7csXNmsfPrr7+qVKlSJkUi3n//fa1YsUKPHz/W6dOn9dtvv2n9+vXat2+fbt68qX///Vdz585V9erVI+0XFhamPXv26Ntvv1Xfvn1tUiRCkkqUKKHMmTNb7P9vHrC97Nmzq0uXLvLx8dHZs2f1559/qk6dOvZOC7CJQoUKqWLFipo1a5b27dunRYsWKW/evPZOC3b00UcfWezjnpMwmjVrpu+//15//PGHLly4oF9++YUHeQAbqFmzpnr27KkdO3bon3/+0a+//qosWbLEOW6lSpXUsWNHbdiwQRcvXtS2bdtUqFAhG2ScuHBtAgAAAAAASHqsfZbhnXfeUbVq1TRnzhzt27dPS5YsUYECBRI+4RioV6+etmzZIg8PDz1+/Fh16tTRxIkT7Z0WAMRa0aJF1atXL61Zs0b79u3T0KFDZTAY7J0W7ITnyeyP58mA+NOxY0dNmDBBf/75p86dO6fBgwfbJG5y+Js31yYAAJDUGIxGo9HeSQAAACB5mzRpkvr27StJypUrlw4cOKB8+fLZN6k4Cg0NVf369bVt2zZJUt68ebVz506Hmgw1d+5cde3aVW/+ypAiRQpNmjRJPXr0sDrOsWPH9PXXX0dbFGLZsmVq0aJFrPNdvny5WrVqpf/+ilO7dm1t2bKFP/zagb+/v3LmzGlx1Zxr1645/Hsdydfhw4dVoUIFi/0MtyRtDx8+VNmyZXXjxo1I7WnTptXhw4dVtGhRO2WWvHXp0kVz58412zd8+HCNGDEiYRMCkojFixerbdu2ZvuqVKmivXv3xiruwYMHValSJbN9efPm1fXr12MVN7Hh2gQAAAAAAOC44vosw19//aUyZcpY7E8sf0/as2ePatWqpZCQEEnS0KFDNWrUKDtnFVmHDh3k4+MTqc3JyUmNGzdWo0aN9M477yhr1qxKly6dXF1d5ezsbHWc16IblwwPD5e/v7/u3LmjM2fOaMuWLVqxYoUCAwNNtj1x4oRDLo4CJEXdu3eXt7e32b727dtrwYIFCZsQEhTPkyU+PE8GxJ8aNWpo165dZvvmz5+vDh06xCpucvibN9cmAADgyJJWWS8AAAA4nDcfrHBzc9OGDRuSxGCai4uLVq1apXfffVeSdOPGDVWuXNlhJjtt2LBB3bp1i/RHMjc3N23bti1GRSIkqUyZMtq5c6cWLFig1KlT2zrVCC1atNDmzZtVtmxZubm5KXv27Bo0aJDWrVvHH/XsJHXq1Proo4/snQYQL8qXL5/oV4FC/MmcObP++OMPtW7dWmnTppW7u7vq1KmjP/74gyIRdtSwYUN7pwAkSQ0aNIiXz9MVK1ZUpkyZbB43seHaBAAAAAAA4Jhs8SzD+++/r4IFC8ZDdrZVrVo1zZkzJ+L16NGjNWTIEDtmFL08efLojz/+0MqVK9WqVSu99957ypYtm1KmTGmxSERcOTk5ydPTU0WLFlXTpk01f/58Xbt2TZ9++mm8HA+AbbRq1creKcCOeJ4s8eF5MiD+xNffppPD37y5NgEAAEdGoQgAAADYzdKlS9WvX7+I1xMnTlSpUqXsmJFteXh4aPny5UqVKpUk6f79+6pTp46ePn1q58yidvPmTbVt21bh4eGR2ufOnatq1arFOm779u114MABZcuWLa4pWlSnTh0dPXpUL1++1N27dzV27Fi5ubnF2/EQPUd48AmIreLFi9s7BdhRjhw5tHjxYvn6+srf319btmzR22+/be+0kjXuOUD8SJMmTbwUdDAYDMqfP7/N4yY2XJsAAAAAAAAcjy2fZXjnnXdslVa8ateundq3bx/xeuzYsfLy8rJjRpZlz55d+/fvV7ly5eydirJmzapff/1VPXv2tHcqACwoUaKEvVOAnfE8WeLD38+A+BFf763k8p5NLucJAACSHgpFAAAAwC4OHDigTp06yWg0Snr1B5kePXrYOSvbK1asmH7++eeI1xcuXFCjRo0UFBRkx6yi1rt3bz1//jxSW82aNdW6des4xy5VqpS2bdumNGnSxDkWHEP69OntnQIQbzJmzGjvFAC8gXsOEH/i6/2VHN63yeEcAQAAAAAAkhJbP8vgSH9Pmjp1aqTirl988YU2bdpkx4zMW7RokfLmzWvvNCIYDAZNmTJFlSpVsncqAMxIly6dnJyYMgEkJvz9DIgf/F0/bpLLeQIAgKSHUQ8AAAAkuPv376tp06YRxRJSpEihSZMm2TepeNSrVy/VqVMn4vX+/fv1xRdf2DEjy44cOaKNGzeatNsy3/fee09z5syxWTwkbu7u7vZOAYg3Hh4e9k4BwBu45wDxJ77eX8nhfZsczhEAAAAAACCpiI9nGRzp70menp5asmRJxITqsLAwtWjRQv/884+dM/s/9evX10cffWTvNEw4Oztr+vTpMhgM9k4FwH8YDAal/n/s3XV4FNf7NvB74wkEQpAAIbgHd3crWhyKO5Ti2kJLoHxpi0NxCy7FNUApXhyKe4AgwUIIxPW8f/AmvyQ7M+uScH+ua66LzOyc88zuzu4y55nnZMhg6TCIKBmOnxGZBsf1DfO1HCcRERGlPywUQURERERmlZCQgG7duuHt27dJ64YNG4aiRYtaMCrTmzt3LmxtbZP+XrlyJfbs2WO5gGQsX75cbZ2NjQ0aN25s1H46duyItm3bGrVNsk4ODg6WDoHIZBwdHS0dAhElw+8cItMx1fn1NZy3X8MxEhERERERERGlB6bKZUhr40nVq1dH165dk/4ODw9Ht27dEBsba8Go/s/gwYMtHYKs0qVLo1atWpYOg4gkpLXPYqL0juNnRKbBcX3DfC3HSUREROkPC0UQERERkVnNmTMHx48fT/rb0dERY8eOtWBE5lG8eHH06tUrxbr+/fsjMDDQQhGpE0Jg//79auuzZ89ukgHTadOmcTaNr4C9vb2lQyAyGb6/iawLz0ki0zHV+fU1nLdfwzESEREREREREaUHpsplSIs3G02bNi3Fda0rV67gl19+sWBEXzg5OaFRo0aWDkNR8+bNLR0CEUngtXoi68Jzksg0OK5vmK/lOImIiCj9YaEIIiIiIjIbf39/TJkyJcW6bt26IWfOnBaKyLx8fHxSFFz48OED+vXrZ8GIUnr06BGCgoLU1kdHR5ukv1KlSqFp06YmaZush40N/9tJ6Zetra2lQyCiZPidQ2Q6pjq/vobz9ms4RiIiIiIiIiKitM6UuQxpcTypYMGCGDBgQIp1M2fOxPnz5y0U0Rfly5e3+sIblStXtnQIRCQhLX4WE6VnHD8jMg2O6xvmazlOIiIiSn/4K4aIiIiIzGbw4MGIjIxMsW7EiBEWisb8vLy80Llz5xTrDh8+jAMHDlgoopQePXokuT4kJAQBAQEm6bNbt24maZesBy+eU3rG9zeRdeE5SWQ6TCjR39dwjEREREREREREaZ0pcxlUKpVR2jG30aNHp4g9ISEBI0aMgBDCYjEVKlTIYn1rq2TJkpYOgYgk8Fo9kXXhOUlkGhzXN8zXcpxERESU/vBXDBERERGZxf79+3Hs2LEU67y9vVGmTBkLRWQZAwcOVFs3duxYxMbGWiCalD59+iS7bePGjSbps02bNqzaT0RpVlpN7CMiIiIiIiIiIiIiIqIvTJ3LkFbHkwoVKoSGDRumWHf58mVs2LDBIvFMnDgRPj4+FulbF7ly5cLJkydRuHBhS4dCRMmk1c9iIiIiIiIiIiJNWCiCiIiIiEwuPj4eEyZMUFvfpUsXC0RjWTVq1ICnp2eKdQ8ePMCSJUssFNH/UaqGO2fOHLx69crofbq6uqJChQpGb5eIiIiIiIiIiIiIiIiIiEgJcxmUdezYUW3dTz/9hIiICLPHUrx4cRQqVMjs/eqjbt26yJgxo6XDICIiIiIiIiIioq8AC0UQERERkclt2rQJ9+7dU1svlVSQ3qlUKrRp00Zt/e+//46YmBgLRPR/smbNKrvt48eP6NSpEyIjI43eb+3atY3eJhERERERERERERERERERkRLmMij79ttvoVKpUqx79eoVVq1aZaGIiIiIiIiIiIiIiCg5FoogIiIiIpMSQmDmzJlq6/PkyYNixYpZICLLa9y4sdq6N2/eYNOmTRaI5v94e3srbj937hyaNGmC4OBgo/ZbunRpo7ZHRERERERERERERERERESkhLkMmuXIkQNlypRRWz9//nzEx8dbICIiIiIiIiIiIiIiSo6FIoiIiIjIpA4dOoQ7d+6ora9fv77J+46Pj8exY8cwbdo0tGzZEsWLF0fOnDnh5OQER0dHuLu7o0iRImjevDkmTpyIf/75BzExMSaPq27durCxUf8pPnfuXJP3rSR37twoVKiQ4mPOnj2LypUr47///jNav5oKVOhKCIFjx46hffv2sLe3V5vhRB/+/v4YM2YM3N3doVKpcPLkScXH379/HxMmTEDlypWRJUsWODg4IGfOnGjatCmWLFmC0NBQg2PSJuYVK1agS5cuKF++PLy8vODk5ARnZ2fkyJEDJUqUQNu2bfHzzz/j1KlTiIuLM3lM5vDmzRusWrUKPXr0QMWKFZEtWzY4OjoiY8aMKFiwIKpXr47hw4fj8OHDiIqKsnS4eomMjMSqVatQrlw5qFQq9O7dW/HxYWFhWLZsGVq2bIncuXPDwcEBbm5uqFixIsaMGYO7d++aJe63b99i2bJl6N27N8qWLQsPDw84ODjAxcUFHh4eqFKlCnr16oU1a9YgMDDQLDEl9+TJEyxYsAAdOnRAiRIlkCVLFtjb2yNbtmzw9vZG7969sWPHDkRHR5s9toiICOzcuRNDhw5FrVq1kDt3bri4uMDR0RF58uRBxYoV0aNHD2zevBkfPnwwe3yW9ujRI8ycORNNmjRBwYIF4erqCkdHR+TNmxfffPMNZsyYgevXr6vt9/3338PNzc3g/gMCAjBp0iR4eHhApVJh7dq1BrWXFs/x0NBQ7N+/H6NGjUKNGjVQuHBhuLm5wd7eHlmyZEG+fPlQv359DB06FJs2bUo379PY2FgcOnQIY8aMQf369eHl5YUMGTLAwcEBuXLlQrly5dCxY0esXr3aIp9rurh16xb69+8PZ2dn5M+fX+Njx4wZgwoVKiR9VmbNmhVVq1bFmDFjcP78eZPFGRYWhu3bt2Ps2LGoV68eChcujGzZssHe3h4uLi7Inj07ypQpgw4dOuD333836m/WRNHR0di6dSuaNm0KW1tb2ecrLi4Oq1evRr169eDm5gYXFxeUK1cOc+bMQWxsrE59xsTEYP/+/Zg0aRKaNGmCokWLIkeOHHB0dISTkxOyZcuGEiVKoE2bNvDx8cG5c+eQkJBghKNNf+7cuYPZs2fj22+/RYkSJVJ8VhUrVgz169fH1KlTcfnyZQghLB0uERERERERERGZkCVzGbRx5coVDBs2DGXKlEHmzJnh4OAADw8P1K1bFz4+Prh//75Z4pB6Pp4+fYrdu3ebpX9KP549e4Z58+aha9euKFmyJLJnzw57e3tkyJABuXLlQs2aNTFw4EBs2bLF6BOYWEpazDUBgEuXLsHHxwctW7ZEoUKFkCVLFtjZ2SFTpkzInz8/GjdujLFjx+LIkSNmHz+Pj4/HyZMnMX78eDRq1AheXl7ImDEjHB0d4eXlherVq2Py5Mm4evWqWeNK9PTpUyxatAidOnVCmTJl4O7uDgcHB2TKlAlFihRB7dq1MXHixHSVp6MtIQQOHz6MkSNHolKlSvD09ISjoyNcXV1RqlQp9OzZE2vXrsX79+9T7BceHo7s2bNj5MiRBvfPfDLmk6X1fLK4uDj89ddfqFGjBlQqFXx8fBQfu337dnTt2hUFCxaEi4sLnJ2dkTdvXjRv3hxz587F27dvTRbro0ePsGTJEvTu3Rvly5dH3rx5kSlTpqTvE09PT9SqVQv9+/fHhg0bTBLLixcvMH36dBQuXFjx+Xr16hXGjh2L4sWLw8nJCVmzZkXLli1x+vRpnft8+fIlVq1ahUGDBqFKlSrInz8/3NzcYGdnB1dXV+TKlQtVq1ZFz549sWLFCgQEBBh4lOlTesrHISIiIjILQURERERkQi1bthQA1JY1a9aYrM/w8HDx66+/Ci8vL8m+lZacOXOKadOmifDwcJPFJ4QQ3t7ekv0fPXrUpP1qMnHiRK2eJwcHB/HHH3+IuLg4i8abXHBwsJg7d64oWrSoWrz6SEhIEIcOHRLNmzcXNjY2Kdo7ceKE5D7+/v6iXbt2Wr3P9u7da8DRyjtz5oxo0qSJWp8uLi7C3d1dNqYsWbKIMWPGiICAAKPG4+vrK9vn06dPjdbPpUuXROvWrYWtra3W57u7u7uYPXu2iIqKMlocpuTv7y/GjBkjsmTJkuI4evXqJfn4qKgo8ccff4jMmTMrPg82Njbihx9+EDExMSaJ+9SpU6JZs2Y6vTa2traiZcuW4tSpUyaJKbmTJ09KnjNyS758+cTmzZuFEEJMmTJF9nHG8OLFCzF06FDh6uqqdXz29vbi+++/F2/evDFKDNbsxYsXolu3blq/t/Lnzy9Gjhwp/vrrLzFnzhxha2srMmfOrFff8fHx4uDBg6Jly5Zq3xG+vr56tZkWz/E3b96IcePGiYwZM6qdw9myZRN2dnayMTVr1swkv3vknocpU6YYrY8PHz6In376SWTLlk3rc1OlUokuXbqIx48fGy0OQ8XHx4t9+/aJBg0aqH3OSQkICBDffvutVsdbvXp1cenSJaPF+uzZMzF48GCdPg8Tl9KlS4v169cbHMOVK1fE999/r3aOSj1fd+7cEaVLl5aNqU6dOlr9fyMoKEiMGzdOp/da4lKgQAGxcOFCERsba/CxCyFE3bp1JfupW7euQe326tVL9vvWWBISEsRff/0lKlasqNNzWLx4cbFr1y6jxGCOzyYiIiIiIiIiItKNuXIZdB1PunfvnmjcuLFW151bt24tHj16ZNR4U9u+fbtk/zVq1DBpv6Yid03SGNclJ06cKIoVK6bXInUt0pD2lNpNbteuXVq31aBBA72el71794qaNWvqdH3WwcFBdO3aVdy4cUOvPi0preaaREZGigULFohChQrp9FplzZpVjB07Vrx9+9YkcSWKjo4W8+bNE/nz59c6tlatWon79+8LIYTIly+f5GPkxmJ1dfToUVGvXj2hUqm0ji9Pnjxi9erVVpV7ZSoHDx5UHDtLvtjY2Ii6deuKmTNnij179og2bdoIAGLEiBF69c18si+YT5a288mCg4PF77//rpYPKzfWuHfvXq0+L+3t7cWwYcPEp0+fjBbrgQMHRP369XX6LgEg7OzsROfOncXt27cN6j8qKkps3bpVNGnSRO0clXq+li1bJpydnSVjUqlUYuHChVr1e/bsWZ3fa4l9fPPNN+Lff/816LgTPX36VLYvffOZEsm1m57yccz12URERERkbCwUQUREREQmExgYKHvh886dOybp8/Tp05KDlra2tqJcuXKiVatWolGjRqJw4cKKFw8LFSqUNFhoCj179pTst2fPnibrUxsvX74UDg4OWl9krVKlirh586ZFY7506ZLo3bu37AV7QLf/9oSEhIh58+aJIkWKyLYnNbC3fPly4eLiovVzZ2NjY/DF9+Q+ffokOnbsmKIPFxcXMWXKlBQXwUNDQ8WWLVtEmTJldB6QSVwcHR3FkCFDtIrL1BfPg4ODRZ8+fdSe2zJlyohvvvlGNG3aVOTNm1fxePLlyyeuXLlicCymkJCQIPz8/ESLFi3UBq8SF6nEhTt37uj8Gjdp0sRoN5MK8WXgSSqJzdnZWVSrVk20atVKVKtWTeTMmVMxrrZt25qk6MHHjx9F165dJfvMlSuXqFOnjmjZsqUoVaqUZDLHoEGDxKRJk4zyuZNaXFycmDlzptrnWsGCBUXDhg2T4pJ7TwAQGTJkMOpnjLU5efKkyJEjR4pjtrOzE+XLlxctWrQQ33zzjahUqZJwcnJSfH/pWiji3bt34vfffxcFChSQbVOX5z0tn+OrV69W+95r2bKl+Oeff5L6iY+PF5cuXRJ9+vTRKSkq+WJraysKFiwo3r9/r1Vccu0Ya2Da19dXrVBAnjx5RL169USrVq1EhQoVZAtkAF8SLWbMmGGUWPT1+fNnsWDBAtnfw1KJsIcPH9ZYlCT1YmdnJ2bOnGlwvMuXL5csEOHi4iJq1qwpWrduLerWrav2mZB6adasmQgNDdWp7/fv34t58+Ypnm+pn6+zZ8+KTJkyaXx+xo4dq9j37t27hYeHh9p+Dg4OokqVKqJ169aiQYMGGovjVapUySjfo2m1UMTdu3dF9erV1d47VatWFa1atRL16tVTO6dTL/Xq1RPv3r0zKA5TfzYREREREREREZFuzJnLoEuhCF9fX41jG1LXSlevXm3UmJN78uSJbN9PnjwxWb+mYspCEf3799fptUtcbG1tkwrVaxurtoumcSul8fzUS6FChXR6Pq5fvy4qVaqk1o6rq6uoXbu2aNWqlahcubLImjWrbJ82Njaif//+4vPnzzr1bQlpNddECCH++usvkTt3brW+cuXKJRo3biyaN28uSpcurRinq6urmDNnjkhISDBqbEJ8ucFd6nm1sbER3t7e4ptvvhGNGzeWHCvKmDGjOHTokMkKRbx8+VKt8JCDg4OoWLGiaNmypWjUqJHkeE/ypUyZMsLf3984T5aViY+Pl5y0yM3NTdSpU0e0adNGNGjQQPG8SVx0LRTBfLIvmE+W8rlNa/lkd+/eFYMHD5Z9D6Uea4yLixM//PCDzq9dvnz5xH///WdQrB8+fJDNw8qTJ49o0qSJaNmypahcubJifqqDg4NYsmSJzv1fuXJFDB06VHHsN/XzNWbMGI3Pja2trWLhqoiICDF8+HDJnJjs2bOLhg0bilatWonq1asrfhaoVCoxadIknY87tbRcKMIa8nFYKIKIiIjSKhaKICIiIiKTmTVrluQFM2dnZ5NUQ9++fbvkhcC+ffuKwMBAtcc/ePBAbSAk+ZIzZ06Tzci+cOFCyT4zZcpk8WrUP/74o04DBXZ2dmLMmDFmHZgPDw8Xq1at0npWYG3cunVLDBo0SGTIkEFje8kH9mJjY0W/fv10HmBJHNi4du2awc/HnTt31Crf58uXTzx8+FB2n5iYGL0TVQAIDw8PrWIz5cXzmzdvprhZ293dXcyaNUvyRr5r166JDh06yMbi4uIidu7caVA8xhQSEiLmz5+v1WB46sSF/fv3a/U+llo03bSqrU2bNqndJFukSBGxdu1ayRnUz549KztYCEDkyJFDduYFfdy6dUvyRv9GjRqJkydPqiWvBAQEiDFjxqgNVCoN4OkrODg4xSwOdnZ2YsiQIZLn88uXL8WECRMUEwYnTpxokmQcS/r333+Fo6Nj0jE6OjqKX3/9VXz48EHtsdHR0eLQoUOiQYMGks+PtoUizp49K7777jutiilpM7Cals/x6OhoyYSKpUuXKu538OBBnZNbky9+fn5axSe3v6ED05GRkaJHjx5J7SXOSCCVLBEUFCR+++03xcIKPXv2FNHR0QbFpKsnT56IUaNGaSxikDoRdteuXTrPepF8GT9+vN4xjxw5Uq09R0dHMWvWLBEREZHisQkJCeL48eOifPnysrE0bNhQxMfHK/YZFxcnDhw4INq1ayfs7e01Hl/y5+vGjRuSRS2klpw5c8rGMG/ePLXH29jYiAkTJoiPHz+qPf7KlSuyn3MAhLe3t+T3ry7SYqGIbdu2pfiuLl68uNi2bZvaeyfxNa9QoYLsc1igQAGDbhAw1WcTERERERERERHpx5y5DNoWivDx8dH7OiwAMXnyZKPGnZzcjfyWLoysD1MWioiPjxfnz58X/fv3V7yJLXGpUKGCOH36tOx4QUJCgggNDRU3btwQ48aNUywin7iUKlVKrF27Vjx8+FDr68Lh4eHi1q1bYsiQIbLPy9atW3Uqxjxnzhy1cbWKFSuKXbt2iZiYGLXnzc/PTzRt2lT2uAoWLGjxSUzkpOVck4iIiBTjX4lL+/btxYULF9QeHxYWJnx9fUXx4sVlY2vcuLHkWIa+FixYoHY+OTg4iJ9++kk8f/48xWMTEhLEsWPH1MY0bG1tZcd5DSkUceLEiRQznufJk0esWLFCfPr0Se2xp06dEg0bNpR93rJlyybOnDmjdyzWKvUN68WKFRP79++XHK979+6dmDNnjvD09JR8jrQpFMF8spSYT/alvbSWT5Y44UjTpk01TsiRfKwxPj5e8Vg0La6urpKf/doIDAwUJUqUUGuzRIkS4uTJk2qPDw0NFXPmzFEcW1+7dq3GfrWZ+EHu+frll1+0fm4mTpwo2f/nz59F7dq11R6fO3dusWfPHrV8raioKOHr66tYQMjHx0e3Jz+VtFgowprycVgogoiIiNIqFoogIiIiIpOpWbOm5AWzypUrG70vPz8/yRvYtKmy+9NPP8le3Gvfvr3RYxVCiGPHjsn2uXv3bpP0qa3IyEi9qoPnzJlTrFmzRuPNd4bat2+fcHNz0yk2JSEhIaJevXo6tZc4sBcVFSWaN2+u83OVfKlRo4ZBz8fTp09Fzpw5U7Tp4uKiOKiXKD4+XrRp00avuC09sHfx4sUUF/zr1q2r1UzPq1evlr3p08bGRhw5ckTvmIzlf//7n043gSdPXPD19TXoZl47OzuDZ0n6888/1QYq+/btKyIjIzXuu3v3btnK7o6OjmLXrl0GxSbEl0He1MlsNjY2YtGiRRr3TT2YrO/njpz379+L0qVLJ7Xh5eWl1ewEly5dUvscSL4Yo+K8tXjz5o3Inj170rFlypRJ64HqNWvWqJ3/mgpFhIWFpXhNtFk0Daym5XM8ISFBsqjL//73P63237lzp96xW7JQRERERIqb8LNkySIOHz6scb9Hjx6JYsWKycbUvXt3vWPSxaVLl8S3336rVQIpkDIR9syZMwYV+EhcFixYoHPckyZNUmvHxsZG43MfERGhmGj3559/Ku7/888/63Rsic9XUFCQ8PLy0no/Jycnyf5Xrlwp+fiVK1cqxh0fHy+ZzJm4jBkzRnF/TdJaoYilS5em+D0ybNgwERsbq7hPbGysGDRokOxz6OHhIV6+fKlXPKb4bCIiIiIiIiIiIv2ZM5dBm0IRv/76q8HXYQGIX3/91ejxCyFErVq1JPsrW7asSfozJVMWikjuwoULijewAdB55u4tW7Yotpc9e3YRHBxsUNw1atRI0WatWrUkb3pXMm7cOLXYJk+erFUuyfLly2XHJdzc3MS///6r76EZXVrPNQkNDVWL38XFRaucpYiICPH999/LxlamTBmjTMwzdepUtbYLFCggbt++rXHfBQsWaDU2pm+hiH379qUoPtGxY0cRFhamcb9p06bJ3vjt4uKiOGt9WrNmzZoUx1e/fn2tCtiEhISI9u3bqz0/mgpFMJ8sJeaTfWkrreWTLV26VLEYT+ol+Vjj0KFDDXrPAV+Kauj6/IeGhkrG7O3trbFw0JUrV2QnusiQIYN4/fq14v66jM8nf762bdum036DBw9W6zsuLk5yDD1XrlwiICBAMW5/f3+RJ08e2ffb9evXFfdXktYKRVhbPg4LRRAREVFaxUIRRERERGQS7969kx1w69evn1H7CgoKkrxBtkiRIlrN9hEfH69YSdzQm6alvHz5Ura/7777zuj96crf31/kyJFDrwGDcuXKmXRw5MGDB6JJkyZi7ty5YteuXWLBggUiV65cijFpUq9ePdGjRw8xe/ZsMWPGDFGwYEHF9k6cOCFiYmJEixYtktZlzZpVjB49Whw/flwEBQWJmJgY8fLlS7Fu3Tq16uxS7ekjJCREcqBF2xt2hfhS0VvTzOKpFwcHB9G7d2+t2jfFxfP79++nGNxt0qSJ2qwjSvbv3y8bU9asWcWzZ8/0istYFixYIOrVqyd8fHzEggULxLfffqv4eiQmLmzYsCHpc9fGxka0bt1abN68WTx9+lRERUWJ4OBgcerUKdG5c2et2tPHqlWr1Nrr2rWrWoV0JefPn08x+3fq997x48f1ju/Zs2dqn20qlUps2rRJ6zZevHihWJRB28+d1CIiIlJ8F+XJk0e8evVK6/0DAgJkZ3NSqVRi3759OsdkjQYPHpzi2FatWqXT/tu2bUuReKOpUIQQQnTv3l2MHz9ebN68WWzZskU0adJE8bXXNLCals/xiRMnqrVXokQJnWZX03UGCxsbG5E3b14RGBioVfty7eg7MB0fH5/i+z5Tpkw6zVgVHBwsihQpIhuXpqIFxjB37lzh5uYmWrRoIbp27aoxsSQxEfbdu3cid+7cOr1ecou9vb24dOmS1jGfPn1a8v8Sffv21Wr/ly9fiowZM0rGkitXLsVk1Pv374s9e/aIwMBAERkZKS5cuKBYMCbx+Wrbtq0AIKpWrSru3LkjAgICFGcJatSokVrfDx8+lPwObNCggVbHHRYWJptQ4uTkZFCCcFoqFLF169YUn/VTp07Vaf+xY8fKvm7Vq1fX6XdnImN/NhERERERERERkf7MmcsghOZCEZs3bzbKdVjgy5jQ3r17jX4MSjOLa3PDqTUxV6EIITTfhPj582ejxt+mTRuDY27atGlSe56enlrdXJvc5MmT1eKSm4Vbzq5du2QLp7u5uWlVJMBc0mquSWxsrKhfv77a58ehQ4d0amfUqFGysZUvX16EhobqFZ8QQixZskStzUKFCokXL15o3YZU/kLqRZ+x0zNnzqQoEqHt+FWiRYsWycZTuHBhERISonNM1ubz588pcjOyZMki3r9/r/X+cXFxonXr1imeG02FIphP9n+YT/alnbSYT1amTBlRvHhx0blzZ9GmTRuNr0HiWOOmTZt0eq2UlkqVKmkswJ+c3O/E06dPa7X//PnzZWMZP3684r779+8XFy9eFCEhISIkJESsXLlStuBH4vMVEBCQVExk0qRJIjg4WBw7dkx4e3vL7rdx40a1vqdPny752PXr12t13Hv27JHtr1OnTlq1ISUtFYqwxnwcFoogIiKitIqFIoiIiIjIJJSSGWbMmGHUvn755RfJfjQNECWndIFv9uzZRo03kaurq2R/uXPnNkl/urpx44bIli2b3oMGjRo1EteuXTNLrCdPnlSMRVevXr2SfX2ALwNxiTM2Ozg4iF9++UVxgDs0NFSxGEmXLl30Ou7hw4ertWVvby/evn2rUzszZsyQjCt79uw6DdRKMfbF8/Dw8BTVoAsUKKDzDCZCCNGnTx/ZuJo0aaJze6YmNVtC4tKrVy9x+PBhYWdnJ4AvN5NqKnDz22+/ybbn6Oio13N65coV4ejomKKtPHny6NXW7t27ZePLnDmzXu+dyMhIUaZMGbX2Ro0apXNbhw8f1vgZqKvu3bsn7WtnZ6fX5+e6detk48maNateyWbW5P3790nvc+DLTc/R0dE6t9O3b98U7yddxcTEKCZs6DOwmlbOcanE2blz5+rUzosXL2ST+9auXatzXKnJHbe+A9OpExr379+vcxsnT56UnRnI3t7e5AklERERagkwUrN5JS6JibCtWrVKWpczZ04xbtw4cf78efH27VsRHh4u7t27J+bNmydKlCih8TMR+DKznLYJJXXq1JFsQ5tZrBIpJcteuXJF63aEEOLOnTuKz1fi/32qVq2q9ptw586dwt3dPcU+WbJkEbdu3VLrp2fPnpJ9zJs3T+tYlZLOd+zYodNxJ5dWCkXcunVLODs7J7XTvn17nduIiopSLKiiz/9njf3ZRERERERERERE+jNnLoMQytfs7ty5k+J6VokSJcTs2bPFjRs3RHh4uPj8+bO4deuWWLBggShVqpRW12KzZs0qgoKCjHoMs2fPlu1vxYoVRu3L1MxZKEIIIWrWrCnbnz4FD548eSI7ztK6dWuD482bN29Se8uXL9dp3/3796uNh5QvX16nm00TzZs3T/F10jRDuaWklVwTqYLJw4YN07mdhISEpELaUou+xUtOnz6dYlwY+DKmpuv4jhBCdO3aVfEzU9dCEYGBgSkKIFSrVk2vAtPJZ09PvQwcOFDn9qxN6hu/dS2mIYQQHz58ENmzZ09qQ5c8wETMJ0t5DjGfTDNL55OlLhTz/v17xfH4KVOmiKdPn6Z4X1arVk0sX75c3LlzR4SHh4t3796Js2fPimHDhokMGTIonhOJy6xZs7SK19/fXzIXws3NTetjDg8Pl51QqFSpUjo9f0Io50JMmTIlqSjWzJkzU+wXERGhNnkNANGsWTO1yVM+f/4sO3GFLr9R8ufPL9mGq6urTpMyJZeWCkVYYz4OC0UQERFRWsVCEURERERkEt9//73sBbMtW7YYtS+5C6a6XID88OGDbLx9+vQxaryJypcvL9vn48ePTdKnrh4/fpxiEEXXRaVSiR49eojnz5+bPFZPT0/ZOPShNCN748aNBfBlUEnbm7nv3Lkje1E6S5YsijNbS7l7967awDgAUaNGDZ2P9fXr17LJJPoM1iZn7IvnqWek+Ouvv/SK6/3794oVxC9cuKBXu6bi5+cnG2vVqlVFpkyZhJ2dnU6FbapWrSrbpi434grx5YbKwoULq7WzbNkyHY/0/ygladWoUUPnc2bkyJFq7ZQoUUJERkbqFV/qGVYM+dzZu3dvin2///57vWISQvm75ffff9e7XWuwfv36FMejb2GloKCgpEFyfQpFCCHETz/9JPs86zOwau3nuBBC1KhRQ7ItfWYKSz4jQPLF3d3d4Bly5I5Zn4Hpq1evpvh+bN68ud5xKSXJDR48WO929RUZGZliNpXkS758+cT27duT/h4yZIgIDw+XbSsmJkb8/PPPsr9zki+rVq3SGNuzZ89k99dl1pydO3fKtrNu3Tqt20kkNxNF9uzZRc6cOUX27NnFq1evJPf98OGDmDFjhujUqZMYN26cCAgIUHtMZGRkioRwfT9Xrl69KnvcU6dO1fm4E6WFQhFxcXGicuXKSW04OTnp/f+Q1N/NyZds2bKJsLAwndoz5mcTEREREREREREZxpy5DEIoF4ooXbq0AL6MF69fv17xhrCEhAQxf/584eTkpPFa7JAhQ4x6DErXy7p3727UvkzN3IUiDhw4INufLkWCk2vevLlke1mzZtXrhvVEN2/eTGrL09NTp4Lt79+/F1myZFGL6fDhw3rFkpCQIOrVqyf73Ol787Q5WHuuybFjx9TayZgxo94FZt69e6c4CY2uOQOfPn0S+fLlM9oYx9OnTyWL4ScuuhaKSD7mp1KpxMWLF/WK68aNG7IxOTg4mCXPypRSF8L46aef9GpnxYoVSW3oUyhCCOaTJS7MJ9OONeaTbd26VTaeKVOmJOVfuLm5acwF8ff3l839SL64urqK4OBgjbH5+PhI7q/rb6rkk1gkX+zt7dWKNGjy77//yh5X4m/vbt26ye5/6dIl8cMPP4guXbqIpUuXSv62Wrt2rVE+V4YNGybbjlROgTbSSqEIa83HYaEIIiIiSqtsQERERERkAv/++6/stgIFChitn4iICDx79szgdtzd3ZE7d27JbS9fvjS4fSmenp6y286cOWOSPnVVqFAhXL58Gd99951e+wshsGHDBhQrVgxTpkxBRESEkSP8PyVLljRqexUqVJDd9vfff6NSpUq4ePEiypcvr1V7JUuWRN26dSW3ffz4Uef38ZIlSxAXF6e2XiluOTlz5kTjxo0lt23atAlBQUE6t2kKjx8/xsKFC5P+LliwIDp27KhXW9myZUOlSpVkt//+++96tWsqSq/rxYsXERcXhz179mDMmDFatzlkyBDZbdeuXdMpvnnz5uHx48cp1mXJkgW9e/fWqZ3k/vjjD2TIkEFy27lz57BixQqt27p48SIWLFigtn7GjBlwcnLSK77BgwfrtV9qcXFxGD16dIp148eP17u9Zs2ayW6bO3cuYmJi9G7b0s6fP5/i76CgIERHR+vcTtasWQ16bwKAt7e3QfunZu3n+NWrV3Hu3Dm19a6urihcuLBObQFAjx49JNcHBwdj/fr1OrdnKqNHj0Z8fHzS3xMmTNC7LaVz09fXF2/fvtW7bX04OTmhVKlSktsiIyMxcuRIqFQqLFy4EEuWLIGLi4tsW/b29pg2bRoWLVoElUql2O9vv/0GIYTiY+7evav5ALRQunRp2W36/L6X++3+/v17vHnzBosXL5b9/4S7uzt+/PFHbNu2DTNnzkTevHnVHvP06VNERkbqHFdqJUuWhI2N9GV/U/2/xlps2LABly9fTvq7a9eu8PLy0qutxo0bw9bWVnJbUFAQVq1apVe7RERERERERERkeebKZdDGrVu3ULZsWVy/fh09evRQvMaqUqkwYsQInD59GpkyZVJsd/Xq1QgMDDRanGkht8FaNW/eHAULFpTctn37dr3a7NOnj+T6Dx8+YP/+/Xq1CQA7d+5M+nfv3r3h4OCg9b6TJ0/Gx48fU6wrWbIkmjZtqlcsiWMUcte7t27disOHD+vVtqlZc65JfHw8RowYoba+Z8+eyJo1q9btJJc9e3b4+PjIbp8wYYJO42A//vgjAgICUqzLkSMHJk6cqFd8+fPn1/t9mNrJkyexe/fupL/r1auHKlWq6NVWmTJlkCtXLsltMTExmDt3rl7tWovUY/v6jlH17NkT2bNnNygW5pN9wXwy7VhjPplSPPv27cPBgweRJ08enD9/Ht9++61iWwULFsTff/+N+vXrKz4uNDQUf/75p8bYTD22Hxsbq3MuhdLv1lu3biFXrlxYvHix7GMqV66MP//8E1u2bMHgwYNhb2+v9hhrzWlIS9JzPg4RERGRJbBQBBEREREZXUxMDG7fvi27PU+ePEbrS+lmKmdnZ53aKlKkiOT61IPZxqJ0UVrqZkxLcXV1xaZNm7B582Zky5ZNrzYiIyMxbdo0lChRIkVygTHlyJHDbO1VqFABx44d03kwUm7wDAAePnyodTtCCOzZs0dym743w1WvXl1yfXR0dIqBbkuaMWNGigECfQf1EhUtWlR225EjR/S6Ad1UsmXLJpsY5ujoiH379qFFixY6tWms92NQUBBmzJihtr5t27ZwdHTUKabkPDw8MGzYMNnt2hafEUJg2LBhajcme3p6olWrVnrH17ZtW7i6uuq9f6LNmzfD398/6e+qVasiX758eren9L5+9+4dLly4oHfblvbmzZsUf8fExOD48eN6tTV06FCDYjH2d441n+MAsGvXLsn1efLk0VgYQIrcdw7wJbHPGpw+fRqnTp1K+jtXrlyoVauW3u0pnZvR0dE4cuSI3m3rS+53zLt37xAYGIjVq1crfg6n9v3332PgwIGKj/H398c///yj+Bilz3Zdft8XLFhQ9kZ/fX7fK33mN2vWzODfJcY6bicnJ9nfg6b6f401SEhIwPTp01Os69Spk97tOTs7K/6/de/evXq3TURERERERERElmPOXAZt1K9fH2fPnpUsLiuncuXK8PPzU7xuGBMTg9WrVxsjRADKuQ0BAQFGLUqR3qhUKtkC5ufOnVMrxq+N1q1by+ZurFy5Uuf2gC9jquvWrQPwJea+fftqve/du3cli+t26dJFr1gSlS5dWvE67/jx4zUWp7YEa841WbVqFe7cuaO23tDXauDAgbJjE58+fVK7fi/n5s2bWL58udr6Pn366FS4JLWePXvqvW9y06ZNS/G3IeMQgPL4YVoeh/j8+bNaPt+xY8ckixdo4ujoiP79+xsUD/PJvmA+mfasLZ9M6f3033//IX/+/Dhz5gyKFy+uVXsuLi7YtWsXcubMqfi41atXIyEhQfExcmPcxsrbBXQf49aUyzVv3jxkzpxZpzZTkztuXScrMuZxpyVfQz4OERERkbmxUAQRERERGd3Dhw9TXHxPTd9iA1KyZs2KLFmySG7TdYZruQvA2tyIrA+lJJMHDx6YpE9DdO3aFXfv3sV3332ndxvPnz9Hhw4d0LJlS6NXPdY0a4quMmbMKLtt1qxZeg0YVKxYUXabLpWLHz9+LPv86fs8KFWOT13p3xI+ffqkdvNw7dq1DWpTaSAtMjLSqm6ot7GxkZ3NvVOnTmjYsKHObebOnVt20E+X9+PSpUsRGhqqtl6fmFIbMmSI7E2+79690yrBbd++fSlmF0/Ur18/2ba1YW9vjzJlyui9f6Jly5al+NuU72sAOHHihEHtW1JYWJjaOh8fH8XfHHKKFSumWJlfE2N/51jzOQ58mR1Hir7PQ968eWV/D167dg2xsbF6tWtMqc/NmjVrys5apQ1rPDfl3nPAl892uRnJlMycOVNjIrWmYiBKyRC6/L63tbVFhgwZJLfp8/terviRjY0NZs2apXN7qRUqVEi28Iq1/7/GGhw7dixF4SWVSmVQMgmgfN6eP3/eqoqKERERERERERGRdsyZy6CNQ4cOKY5Ly6lRo4baDcupbd68Wd+w1Hh4eEjOppzIGvMbrEmvXr1kxxjWr1+vc3sODg7o1q2b5LajR4/ixYsXOrd54sSJpFnr69Wrh4IFC2q975w5cyTPK2OMFysVtL516xYOHDhgcB/GZq25JkIIzJ49W229i4uLYpF3bdjb22Pw4MGy21euXIn3799rbGfKlCmS7yVNhco1qVSpkkH7A1++P1KP55lybP/p06cICAgwqH1LkRrXDwwMVBt/1VaHDh0Miof5ZF8wn0x71pZPpjSu7+npiX/++Qf58+fXqU03NzcsXrxY8THPnz/XONmZ3Ni+sca3Ad3HuJUmNapSpQo6d+6sU3tSrPG405KvIR+HiIiIyNxYKIKIiIiIjO7+/fuy2zJmzGjQDPNSpGYFz5MnD7755hud2pG7kcxUNysqJZnoM2uEOWTPnh2bNm3C8ePHUaJECb3bOXjwIEqVKoVNmzYZLTZdK1FrovQ+1ffCdL58+WS3BQcHa92OUpENfW98V6qsrOvM86awe/dutRkHSpYsaVCbmqp4nz171qD2jU3pBlV9yb0ntX0/xsbGYunSpZLbqlSpondcifLmzauYQLRixQqNbfz++++S65VmZNBW2bJlDdr/6dOnagPnX9v7Whdubm5q6y5duoQhQ4boNVtQ27Zt9Y7F2N85gHWe44nkvncMKbYiN3AeFRVl8aSnyMhItZlW0uO5Kff65cuXD4MGDdKrzUyZMmHmzJmKj9E0W0OZMmUkk3fatm2LrFmz6hSPMX/fy81U5eXlhVKlSuncXmpubm6Sib0VK1ZUTMCSYu7/11iD1EnvXl5eeiXYJ6d03kZFReHKlSsGtU9EREREREREROZn7lwGTXSddTi5UaNGKd5Yev/+fb0KBkhRqVRwd3eX3W6t+Q3WIm/evGjQoIHktg0bNug1ziVX7DkhIQFr1qzRuT1fX9+kf/ft21fr/YKCgiSLktjZ2el8bVtKjRo1FHMZtBkvNjdrzTU5ePCg5Llavnx52NnZ6RVXcr169ZItiB0dHa2xKMr9+/exd+9etfWFChXSqXCJlEKFChk8ZpD6fW5nZ6f43tSGNY4fGoPUuD4AjB07FseOHdO5vQoVKiieA5own+wL5pNpz9rOTaXXrn///np/RrZr1w5NmjRRfIymsf1BgwZJfocMGDBAp1jkxrcB3ce45cb1AeicTyynW7dukp91ljzutOJrycchIiIiMjcWiiAiIiIio1O6uc8UM3BMnjwZAwYMgKOjI2xtbVGtWjUcPHhQsZqyFLmLxKa66KpUETgwMNCqqwLXr18fN27cwOzZs/WqhA58qejdvXt3/PDDD3rNBp+asZN2lAYN9OXh4SG7TZcZiZWqxX/+/FmnmBIpvY4fP37Uq01jOnTokNq6ggULQqVS6b1Mnz5dsc/AwEBTHY5ezPme1Pb9ePToUbx+/Vptva2tLQoUKGBQbImUbua/ffu2YkLfrVu3JCv529raGiUxSVNFck38/PzU1vXt29eg93WjRo0U+7S297Uu5AoUrVy5Ei1atNBpJg0AmDp1KkJCQvSKxRSJotZ4jieSe271/c4BrPt758SJE2rJJNOmTTPo3NQ0c4Qlzk25ZD1DtW/fXvHz8eXLl4pJSgCwadMmNGjQACqVCs7OzujcuTNWrlypcyzG/H1vSNEWbf35559o164dbG1t4eDggCZNmmDnzp06v1bm/n+NpQkhcPjw4RTrnj9/btA5q1KpNCaMpOXvVCIiIiIiIiKir5W5cxlMydbWFuPGjVN8jDFvilK6rv/o0SOj9ZNeyRVfePbsGU6dOqVze1myZJG9br1mzRokJCRo3VZoaCh27doF4Mvr3L59e6333bZtG6KiotTW58mTx6BCKMkpjRcfOXLEoPEqU7DWXJN169ZJrpcr7q4rT09Pxckktm/frrj/ypUrJYumVK5c2eDYVCqVzsXIU0udsxIXFwcHBweDxiE2btyo2GdaHYdwcXFB3rx51dZHR0ejefPmmDdvnk6fUcCXz8r58+frFQ/zyb5gPlnazScz1bg+AAwePFhxe+rJb1IrVqwYNm/eDE9PTwBAzpw5sWjRIrRu3VqnOJTOK13HuM0xrp81a1bs3r07qZCKu7s7fvnlF8kJ75QY87jTiq8lH4eIiIjI3FgogoiIiIiM7s2bN7LblKrg6svR0RErVqxAaGgowsPDcf78eZQpU0anNs6ePYsbN25IbtNn9gZtyFVQT/T06VOT9Gss9vb2GDNmDB4/fozBgwfrXXl88eLF6NSpk8HFIgyZ1dwc7QHKVepjYmK0bsfe3l5226dPn3SKKZHSwJ4pB5y0dfr0abP3+eHDB7P3qcSc70lt34+pK3wnyp07t9Hi1VT4IPWNoclJzV4DfKlErmsxIVPg+1o3jRs3lt3m5+eH4sWL488//9Tp81RfpjgfrfEcTyT3vaPvdw5g3d87ljg3IyIiJBMp0yIHBwf06NFD8THXr19X3O7l5YV//vkH4eHhCAsLw9atW3VK4IuJicGOHTtkk5P0+X1vjoQSNzc37Ny5M+m4jxw5otMMSfHx8Th8+LDs/yNM9f8aS3vw4IHOxYKMIS1/pxIRERERERERfa3Mnctgat9++y3c3d1lt9+8edNofSnlN1h7boM1aNu2rexzuHbtWp3bU7rR+vnz5zh69KjWbW3bti1pIpPvvvtOMa8hNbnxYi8vL63b0ERpvDg2NhbHjx83Wl/GYI25JtHR0bLj6uZ6rS5fvozg4GDJbUIIbNmyRXKbMQpFGCoiIgJXr141e79peRxCbmw/NjYWo0ePRvXq1TXegG4szCf7gvlkxpOWz83UWrVqpVioRNO4PgB07NgRL1++RFhYGF6/fq1zsYRXr15h9+7dstt1HeM2x7g+ANSrVw8PHjxAaGgoPnz4gKlTp+r0+fDhwwfZ7z4g/Y7tMx+HiIiIyDTsLB0AEREREaU/SskVppiBO5HSYIeUwMBArF27FmvWrIG/v7+JopKnqVCEITdfmlO2bNmwdOlS/PDDDxgzZgyOHDmicxu7du3CoEGDsGrVKr3jMPZFflMMGijNmKFLtXylARp9k3CUjjd37tx6tWksb9++lbz5T5eZTPRRqlQpk7avK3O+J7V9P0pV5gc0f77ponDhwsiRIwfevXsnuf3SpUuy+x44cEByfcGCBY0Sm6GkChTVqVMH2bNnN1mfun5XWpNatWqhbNmysoWdQkJCMHz4cMyZMweTJk1Cr169TDKbB2Ca89Eaz/FEHh4eCAsLU1v/+vVrREVF6TUjlDV/70i9xypWrIj8+fObtF99n0tr1KlTJ8ydO1d2u7a/V3RJRgW+JKqsXr0amzdvlk021Jc5E510/T/T48ePsXr1aqxfv/6rnA1D6pzNli0b6tata9J+lX6TExERERERERGRdbJULoOpODo6om3btli9erXkdmPmQSiN/6WV3AZLcnJyQteuXbF06VK1bTt37sTixYu1LlYSEhKiMbdi5cqVaNasmVbt+fr6Jv27X79+Wu0DfLnp7tSpU5LbjDleXK1aNdja2spOPnLp0iV8++23RuvPUNaYa3L69GnJsT7AuK9VzZo1ZbclJCTgypUraNKkidq2a9eu4fXr15L7WcPY/q1bt9SeZ2dnZzRv3tyk/VrDsevr+++/x5o1a2RvdL506RJq1KiB5s2b45dffkHVqlVNFgvzyb5gPpnxWFs+mSHs7OzQtm1bLFu2THL7hw8fEBoaCldXV41t6VJ0LSYmBnv37sXq1avx999/65zDosTcBUwyZsyo9WMTEhJw5MgRrF69Gvv37zfLRDjWhvk4RERERKbBQhFEREREZHRyg4sATHbDprYSEhJw+PBhLF++HAcPHkwxkOzs7IzIyEizxaLpwqPS82iNvL29cfjwYRw6dAhjxozB/fv3ddp/9erVqF27Nnr16qVX/8a+yG+u6tL6KFeuHGxsbCQHSfSdxUApeadQoUJ6tWkscu8lX19frQai0gtre0++efNG9mZUXW/s1aRMmTI4duyY5La7d+9Krv/w4QNu374tuU1pxgNziY+Px+PHj9XWjx07Fq1atbJARGnD0qVLUbt2bdlEMAAICAjAwIEDMW3aNIwfPx79+/c3+nvSFAPL1naOJ1ehQgXJZNK4uDjcvHkTVapU0blNue+dDBkyWPzma6nvnV69emHYsGEWiCZtKlu2LOzs7BAXFye53ZjFDCIiIrBlyxYsW7YMV65cSVpvZ/fl0rdcDGldbGwsdu/ejWXLluHEiRNJ61UqFRwcHBAdHW3B6MxL6pzNmzcvduzYYYFoiIiIiIiIiIjImllzLoO+KleuLFsowpjXYpXyG9JaboOl9OnTR7JQRFhYGHbu3ImePXtq1c7SpUuTnnO5gvv79+/Hu3fvkCNHDsW2Hj58iHPnzgH4MiZbsWJFrWIAgJs3byI2NlZymzHH5jJmzIgCBQpIjq0C8uPFlmKNY35KeSTGfK3KlCmjuP3u3buShSLkCo4A1jG2LzUO4ezszHEIBRUqVMCQIUOwZMkSxccdOnQIhw4dQqNGjTB58mSTFAFnPtkXzCcjOZUqVVLcHhgYiGLFihmlr8ePH2PFihXw9fVFUFBQ0npz5+2aW2BgIFavXo2VK1fixYsXSevT+3FLYT4OERERkWlY7/9UiYiIiCjNioqKkt1mqeSKz58/Y968eShSpAhatGiBffv2IT4+HpkzZ8YPP/yAmzdvolOnTmaNSdOs7mk1maJ58+a4efMm5s2bp/OA7ejRo/HhwwcTRZZ+ZMyYUXYmhgcPHuDjx486tyk3OwMAi9+0/urVK8n1ISEh5g3k/6tXrx5UKpXRFh8fH4sch6GkKnwnMvZAe/HixWW3JR9AS05pkNuYs6Lo6+3bt5I3L1vqfZ1WVK9eHWvXrtUq+eLly5cYPnw4ChQogJkzZ6bZ71VroDTj1IULF/RqU+57p3nz5rC1tdWrTWMQQkgmzvLc1I2TkxO8vb1lt4eGhhrcx7NnzzBmzBh4enqif//+SUUi8ufPjxkzZuDFixfw9PQ0uB9r8+7dO0ydOhX58uVD586dk4pEeHh44Mcff4S/vz+qVatm4SjNS+q3Is9ZIiIiIiIiIiKSYo25DIZSurFf6eZOXSnlN3AMRjuVK1eWvXa+bt06rdqIjo7GwoULAXy5gX7Lli2Sj4uNjcXatWs1tufr65v07379+mkVQyJrHy9+9uyZUcf1VSoVnj17ZtTjMhdzvVaenp6KN2fLvVbJC4GnZg1j+1LjEMb8fE2v5s+fjxYtWmj12GPHjqFevXqoXbs2Dh8+bOLI0i/mk33BcULdaCoSZYyx/SNHjqB58+YoWrQoZs2ahaCgIKhUKjRu3Bg7duzA3r17De7DGp0/fx5dunRBvnz58MsvvyR9D1arVg2+vr56F3BJq5iPQ0RERGQ6LBRBREREREYXExMju02qYrUpvX37FhMmTICXlxdGjx6NJ0+eAABKly6N5cuX49WrV/jzzz9RunRps8YFaC4UERERYaZIjM/e3h4jR47Ew4cP0aNHD633Cw4OxsyZM00YWfrRp08fyfUJCQnYunWrzu39999/kuuzZcuGRo0a6dyeMb1//15yPQcJLOvly5ey24ydDObl5SW77fPnz5LrHz16JLuPNcwcwPe1/rp37479+/fD3d1dq8cn/hbIly8f5syZg+joaBNHmP506NBB9rzZtGmTzu3Fxsbizp07ktu6du2qc3vG9PnzZ8nfsjw3dVe+fHnZbUrJ2JrcvHkTXbt2ReHChTF37lyEhIRApVKhWbNmOHDgAPz9/fHjjz8iZ86cevdhjZ48eYLBgwcjX7588PHxSUrKqlGjBrZs2YIXL15gxowZKFCggIUjNT+p71Ses0REREREREREJMWachmMRWmGZ2POUKyU35CWcxvMrW/fvpLrT5w4gefPn2vcf+PGjXjz5g0AYPDgwWjQoIFsvsvq1asV24qPj8f69esBAI6OjujevbvG/pOz9vFi+j/mfK3y5Mkjuy09je3Hx8cb5ebp9Mze3h67du3SaZb4s2fP4ptvvkG1atVw6tQpE0aXfjGfjOOEuipVqhTs7Oxkt+s7th8fH49NmzahdOnSaNasGfz8/CCEQObMmTFq1Cg8fPgQR48eRfv27TXm0aY1Bw4cQM2aNVGjRg1s27YNcXFxcHZ2Rr9+/fDff//h/Pnz6N27N5ydnS0dqlkxH4eIiIjIdFgogoiIiIiMTmmmjdjYWLPEEBISggkTJqBgwYKYOXNm0mBj/fr1cfToUdy8eRMDBw5EhgwZzBKPFE0XuC05m7ax5MiRA+vXr8fff/+tOBic3IoVK4yasJJe9ejRA4ULF5bcpinhQ8rff/8tuX769OkWnz1HLrEoKCjIzJFQckqDNMZOiPDw8JDdFh8fDyGE2nq52UgAWEWhAL6vDdO8eXNcv34dLVu21Hqf4OBgjB07FiVKlMCJEydMGF36kylTJowZM0Zy26VLl3Dr1i2d2jt16pTk4G+NGjXw7bff6hOi0fDcNJ5s2bLJbtMn0ePRo0fo2LEjypUrh61btyI+Ph52dnbo3bs37ty5Az8/P7Ro0QI2Nunrkvfr168xcOBAFCtWDMuXL09KxGnbti0uXryIf//9F126dEl3yTO6kDpvP336ZLb/exIRERERERERUdphDbkMxpYxY0bZ66LGzDlQugaZHnIbzKV79+6Sz6UQAhs2bFDcVwiBOXPmAPjyXh4+fDgAoH///pKPf/jwIU6fPi3b3tGjR5NmdW7Tpo3WRdoTWct4cVxcnFH7So+s/bXi2H765eDggIULF2Lv3r2KBV9Su3jxIurVq4dOnTrJFgMgacwn47mpKzs7O7i5uclu12ccevv27ShZsiS6d++O27dvAwBy5cqFuXPn4uXLl5g7d67s+zQtO3bsGCpXroxWrVrh3LlzAAA3NzdMmTIFz58/x6pVq1CuXDnLBmlBPGeJiIiITCd9Zc0SERERkVVQKr5gjuSKTZs2oUiRIpg5c2bSxcXChQvj4MGDOH78OBo3bmzyGLShaUYSJycnM0Vieo0aNcK1a9dQq1YtjY8NCQmRHWSi/2NnZ4eVK1dKJv1cvXo1aeYPbQQFBWHXrl1q66tVq4YBAwYYFKcxyH1uXL161cyRUHJKFeONnUySJUsW2W2urq5QqVRq6z99+iS7j9I2c+H72nBeXl7Yv38/du3ahUKFCmm939OnT9GwYUNMmjRJssgISRs/fjy8vb0lt40cOVKntpYvX662zsHBAYsWLZI8n82J56bxZM6cWXabLjNjREdHY9KkSfD29saOHTuSzttGjRrh5s2b8PX1RYkSJQyO19okJCRg/vz5KFKkCFauXJmUPFmhQgWcP38eu3btQpUqVSwcpXWQOm/j4+Nx48YNC0RDRERERERERETWzNK5DKagUqmQKVMmyW3GnDhDKb8hPeU2mFqOHDnQokULyW2axvgPHDiAe/fuAQC6du2K3LlzA/hSfMLR0VFyn5UrV8q25+vrm/Tvfv36KfYtxVrGi+Xe//R/rP214th++te6dWvcvXsX48eP1+k7Y/v27ShVqhT+/fdfE0aXvjCfjOemPow1tv/o0SPUrVsXnTp1wsOHDwEAjo6OmDx5Mh4/foxRo0YhY8aMBsdrbV6/fo127dqhcePGuHLlCgDAxsYGQ4YMgb+/P3x8fBQn2vha8JwlIiIiMh0WiiAiIiIio1O6mGvK5IqQkBC0adMG3bt3T1FldtCgQbh58yaaN29usr71oanqvS4X2Y2lcOHCaN26tUnazp49O44ePYr69etrfOw///xjkhjSm3r16mH27NmS28aMGaM460JyQ4cORWRkZIp1hQsXxt69e61iVm65pJaLFy+aORJKTinB4+PHjwgLCzNaX3LvAQCyVe2VPmOtIZmE72vjadu2Le7fv4+lS5cmJcRpIoTAjBkz0KNHD42Fm+gLZ2dn7Ny5Ezly5FDbdvz4cSxdulSrdvz8/LBjx44U62xsbLBp0yaUL1/eKLEaQu7cvHfvntET5dI7pWSS7Nmza9XGnTt3UL58ecyYMSPp/xGOjo5YsmQJ/v7773RZIAIAXr58idq1a2PUqFEIDw8H8OU8mTJlCi5duoRq1apZOELrwu9UIiIiIiIiIiLSlqVyGUxNriCE0nierpTG3iyR25CW9enTR3L9w4cPcf78edn9Zs2alfTvMWPGJP3b3d0dbdu2ldxn586dCAkJUVsfHByMffv2AQDy5s2LRo0aaRN6CkrvL21zFbSlz3gx/R+l1+r58+dG7Ytj+yQnY8aM+OOPP/Do0SMMGDAAdnZ2Wu337t07NGzYMOkzizRjPhnPTV0ZY2x/yZIlKFOmDE6fPp20rmTJkrhy5Qp+/fVXuLi4GBynNdq5cye8vb2xe/fupHV58uTBiRMnsGTJEri7u1swOuvCfBwiIiIi07H8/9CIiIiIKN1RSq4w5o3DyT169AhVqlRRGxSaO3culi1bZpWJCTExMYrbtb3IbmyJVY1NIfEm0/z58ys+7vbt2yaLIb0ZNWoUFixYoDaAGhQUhAYNGuDJkyey+yYkJGDEiBH466+/UqwvVqwYjh49KnkzsCXIJTZduHDBzJFQcpoqnd+9e9dofTk4OMhuK1q0qOR6pQSU9+/fGxyToeTe10FBQfD39zdzNGmfnZ0dBg8eDH9/f8yZM0frz69NmzZh7NixJo4u/ShWrBiOHz+OAgUKqG0bNmxYipmnpJw4cQKdO3dOsc7R0RGrV69Ghw4djBqrvuTOzYSEBFy6dMnM0aRtSr+/vby8NO5/4MABVKtWLWl2NABwdXXF0aNHMWTIEKPEaI0uXryISpUq4dy5c0nr7OzssHXrVvj4+MDW1taC0Vkn/lYkIiIiIiIiIiJtWSKXwRwiIiIk12sal9eFUn6DpXIb0qrmzZvDw8NDctvatWsl11+8eBFnzpwBADRr1gylS5dOsb1///6S+0VGRmLjxo1q6zdv3px0c37v3r31uuFXabw4KCgI796907lNOfqMF9P/UXqtjDmuD3xdY/sch9BPnjx5sGLFCty7dw/du3fX6vMnOjoanTt3ZgEAHTCfjHQhN7Zvb28v+5slUXx8PPr374+hQ4ciKioqaX2dOnVw/vx5lCpVyqixWpMpU6agY8eO+PjxY9K6kiVL4sKFC6hTp44FI7NOzMchIiIiMh0WiiAiIiIio/P09JTdlvyiqLE8ffoUDRo0wKNHj1KsHzt2LEaNGmX0/oxFU6GInDlzmimSlF6/fo1Xr16ZrP0sWbJg8eLFio95+/atyfpPj4YPH45Tp06pDaw8fvwYpUuXxs8//4z79+8jISEBwJcZF/766y9UrFgRCxcuTLFPr169cPXqVcmbgC0lV65ckutfvnxpkUHgkydPQghhtMXHx8fsx2AMmgZ+79y5Y7S+lGZwKlOmjOR6V1dX2X1u3LhhcEyGkntfA8COHTvMGEn64uTkhNGjR+PJkyfw8fHRakaCefPm4Z9//jFDdOmDt7c3rl27ppY0GB8fj759+6Jly5Y4cuRI0swicXFxuHDhAgYMGIBGjRqlmAWgSJEiOH/+PHr37m3uw5CVMWNG2URhnpu6+fz5s+y2IkWKKO578OBBtGvXTi0xe/Pmzek6oeLKlSto0qSJ2m/h+fPno2PHjhaKyvrJfacePHhQbZYjIiIiIiIiIiL6upk7l8Fc5Gbg1XQtVhdK+Q2Wym1Iq+zs7NCjRw/JbX/99VeKmywTzZo1K+nfUkXQGzRoIDvGv2rVKrV1icW/VSoV+vTpo1XcqVn7eHH+/PmNOq4vhDBq8RVzUnqtHj16pPj86srYY/vXr183NCSDyY1DXLhwwaT5Veld4cKFsWHDBty+fRvffPONxsdHRUWhZ8+ekp+RJI35ZKQtubH9QoUKKRZzEUKgd+/eWL16dYr1hQsXxt69e5EpUyajxmlNJk2ahGnTpkEIkbTO3d0dfn5+iv/n+JoxH4eIiIjIdFgogoiIiIiMrnDhwrLbPn/+nOLiqKFiYmLQrl07vHz5MsX6vHnz4tdffzVaP6aglGhiY2OjsRqzKZn6htnmzZujYsWKstsTZ64g7dWoUQNnzpxBvnz5UqyPiIjA9OnTUaJECTg6OiJjxoxwc3ND586dkwbUVSoVWrdujTNnzmDt2rWy1ZstJfUxJbd06VKT9Ll582Y8f/7cJG2nFxUqVFAcDDRmwobSQH+1atUk1+fJk0d2n+DgYDx9+tTguAyRNWtW2cGv5cuXJw3EG9PZs2dx+vRpo7drjTJkyIApU6bg4cOH6NChg8bH//TTT2aIKv1wc3ODr68vhg0bprbt4MGDaNasGVxcXJApUyY4ODigevXqWLVqVdL7umjRoli6dClu3ryJ8uXLmzt8jeS+dzZu3CibbGuI+/fvY/fu3UZv19I+ffokud7Ozg5ly5aV3c/f3x9du3ZVSyTs1KkTWrZsadQYrUlwcDDatm2rloRTtWpVfP/99xaKKm2QO2c/fvyIbdu2maTPBQsWyM7SSERERERERERE1sucuQzmEhERgbi4OMltVatWNVo/SvkNuXPnNlo/Xwu54gwhISHYu3dvinX+/v5J4wjly5dHw4YN1fZTqVTo27evZJs3btzA5cuXk/6+efMmrl27BgBo2LCh3sUPKlWqpLjd0uPF9H+UXqu4uDjcvn3baH3JvVaZM2dGiRIlJLcpje1fvXrVKHEZQm4cIi4uDitXrjRJnytWrMCHDx9M0ra1KVGiBA4dOgQ/Pz+NRQgePnyYVOiGtMN8MuNKr/lkcmP7mr7rZ82ahY0bN6qtX7hwIdzc3IwRmlXavn07ZsyYobZ++vTpyJs3rwUiSjuYj0NERERkGiwUQURERERGp5RckZCQoDi7sK5mzpwpObg8cOBAODk5Ga0fU1Aa0CtYsCDs7OzMGE1KR48eNXkf3bp1k92mNFsASXvx4gXq1q2LgIAAFC1aFHv27MH//vc/tGnTBiVKlECOHDmgUqlgY2ODfPnyoWLFiujbty98fX3x7Nkz7N27F7Vq1bL0YUjy9vaGra2t5LZt27YZfXA8MjISw4YNw48//mjUdtObTJkyKd7o6+fnZ7S+5BLP7O3t0aRJE8ltmmZISp4MZQraJBKWLl1acv3Tp09x+PBhY4eE//3vf+jatavR2zWXwYMHq810oYmnpye2b9+O7du3K85UcOnSJdy4ccPQEL8aCQkJGDNmDBYsWAA7OzssWLAAK1asQL9+/VCxYkV4eXnBxcUFMTEx8PDwQMmSJdGyZUv8/vvvOHfuHO7du4fBgwdb7W81udmMwsLCsGHDBqP3t2DBAnTq1AmRkZFGb9uS5D67K1asqPjaDxo0SDIBYPjw4UaLzRqNHz9erfgdAAwbNgwqlcoCEaUdcucsACxZssTo/V28eBEjR47Epk2bjN42ERERERERERGZljlzGcxF6roiADg4OBi1UITSmGzRokWN1s/XomTJkrKvz7p161L8PXfu3KRi3GPGjJFts0+fPrLj6qtWrUr6d/KbrOWKS2jD29sbWbNmld1ujvFiDw8PjTexElCnTh3F7eZ4rZo0aSKbB6U0tv/ff//JFsMxBm3G9ZXGIVauXKlW/NxQr169wtChQzF37lyjtmtOTk5OmD17tk77NGvWDLdu3cKAAQMUH7dixQpDQvvqMJ/MeNJzPllISIjk+po1a8ru8+TJE0yePFltfZEiRfDNN98YKzSr8+nTJwwePFhtvaurK3r37m3+gNIY5uMQERERmQYLRRARERGR0Wm6Off169dG6ScuLg7z58+X3FavXj2j9GFKQUFBstvkquiby8GDBxEdHW3SPpRmddB3xoqv1b1791CjRg3cvHkTRYoUwenTp9GmTRv89NNP2LNnD+7evYu3b98iJiYGnz9/xrNnz3DlyhWsXr0avXv3tvpK1s7OzrI31EdFRWHcuHFG7W/9+vUIDg5GjRo1jNpueqT0Wfvo0SM8fPjQKP0EBgZKrq9Tpw4yZ84sua1ixYqKbW7dutXguJQkJmspUUrOGzdunFE/h+/fv48jR46k+ff13bt38f79e53369ChAy5cuIBcuXLJPubEiROGhPbViI2NRbdu3TB37lzY2Nhgy5YtGD58OAYMGIBVq1bhypUreP78OcLDwxEVFYXXr1/jzp072L9/PyZMmIDq1avDxsa6L0kqnZtTp05V/A2nqw8fPmDjxo0oV64cnJ2djdauIeLj443Szt27dyXXN2/eXHaf//77D//884/aeicnJ6MmNFub9+/fqyX+JkoL/6+xtEqVKsl+rly+fBnr1683an+J/wdN69+pRERERERERERfI3PlMpiT1MQawJebsl1cXIzWjzXnN6RVffr0kVx/9OhRvHnzBsCX5z2xsEPevHnRuXNn2fY8PT3RrFkzyW1btmxBeHg4YmNjk4rgZsmSBW3bttU7fpVKpViA4NSpUwgLC9O7/eTkxotbtmzJYstaKF26NNzd3WW3HzhwwGh9yb1WrVu3lt1HaWw/NDQUhw4dMjguOdqM6xcpUkT2+QsMDMRvv/1m1JgWLVqEuLi4ND8OcfLkSZ33yZAhA1asWIF58+bJPubGjRuyBUkoJeaTpf98MmOM7b98+VK2WJrS2P6CBQskC+XUrVvX4Jis2Zo1axAcHKy2vmrVqlaT82HNvvZ8HCIiIiJTse6sbCIiIiJKkzJmzKg4Y8SrV6+M0s+5c+dkKz/nyJHDKH0A2lWP14fSja66zphubCEhIdi3b59J+8iWLZvstvLly5u07/Tk3r17qFu3Ll6+fAl7e3vs2bMHHh4elg7L6OQSWoAvM54YK3EhIiIC06ZNA5D+B66MoUePHorbjfU58vTpU8n1/fv3l90nR44c8Pb2lt1+4MABvQoOaEubWU2U3td3797FpEmTjBbPhAkTIIRI8+9rIYTkTeTaKFGiBPbs2SN7M/GzZ88MiOzrEBcXh44dOyYVWvnxxx/RoUMHC0dlfErn5rt37zBkyBCj9TVt2jSEhYVZ1bkZExNjlHauXbsmuV7pPbN//37J9e7u7rKzTOnDVL/v9eXn5yf7vZEW/l9jae7u7qhSpYrs9hEjRsjOqqira9euYdu2bciWLRtKlixplDaJiIiIiIiIiMh8zJXLYE43btyQXN+1a1ej9REbG4tPnz5JbrO1tUXx4sWN1tfXpEuXLpI3rcXHx2Pjxo0AgMWLFyfNgDxixAiN18r79esnuT40NBTbtm3DwYMHk8ZIu3XrBicnJ0MOQXG8OCYmBocPHzao/UT6jBfT/1GpVOjevbvs9osXL+Ldu3cG95OQkIDnz5+rrc+SJQvat28vu1+DBg0U212zZo3BscnRZlxfpVKhSZMmstunT5+O//77zyjxvHr1CgsXLoSdnR1q1qxplDYt5cyZM3qPO44cORJDhw6V3CaEQEBAgCGhfRWYT/Z15JMZY2z/6tWrkusrV66sWCxEbmzfmOPbgPWNcX+tx20sX3s+DhEREZGpsFAEEREREZlE7dq1ZbcZ6yad27dvy24z1qwEgPFmVU5N6YbU6tWrm6RPXSTOlGsqSjdoN23a1KR9pxevX79G48aNk57Lrl27ptsb1jp27Ki4fcCAAXjx4oXB/UydOhWBgYEoX768xQu2pAXly5dXrJS/bNkyrWbg0OTmzZtq6zw8PBSTSQDg22+/ld0WGxuL5cuXGxqarOjoaI2PqV+/vmLRnHnz5hklecrPzw/79u2Dg4OD4ixDaYUhM8NXqVJFNjFSm9fsazdw4EDs3bsXwJdk2vHjx1s4ItMoVqyY7MwjALBjxw6sWLHC4H5u3ryJpUuXAgB69uxpcHvGEh4ebnAbjx49kpzJp2bNmoq/VeR+3xvztz1gut/3+krr/6+xBkq/FUNCQtCjRw+DE6Xi4+MxbNgwCCHQo0cPzlJHRERERERERJRGmSOXwZxOnTqlti5PnjxGLfQcEBAge7Na2bJl4eLiYrS+viaZM2dGu3btJLetW7cOkZGRWLx4cdJjBwwYoLHNVq1ayd4IvGrVKvj6+ib93bdvXz2iTql169aKN5Emxm8oqfHi8uXLo1q1akZp/2swdOhQ2evaCQkJSWNWhnj48CGioqLU1vfu3VtxJu+KFSsiT548stsPHjwoWyzEUNqOESuNQ8TGxqJ79+6yBXV0MXr0aERERKBVq1Zwc3MzuD1L+vz5M/bs2aP3/tOnT0eGDBkkt3FsXxnzyf5Pes8nM8bY/qVLlyTXDxw4ULFfuc/lr3VsP70ft7F87fk4RERERKbCQhFEREREZBJKyRVS1eP1IXXzWSKpQWJ9xcbGGq2t5OQKRahUKsUbr83l3LlzOHjwoMnav3v3ruT64sWLK84ITP+nV69eKWa1scYkCGNVt65QoQIqVKggu/3Nmzdo3LixQbP8+Pn5YdasWQCAQYMG6d3O12b48OGy2/z9/bFr1y6D2g8PD5ecfWP06NGwt7dX3LdPnz6KN3HOmDED/v7+BsUnJyIiQuNjHBwcFAejEhIS0KFDB8kEP229fPkyqY927dohe/bserdlLY4cOaJYbEkTucTInDlz6t3m12Dz5s0pkgdLliyJTJkyWTAidcacUUFTsuX333+Pbdu26d1+aGgoOnbsiNjYWFSrVg1lypTRuy1jCw8Pl0zi08WWLVsk148dO1ZxP7nf958/fzbqzEDG/H1vjASNtPD/GlPNWGKsdnv27AlHR0fZ7SdPnkTXrl0NKhYxefJknDt3DoBuvxXT62wvRERERERERERplTlyGczl6dOnSdeskhs3bhwcHByM1o/SuExam/Feqci9MQrg60quWMPt27cxbNiwpJt8Bw4cCFdXV43t2dnZoVevXpLbzp8/n5QDUr58eZQvX17PqP+Pra0tvv/+e9ntJ0+exJUrVwzq49GjR3j79q3a+okTJxrU7temaNGiipO2LF68GJGRkQb1cebMGbV1jo6OGDlypOJ+KpVKsXBJXFwcBg8ebFBscrQZ1we+FGFRGk++e/cuWrRogc+fP+sdy/Lly/HXX38BSD85K8uWLdN7Xzc3NzRq1EhyG8f2lTGf7P+k93yyoKAgg/YXQmDr1q1q63PlyoVu3brJ7hcSEiK7zZjj20DaGdu3luO29nF9wLrzcTi2T0RERGkVC0UQERERkUkoJVc8ePDAKH0ozUqh64XCiIgIPHnyRHKb3ECooUkCclWVS5UqhaxZsxrUtrEMHDgQHz58MEnb27dvl1w/YcIEvdpTukirzwVcpdfXFBeEdW3z6NGj+Pvvv1Os279/v9VdrFa6GU/XAY3Jkycrbn/w4AFq1KihV6LJ0aNH0bFjRwgh4OXlhR49eujchqnJvSct/X7s1KmTYgLYzJkzDYrl8OHDau8jLy8vxQIViQoVKoT27dvLbo+MjMSAAQNM8hxqO1vImDFj4OTkJLs9PDwczZo1w4YNG3SOISAgAPXr10dQUBBsbW21/nwNCgrCmDFjUKhQITg6OsLT0xM9e/bErVu3dI7BFBISEjBlyhS99y9SpIjk+vz582vdhrG/cwDrPceBL8lXqZPtbt++LfvbyVKM+Z3Tr18/xQSj+Ph4fPfdd5g5c6bOz2dwcDAaN26Mhw8fAgB++uknnfY3h8TY9CGESFFUJFGlSpXw7bffKu5rzN/3z58/l03G0+f3vdw2Y8zSYszj/vDhA16/fi25zZD/18idX4Ym5hir3WzZsmlMzNq1axeaNWsmmVCsyYwZM/D7778D+FJ4qVixYlrva8zPJiIiIiIiIiIiMpw5chnMZdOmTWrXqEuVKqV4474+5HIbAKBevXpG7cvUlGaht8QM9fXr15cdo1q9ejUAwN7eHiNGjNC6zX79+sluS7xBUukxuho+fDgKFSoku/2PP/4wqP19+/apratcubLGWeQtxZpzTWbPni07GcP79++xZs0ag2KReq2GDRuGvHnzatz3+++/R4YMGWS3Hz16FOvWrTMoPinajuvb29tj/Pjxio/5999/Ubt2bTx+/FjnONavX4+hQ4cC+DKm1qRJE632O3v2LFq1aoWsWbPCxcUFpUuXxq+//mqU8StjOHHiBE6cOKH3/lJj+46OjsiVK5fWbTCfjPlk6TmfzJBxfeBLQSepvI9JkybB2dlZdj+l8e1///1X58IcSvlIuo5xK52jphzbf/bsGS5duqRTW8Y87kSmGpv+WvJxOLZPREREaRULRRARERGRSRQsWBAlS5aU3Hb37l2j9KE0K7qfn5/aoIecM2fOoEyZMpKV7QEgLCxMrZpwfHw8evfurXWsUm3K3cDVqlUrvds1tsDAQLRu3RphYWFGbffMmTM4evSo2vpKlSrpPaCilLQRFxenc3tKMyXo054mul5IXrt2rdo6Pz8/1K5dG6tXr8aNGzfw7t07hIeHIy4uzmIDfkqzJYSGhurUVtu2bRUTt4AvN4XWrFkTP/30k1YzNURGRmLy5Mlo2bJl0mDQnDlzFAe0LEXuPWnp96NKpcKKFStkE0ouX76M9evX6x3LypUr1dbNmjVLsbhCctOnT1ecMenEiRMYPXq0znEJIRS/zwICArRqJ3fu3Bg7dqziY6KiotCzZ0906NBBqxvzhRDYuHEjKleunJSEMmjQIJQrV07jvo8ePUL58uUxd+5cPHnyBDExMQgMDMSGDRtQsWJFLF68WKvjMrUNGzbg33//1WtfqRkCbG1t0bx5c63bMPZ3DmC95zgAHD9+HC9evEixLiIiAtWrV4ePjw9OnTqFFy9e4PPnz4iOjrbIjFuAcb9zXFxcMH36dMXHJCQkYMKECWjQoAFu3LihVbt+fn6oWLEiLl68CABo3ry5Vf32SySVyKetbdu2qc0uZ2tri6VLl2rcV+n3/axZs2R/P6e2cuVKlCpVSnY2D6kZToKCgjBq1CjZNuUSAj5+/Gjwb2Wl4/b19cXt27e1amfPnj3w9vaWTQiSOu7IyEgMHDhQY9ty55eu55Yp2508eTLc3d0VH3PixAmUKVMGvr6+Ws0Y8+rVK7Rv3x6TJk0CADg7O2Pu3Lk6xWXMzyYiIiIiIiIiIjKcOXIZzCEoKAjz5s1Lsc7Ozg4rVqyAnZ2dUfuSu+bo6Oio9c3M1kLpeq4lbqxWqVTo1auX4mO6du0KT09PrdssWrSo4ri6k5MTvvvuO63b08TZ2RnLli2T3b5jxw6cOnVKr7YTEhKSCmYksrW1xfz586FSqfRq09SsOdfE29tbsdiBj48PgoOD9YrjxYsXOHz4cIp1uXLl0voGTQ8PD4wZM0bxMUOGDMH58+d1ju3Vq1eSYySA9uP6if0XLlxY8TE3b95EhQoVMGfOHK2Kz3z8+BGDBw9G7969ER8fD5VKhcWLF2v1/l60aBHq1q2LAwcOIDg4GJGRkbh9+zZ++eUXlC5d2mqKH/3www9631wrNZbTpEkTxRyQ1JhPxnwyIP3mk12/fl0tl0MXUsWcKlSogMGDByvu5+bmJpsnFhsbq/VENsHBwejWrZviZEFSn98HDhyQnXBB6UZ/Q56rREpj++PGjdNqDDoiIgIjR45EmzZtZB8jddyXL1/Gn3/+qdi2qcamv5Z8HI7tExERUVrFQhFEREREZDKdO3eWXP/gwQOjDDJUrlxZcXvXrl0VK0E/efIE3bt3R926deHv7y/7OCEE7ty5k/R3TEwMunTpotfs7olu3rwp+xy0bt1a73ZN4dy5c2jUqBECAwON0l5wcDAGDBigtj5DhgxYu3YtbG1t9WpXblAX0H4GgOSUBr9NkSCia4xyyTj//vsv+vfvj3LlysHDwwMZM2aEvb09bGxsoFKpoFKpYGtrCzs7Ozg4OMDFxQWZM2dGjhw5kD9/fpQqVQp169ZF9+7dMX/+fMXK1dp4+fKl7DZdq4cDX2ZNUZpFAvhyjv7222/IkycPBg8ejH379uH58+eIjo5GdHQ0AgMD4efnh9GjRyNPnjz43//+lzSw2rx5c6uceSQhIUH2PWIN78eSJUsqVugfNWoUnj9/rnMcJ06cwJEjR1Ks6927t+z3i5RixYppnD1g/vz5GDFihNY3tycWC9q+fbvsYw4ePKh1jJMnT0apUqU0Pm7nzp0oWrQo2rZti/Xr1+PevXtJg/fv37/HuXPn8Ntvv6FYsWLo0aMH3r9/DwDw9PTUOMCWeFzt27eXPW9jY2Pxww8/qCVjWYIQAl26dFH8jJFz7do1tXWNGzdWHMxNzdjfOdZ+jst957x79w5Tp05FvXr1kDdvXmTOnBlOTk6wtbVN+s6xsbGBra0t7O3t4ezsDFdXV2TNmhWenp4oVqwYqlatitatW2PSpEk4dOiQQRX4jf2d069fP60SXE+ePIly5cqhcePGWL58OW7evInQ0FDEx8cjODgYV69exfz581GxYkU0b948qYiCq6srFi5cqHNc5rBw4UK93ssfP37EyJEj1daPHz8elSpV0ri/0u/7oKAgtGrVCkFBQbKPOXXqFGrUqIGBAwcqDtLfvXs3xWf+q1evULduXcUEA6Xz/vLly7LbtKF03FFRUWjdurVioaDr16+jRYsWaNu2Ld6+fSv7uFevXqUonvHp0yc0bdoUx44d0xij3Dmkz7mVnNx5GxoaqnOiRfbs2TUmxgBfPrv69u2LQoUKYfLkyTh58iTevXuHuLg4hIWF4cmTJ9i6dSu+++47FCxYELt27Urad+rUqciXL59OcRn7s4mIiIiIiIiIiAxn6lwGcxg/frzamPasWbNQvXp1o/cld+20fv36yJgxo9H7MyWlgsTh4eF6XRs3VO/evRVvCtdUdF5K//79Zbe1bdsWWbJk0blNJY0aNUKfPn1kt/ft21ev5zZxTDS5n3/+GTVq1NC5LXOx9lyTyZMno0SJEpLbgoKCMGjQIL3i+Pnnn1PcJG9jY4NNmzbp9F776aefZAv5AF9u3G7atCmOHz+udZuPHj1CzZo1ZZ+n169f47///tOqLScnJ6xZs0ZjXlNoaCjGjh0LLy8vjBkzBkePHkVgYCBiYmIQGRmJ58+fY8+ePRg4cCC8vLywfPnypO+eIUOGoEqVKhpjuXTpEoYPHy6b4/D06VPUqVPHaLlehrh7965WRculSI3td+vWTac2mE/2BfPJ0mc+mRACv/76q177bt68WS0ny8nJCb6+vho/51QqFSpWrCi7fdOmTfDx8ZHdHh0djblz56JYsWLYvHmzYl+pJ1XYtm0b2rVrJ1sExpTj+oDy2P7p06cxcOBA2WIR8fHx8PX1RYkSJbBgwQLF/3ekPu5Tp06hYcOGspNlJDLV2PTXko/DsX0iIiJKswQRERERkYk8ePBAAJBcHjx4YJQ+8ufPL9sHAOHk5CR+/PFHce/ePREVFSWeP38udu7cKdq1ayfs7e2THte4cWPRtm1b2XY6dOggQkJCxL1790StWrUEANGlSxe9416yZIlkPwUKFBAJCQlGeW70UahQIdnnwMPDQ+zYscOg9j98+CCqVq2q1ratra3YvXu3QW03b95cNvbr16/r3N7UqVNl21u+fLneccq12apVK53a6dq1q+J735hLpUqVxNGjR/U63kqVKsm2O3HiRL3a3LFjh1CpVEY/zoIFC4rg4GC9YjK1gIAA2birV6+ud7u9evWSbffDhw86tRUfHy9atWol217ZsmXFx48ftW7v2bNnIk+ePGrvxbCwMB2PUoi4uDjRtGlTje+B+vXri8ePHyu2dfv2bcnPsdSLk5OTOHXqVNJ+d+7cEceOHZNt99GjR8Ld3d3o72tHR0dx8eJFrZ6n48ePa9Wmi4uLePbsmXZPvhENGjRILRZvb2/x4sULrduIi4sT5cqVS9GGvb29uHPnjk6x/PXXX7LPz8iRI3U9NKs/x48cOWL096bcki1bNjFt2jQRGRmp8/EuWrRItl1PT08RHx+vc5tBQUGiQIECRj9OlUpl8G8fQym9P4Avv03i4uK0bi8uLk60a9dOrZ2GDRtq3c6TJ080fsfnypVLLF26VLx8+VJERkaKBw8eiKVLl4oaNWqkeNyYMWMUX7tZs2aJiIgI8ffffyd93yxbtkwyrvDwcMXP6O7du2v9PEkJCwsTGTNmVDzuzJkziz/++EM8efJEREVFCX9/f7FhwwbRtGnTFM9Zt27d1J6L5Mvw4cNFWFiYuHTpkvD29haA5t9kt2/fVozt/v37eh33x48fU/yfLPVy+PBhvdodPny4ST6f2rVrp9f/1Uzx2URERERERERERIYxRy5DoilTpsj2NXToUJ2uwybasGGD2rXUoUOHGjXu5HLkyCEZv6+vr8n6NIXY2Fjh7OyseB3w/PnzFomtQYMGkvE0adJEr/YiIiJE5syZJdtUGrM0RGRkpGJ+QJMmTUR0dLTW7V27dk1kypQpRRstWrSw+muq1p5rIoQQDx8+FG5ubrJtTpkyRaf2Vq9erdbG77//rnNcQghx9+5d4erqqnie2tnZialTp2p8P61atUr2PEi+1KpVK2nsNDo6Wvj5+YmAgADZdufOnWuScYhq1appfY707NlTqzabN2+u/ZNvRI6OjmqxjBo1Sqfz9/Lly8LGxkbttdJ1rIb5ZKZbmE9mPppi3LZtm07tPXz4UGTLlk2tnbVr12rdho+Pj8a4GjduLI4dOyY+f/4sgoODxfnz58W4ceNErly5kh6TPXt2xfMqW7Zs4saNGyIkJET4+PgIlUolsmfPLpsrtHXrVsWYDP0dtHbtWq3OjT179ojg4GDx+fNnce3aNeHj45MiNzdDhgxi1qxZsm04OjqKEydOiPDwcLF48WLh6OgonJ2dxX///acY39ixY2XbrFatmt7H/bXk45jis4mIiIjIHFgogoiIiIhMqkKFCpIXzTZu3GiU9hcuXGjQRUEbGxvx888/i/j4eMWLpKmX8uXL63WzciKpm10BiKlTpxrledGXUqGIxKVRo0bixIkTOrd99OhRtZu+gS836G7evNmguGNiYhRv3luyZInObTZs2FC2vQEDBugV57lz52Tb9PDw0OmC+Z07dzQmsRh7+f7773VKVNq3b59iexkzZtR4U76cxYsXG3Vwz9XVVdy8eVOvWMxhw4YNirHrc0N1QkKCKFasmGy7Bw4c0LnNsLAwUa9ePdk2y5YtK548eaKxnfv376t9HlWsWNGggdeQkBBRsWJFje8FBwcH0bt3b3Hw4EHx9u1bERMTI168eCEOHTokunTpIhwcHAQA4e7uLlq2bKnYlkqlEvny5RNZsmQRAETx4sUVY7xw4YJaspOhiy4JenJFjKSWESNG6P1a6EvuuzNHjhziyJEjGvdPSEgQgwcPVtt/5syZOsfyww8/yD43VapU0bk9az/HExISRN26dY363tS0lChRQqvPi0ShoaEib968im3+8ccfOj+PQnwp5OLp6WnU4/Px8dErFmPSVCgCgGjTpo349OmTxrbCw8NFly5d1PYvX768TkWChBCSxSZ0WTJnzix27dolhFAexE+9DBw4UDYmbf6fsGbNGp2OM7XRo0cbdNyOjo5Jv3k7dOig9X7ffPONxt93ml6Tli1b6pX4oemYK1SooNfnX1xcnPjuu++Mes6WLl1ahIaG6hyLKT+biIiIiIiIiIjIMKbOZUikVCgC+HLjuy5jYIcOHVIrwDpw4ECTTUjx+vVrybhdXV0NypmwBD8/P43XAn/55ReLxLZx40bJePS9AVcIITkulj9/fpNOXvLmzRtRqlQp2ee3QYMG4v379xrbOX/+vNoNrN98842IiooyWezGYu25JsnbVBqbHjVqlIiNjdXYzooVK9Ru5p82bZo+h5nk2LFjwsnJSeP56uXlJaZPny6uXr0qwsLCREREhLh3755YvHixKF++fNLjmjRpInLmzKnYlpOTkyhYsGBSPoCmQhcTJkww6jiEp6enePXqldbPUZUqVbRuW9NNxaYgVSgCgGjatKl4/fq1xv1fvnypdvOwu7u7zsXLmU9mnoX5ZKanKU47OzuxatUqrdq6efOmZP6DrjkMb9++Nfi9Vr16dfHixQuNExckXxwcHGRzV4OCgkTx4sUV98+fP79OuSipRUVFpSh0oc9SvHhxcfv2bREaGqr1PiqVSuP/U16+fKmx2JKuRUWE+HrycUz52URERERkaiwUQUREREQmtWrVKsmLZsOGDTNK+1FRUSkG93RZcuTIkWJQfeXKlVrtV6hQIa0GrZQkzt6bfLG1tVWsSG8O2hSKSFxKlSolfvnlF3H27Fnx+fNnyfbu3bsnli9fLipXrizZRvbs2cXx48cNjnv69OmKsXp5eel0k+K1a9fUBrKTLw4ODjpXlY+JiZGdBSRxmTt3rk5tnj59WuNgtrGX3r17K8YUHR0tHj9+LBYuXChcXFw0tpc9e3axfPly8fDhQ51vBFy/fr3s4LIui5ubmzh37pxOfZtTTEyM7DmUuIwfP17nduU+nxOXypUr6zSjS6KIiAjFG1QzZMggpk6dKt68eaO278uXL8XUqVPVkj46deokQkJCdI4ltQ8fPohatWoZ/J4pVKiQuHPnjsbEvsSlZMmSYvbs2eLdu3caY7x69apkUR1dFxsbG7F48WKdnp9169Zp3b6Xl5e+L4Pe5ApFJC7NmjUTR44ckXzfXr16VTRq1EhtH32SlB49eqRxsHvnzp1at5dWzvGQkBDF2VZMseTOnVsEBgbKxpSQkCDevXsn/Pz8ZBN6Uy9DhgwRFy5cEMHBwTolQj558kTy95s+y4QJE7Tu15TkCkW4urqmmEUqT548YunSpZIFI8LCwsTGjRtF/vz51dqpVauWCAoK0jmuR48e6V00p2LFisLf3z+prW7dumm1X5s2bVIkL8XFxYlXr16Jffv2idatW2vdf4cOHYSfn5948+aNzkmZQUFBwsvLS6/jLlSokLh69WpSW5MmTdJqv6pVq8omcn/+/FlcvHhRdO7cWau2GjZsKA4fPizevHmjmAgWHh4ubty4IYYNG6ZVuxUqVBC7d+8WL1680CohNVFcXJzWfWhaypQpI96+fat13+b8bCIiIiIiIiIiIv2ZOpch0blz5ySvoSZfsmfPLtasWaN4bSghIUH8/vvvwtbWNmk/lUolfv31V6PGm9r27dslY+7fv79J+zW258+fa7zBDfhSjDj59VZziYiIEJkzZ04RS9myZQ1q88qVK2rHZ47JS96/fy/q1Kkj+xxny5ZNLFiwQHL899GjR2LkyJEp3ueJ56U+Y9fmllZyTRJdvXpVcWyiVKlSYufOnSImJkZt33///Ve0aNEixeNdXFy0vlFZk7///tsokyz07t1bREdHi3z58ml8rJ2dnWjdurXYu3evVmMSv/32m+Lrre3i5eUlHj58qNPzU79+fa3bnzx5sr4vg96UcnkyZMggJk6cKO7du6e2X0xMjFi3bp3IkSNHin2yZs2qV8EL5pMZ9t7U9VxTwnwywyi9h5P/3axZM3H8+HHJsWp/f38xfvx4tYJjKpVK/Pbbb3rFNXPmTL2eW5VKJcaOHZv0WRsZGan23S+12Nraiq1bt6aIITIyUty5c0csWrRIrcCM3JIpUyYxbdo0cfXqVb0mC/jrr7/0fl917949xRi9tkUSZs2aJRlLfHy8CAwMFDt37tTq+O3s7MSkSZPEf//9pzhpyNeSj2POzyYiIiIiU2KhCCIiIiIyqaioKOHh4aF2waxMmTJG68Pf31/nm6qkKpQ/f/5c4wBeqVKldKrgLuXdu3eSlas7duxoULvGkFgook6dOmLHjh1iz549YurUqaJhw4aK1fpVKpXImTOnKF68uChbtqzIly+fyJAhg+Lju3TpotMNV6mFhYWJmzdvivHjx2tVCbxkyZJi165dIjAwUPLmtbi4OPHixQuxbNkykT17do3tubm5iSVLloj79++L8PBwyRgTEhJEUFCQOHLkiOQNylLPy6hRo8TVq1dli2+k9v79e9GpUyejXCjXdtmwYYNkLH369DG47QIFCmj/JhBfklsMGSgoV66czgPu5vLp0ydx7NgxUa9ePa2OpW/fvuLcuXMiKChI9ubUiIgIcePGDTF58mRhZ2ensc1q1aqJgwcP6nXD66JFixQTN2xsbIS3t7do3ry5aNq0qfD29lb7DPbw8BCrV682xtOZJCoqSgwbNkzvGQQ6d+6clCigVCjC1dVV9O/fX5w/f17nGN++fSvatGmj9/s6e/bs4uDBgzr36+/vr9PzonQDvyloKhSR/LmvXLmyaNmypWjSpIlk0p+7u7vYsmWL1n3HxsaK58+fi82bN4vcuXNrjMHBwUH89ttv4u7du7IDg2nxHE9ISBDLli3TanDUWEvDhg0lYzl58qRR2j958qTW74PQ0FDRv39/vfvKmDGj8PX11bo/U5MrFJEvXz5x48YNtXPH1tZWlC5dWjRt2lS0aNFCVKxYUbJoio2NjRg9erRBCZv79+/XKXlHpVKJMWPGqPUpNwNb8qVLly4pEhyN9d4CIJ49e6bTcV+6dClFkQ5tlu7du6v9bjx79qzG/erVqyf7e9MYs+xIJRtrm5ijtPTp00en53Tz5s2KM0Vp8/7QJTnIEp9NRERERERERESkH3PkMiQKDw8XU6ZMERkzZlS8LlSsWDHxv//9T1y8eFGEhISI6Oho8fDhQ7F69WpRunTpFI/NlSuX+Pvvv40ea2pDhw6VvCZ7+/Ztk/dtqLCwMHHjxg3x66+/qhVhUFqcnJzEiBEjxNmzZxVvoDO21GNhcuPyuihXrlxSezY2NmabvCQuLk788ssvitf67ezsRPny5UXLli1Fo0aNRNGiRdUeU7BgQbFv3z6zxKyvtJprkigoKEh07NhRsf2MGTOKmjVritatW4vatWtLzqRep04dcffuXWM8pUnu3r2b4j2sy+Lq6iqWL1+e1JZSoYhixYqJP/74Q3KyC02OHj2qdyFwAKJBgwZ69avtpBYARJMmTXRu31DajvPlzZtX1KlTR7Ru3VrUqlVL8nuydu3aKQrFa8J8si+YT5a+8snk4pwyZYqYPXu2Wr5VpkyZRM2aNUWrVq1Ew4YNJb9jgS+/J/XJL0qUkJAgunfvrtNz6+HhIfz8/NTa0nQuODo6ir/++ivFPr179zbKe7devXo6H7u2kzckLq6urmLdunVq7WjKQbGxsRHz58+XjEGXCYGUltR5DV9LPo4lPpuIiIiITEUlhBAgIiIiIjKh6dOn4+eff06xTqVS4d27d8iWLZtR+ggMDET37t1x4sQJxce5ubnht99+w6BBg6BSqdS2jx49GvPmzZPct1evXli0aBEyZsxoUKw7duxAx44d1dZfuXIFFStWNKhtQxUuXBjv37/Hy5cv4erqmmJbZGQkTp48iUOHDsHPzw/+/v46t+/o6Ij27dtj9OjRBh2rjY0NDP2vzLp169CzZ08AQL9+/eDr62tQmyqVCk+fPkW+fPkAAA0bNsTx48cNilGlUiEhIUHxMbGxsWjTpg38/PxQunRpDB8+HM+fP0dgYCDevXuHjx8/4vPnzwgNDUVERASioqIQExOD2NhYxMfH63XMBQoUgL+/v9o59OrVK3z8+FHn9pJzcHBA0aJFddonJiYGK1euxMyZM/H8+XOt9smZMycmTJiAH374AXZ2dvqEajKnTp1CgwYNNL72mkydOhW//PILAGD9+vXo06ePwW0mP2+08fbtW8ycOROrV6/Gp0+ftN6vQIECGDBgAIYPH44MGTLoE6pG586dw8SJE3HmzBmtHl+hQgVMnz4d33zzTdI6Hx8fTJ06NcXjatasiX79+qFTp04Gx+7n54epU6fi4sWLWj3eyckJAwcOxC+//IKsWbPq1efQoUOxZMkStfX29vawt7dHRERE0rpr166hfPnyevWjj8GDB2Pz5s3Ys2cPSpUqhQsXLmDXrl04cOAAPnz4oFUbzs7O6N27N37++WfkypVLq3369u0LX19fQ0JH/fr1k74T0vo5vmHDBvTq1Qu2traYOXMmoqOj8erVK7x79w5BQUH49OkTQkNDER4ejsjISERHRyd958THx+sV18mTJ1G3bt0U68LDw/H06VO92kuuQIECOp+r58+fx5QpU3Ds2DGtvkft7OzQtWtXTJ8+HXnz5tU3VKPr3bs31q1bp7Y+X758ePbsGT58+IDhw4djy5YtWh2njY0NWrRogalTpxrls+Hff/9Fz5498eTJE8XHFS1aFCtWrFB7jwBAXFwcatSogcuXL6ttc3Z2xrRp0zB27NgU64313gKAYsWKwd7eXqd97t27h++++w7Xr19XfFzu3LmxcOFCtG/fXnJ7u3btsHv3brX1tra2GD16NGbMmCH7G+j27ds6xSwlR44cyJEjR4p1Dx8+RExMjEHtZsmSBZ6enjrtExQUhN9//x0rVqxAaGioVvuULVsW06dPR8uWLXXqy5KfTUREREREREREpDtz5DIk9/79e8ybNw9Lly5FSEiIXm04OTlhyJAh8PHxQaZMmYwboIRSpUrhzp07Kda1bNkS+/fvN3nf+ggICEChQoUAQO9xidRsbGygUqmwZs0ancZKdXXx4kVUq1YNAJAnTx48efJE52vMqS1atAjDhg0DADRp0gRHjhwxOE5dPHnyBDNmzMDmzZsRGRmp9X7e3t4YOnQo+vfvb/BzYEppOdcktdOnT+O3337DkSNHtD4eGxsb1KtXD+PGjUOzZs30CVWj2NhYLF68GL///jvevn2r8fH29vbo3r07pk6dCi8vr6T1+fPnR0BAQNLfGTJkQMeOHdGvXz/UqlXLoBjDwsKwYMECLFiwAO/fv9dqn0KFCuGXX35Bjx49JPPXNPnw4QMqVKggmSOTOXPmFPkZZcqUwY0bN3TuwxBOTk6oU6cOVq1ahejoaBw+fBi7d+/G6dOntf5sLlSoEMaNG4cBAwbAxsZGq32YT/Z/mE+WvvLJ5D4npkyZAh8fH5w6dQqDBg3CgwcPtGovS5YsGDp0KMaOHYvMmTMbFJsQAtOmTcNvv/2G6Ohoxcd+9913WLBggeTv7EuXLqFOnTqSbRQvXhwbNmxApUqVUqw3xnsL+PKdUKBAAZ33W758OcaPH4/Pnz8rPq5p06ZYtmwZ8ufPr7bt2bNnqFChguRxeHp6YvXq1WjatKlkuyEhIXj58qXOcaeWOq/ha8nHsdRnExEREZEpsFAEEREREZnchw8fUKBAAbWbcnS94VgbR44cwebNm3H27Fm8efMGtra28PT0RMmSJdG+fXu0bt1asdCDEAJz5szBihUr8OzZM2TNmhUNGjTADz/8gOrVqxslxn79+mHNmjUp1jVr1gx+fn5Gad8QhQsXhre3N/bu3avxsU+ePMHx48dx8eJFPHr0CC9evMCHDx8QERGB+Ph4uLi4IFu2bMifPz/Kli2LWrVqoWnTpmoFKPRhjJvX8uTJAzc3NwDGGzRIftH86dOnCA8PN7jNUqVKyW4TQqBbt27YsmULsmfPjsuXLycNLOoqNjYWMTExiIqKQnBwMIKCgvDo0SNcv34d+/btUysMYg2FTVJLSEjAP//8Az8/P1y+fBmPHj1CSEgI4uPjkSlTJhQoUACVKlXCN998g+bNm1ttQomxBluS36BprIGh5OeNLiIiInDs2DH8/fffuHHjBh4/foxPnz4hOjoamTJlgru7O4oXL45KlSqhcePGqFGjhl7JEPq4fv06duzYgTNnzuDBgwcIDg4GALi7u6No0aKoWbMm2rZtiypVqqjtm1gowsPDAz179kS/fv1QrFgxo8d48+ZN7N27F2fPnsWDBw/w/v17REVFIUOGDPDy8kKZMmXQqFEjtG/fXq/XJ7mEhAQsWLAAK1euhL+/P3LkyIGePXti9OjRuHfvHmrXrp302HPnzhntu9EQ8fHxuHDhAk6fPo3Lly/j/v37CAwMRHh4ODJmzIgcOXKgbNmyaNiwIdq1a4fs2bPr1L4xviOSDyqn5XP8wIEDaNu2LeLi4rBkyRIMGTJEr37i4+OTkkxCQkIQHByMgIAA3L17F8eOHcPJkydTJLb88MMP+PPPP/Xqy5T8/f2xe/dunDp1Cvfu3cObN28QGRkJZ2dn5M6dG6VKlUL9+vXRsWNH5MyZ09LhqtFUKCKRv78/9u/fjyNHjuDJkyd4//49Pn/+DBcXF+TKlQve3t6oW7cu2rZta/RCGDExMdi4cSN2796N//77D+/fv4erqyvy5MmDKlWqoFOnTqhfvz5sbW1l2wgJCcGkSZOwc+dOfPz4EXnz5kWrVq0wYsQIvX83mVpCQgJ27tyJ7du34+LFi3j37h2cnJzg6emJcuXKoWPHjmjWrBkcHR1l24iOjsa0adOwceNGvH79Grly5ULTpk0xYsQIeHt7m/ForEd4eDj27duHv//+G9evX8ezZ88QGhoKGxubpO/96tWr49tvv01KxiYiIiIiIiIiovTNnLkMyUVGRmLnzp3YunUrjh8/rtUN9AUKFECPHj0wZMgQs11zfv78OfLnz692k9b58+et9hpabGys1jdJ6krfsVJdeHt74+7du5g1a5ZaoWN9hISEIFeuXIiKisK2bdvQqVMnI0SpXxxHjhzBP//8g1u3buHJkyf4/Pkz4uLikDlzZmTNmhWlSpVC5cqV0axZM5QrV84iceoqreaaKAkICMChQ4dw+vRp3L17Fy9fvky6lp4lSxZ4eHigXLlyqFKlCtq0aaNzcWd9xcTEYP/+/Th06BCuXLmCZ8+eITw8HI6Ojknjcg0bNkSnTp3UClkD/1coomrVqujXrx+6dOlilPyl1DH6+fnh6NGjuHLlCp48eZJUsMHNzQ2FCxdGlSpV0LJlSzRo0EDr4gdyXr16hUmTJsHPzw8hISGoUKECRo0ahQ4dOmDgwIFYvXo1gC9F1031uair4OBgnDhxAmfPnsXNmzfx6NEjfPjwAbGxsciaNSty586dlF/WtGlTxTFAKcwn+4L5ZCmlh3wyTYUigC95GKdPn8bBgwdx9uxZvH79Gu/fv0dcXBwyZcqEggULonz58mjcuDFatmwJJycno8YYEBCAlStX4siRI3j69ClCQ0ORM2dO5M2bF9988w06d+6cVMxLzvnz5zFp0iRcvHgRNjY2KFeuHHr06IHevXvDwcHBqPEaS1BQEFauXImDBw/i4cOHCAkJQfbs2eHl5YWGDRuic+fOKFOmjGIb9+7dw8SJE3HixAnExcXB29sbnTt3xqBBg4z+XZVWpPV8HCIiIiJzY6EIIiIiIjKLmTNnYsKECSnWtW3bFrt27bJQRJYRGxsLDw+PFININjY2+O+//zReECZKbdiwYVi0aBFUKhWOHTuGBg0amKSfhIQE/P7775g0aVLSuuXLl2PgwIEm6Y+IrFN0dHSKgeLHjx9rHMSl9OPs2bNo0qQJIiMj0bNnT8kCA8Zy5coVtGzZMmlWoOrVq+PcuXMm6+9rpW2hCCIiIiIiIiIiIqL0zNK5DFFRUbhy5QquX7+OJ0+eICgoCNHR0XBxcYGHhweKFSuGGjVqmKRYuSazZ8/GuHHjUqxr3749duzYYfZYvhZHjx7FuXPnMHr0aGTKlMkoba5fvx5Pnz7FxIkTFQsQE1H6sXz5cgwePBgAUKtWLZw5c8bCEZE5MZ8s/dGmUAQREREREX297CwdABERERF9HUaOHImVK1fi8ePHSev8/Pzw8eNHZMmSxYKRmdeRI0fUKo337NmTRSJIZ9OnT8eiRYsAAAMGDDDZoB7wpZjJTz/9hIsXL2Lfvn0AvlTDJqKvS/Lvr8SZ7enrcOvWLbRq1QqRkZHImTMn5s+fb9L+KlWqhKVLl6Jdu3YA+J1DRERERERERERERKZj6VwGJycn1KpVC7Vq1TJ5X7raunVrir/t7e3x22+/WSiar0OTJk3QpEkTo7bZs2dPo7ZHRNYv+dh+4cKFLRgJmRvzyYiIiIiIiL4+NpYOgIiIiIi+Dg4ODpg9e3aKdVFRUSadjdoarV27NsXf7u7u+OOPPywTDKVZO3bswM8//wzgS+LQ//73P7P026hRo6R/Ozk5maVPIrIet27dSvp3rVq1+DnwlQgODkbLli0REhICAJg0aZJZEmP5nUNERERERERERERE5sBcBmm3b9/G1atXU6wbP348ihQpYqGIiIhIW8nH9pOPu1L6xnwyIiIiIiKirxMLRRARERGR2bRp0wadO3dOsW7WrFmIjIy0UETm9eTJE+zevTvFutmzZyNHjhwWiojSooCAAPTv3z/p7w4dOiBbtmxm6Tv5ucoZB4i+PgcPHkz6d5cuXSwYCZlTv3798Pz5cwCAi4sLeoTqG0wAAQAASURBVPXqZZZ++Z1DRERERERERERERObytecySJkzZ06Kv4sWLZp08ykREVmv2NhY/P333wAAV1dXtGjRwsIRkTkwn4yIiIiIiOjrxUIRRERERGRWy5cvR758+ZL+DgwMxIIFCywYkfnMnz8fCQkJSX83b94cffr0sWBElNYIIdC7d298+vQpaV2NGjXM1v/ly5cBALa2tqhdu7bZ+iUiywsJCYGvry8AIE+ePOjRo4eFIyJzWLt2Lfbs2ZP0d6lSpeDq6mqWvhO/cwCgXr16ZumTiIiIiIiIiIiIiL5eX3MuQ2qvX7/G5s2bk/62s7ODr68vHB0dLRgVERFpY8OGDXj//j0AYPDgwXBzc7NsQGRyzCcjIiIiIiL6urFQBBERERGZVebMmbFp0ybY2tomrfvjjz/w8eNHC0Zlek+ePMHKlSuT/s6dOzfWrVtnwYgoLdq4cSNOnjyZYp27u7tZ+n727FnSzcItWrRAlixZzNIvEVmHSZMm4fPnzwCAuXPnwsHBwcIRkamFhIRg7NixKdaZ6zsH+FJgCwAcHBzUZnEjIiIiIiIiIiIiIjK2rzWXQcqUKVMQExOT9Pe0adPMesMpERHpJyQkBL/88gsAwNPTEz/++KOFIyJzYD4ZERERERHR142FIoiIiIjI7GrWrIlZs2Yl/R0SEoIffvjBghGZ3qhRoxAVFQUAsLe3x5YtW5AtWzYLR0Vpza+//qq27tixYybvNy4uDt27d0dcXBxUKhUmTZpk8j6JyHrs378fS5cuBQB0794dHTt2tHBEZA6LFy/Ghw8fUqy7dOkSQkNDTd730qVLk77f+vfvDw8PD5P3SURERERERERERET0NeYypHb16lWsXr066e9vvvkGEydOtGBERESkDSEEBg4ciFevXsHGxga+vr68af8rwXwyIiIiIiKirxsLRRARERGRRYwaNQqjRo1K+nvz5s3YtGmTBSMynb1792Lfvn1Jf69YsQJ16tSxYESUFj18+BCPHj1SW+/r65vi/WVs0dHR+O677/Dvv/8CAAYMGIAqVaqYrD8isi4nTpxA586dIYRAkyZNsGrVKkuHRGZy8OBBtXXBwcEYMGAA4uPjTdbvtm3bMHLkSABArly5JJNaiIiIiIiIiIiIiIhM5WvKZUgtNjYWQ4YMQUJCAgCgTJky2LZtG1QqlYUjIyIiJQkJCRg6dCi2b98OlUqFlStXonHjxpYOi8yA+WRERERERETEQhFEREREZDFz5sxB586dk/7+/vvv8ezZM8sFZAIBAQHo06dP0t8+Pj7o3bu35QKiNOvz58+S6+Pj49GuXTv8/PPPRp/l/fHjx2jcuDG2b98OAChbtizmzp1r1D6IyDoJIfDnn3+iadOmiIyMRNu2bbFnzx44OjpaOjQyE7nvnW3btqFBgwa4ffu2UfuLjo6Gj48PunbtipiYGNjZ2WHz5s1wd3c3aj/0f+Li4iTXJyYAExEREREREREREX2tvoZcBikTJ07E5cuXAQBeXl44cOAAXF1dLRwVEREp+fDhA1q2bImlS5fCyckJa9asQd++fS0dFpkJ88nSP7lxfYBj+0RERERE9AULRRARERGRxahUKqxfvx5t27YF8GXgok2bNrIDGGlNZGQkOnXqhI8fPwIAJk2ahClTplg4KkqrSpYsicyZM0tui4+Px/Tp05EvXz5MnToVDx8+NKivhw8fYvz48ShVqhTOnDkDAChQoAAOHDiADBkyGNQ2EVm/s2fPokaNGhg+fDjs7OywaNEi7Nq1C87OzpYOjcyoRo0asttOnz6NMmXKoH379vjnn38QGxurdz+hoaFYv349vL29MXXqVAghYGNjgzVr1qBevXp6t0uaySWUxMTEmDkSIiIiIiIiIiIiIuuS3nMZpOzcuTPpJk8vLy+cPHkSXl5eFo6KiIjkREVFYeHChShatCj8/Pzg7e2NS5cucQKjrwzzydI/pUIRHNsnIiIiIiIAUAkhhKWDICIiIqKvW3x8PAYOHIg1a9YAAOrXr4+DBw+m6RtSY2Ji0KZNGxw+fBgAMG3aNPz8888WjorSuj///BPDhw/X6rGFCxdGw4YNUbx4cRQrVgwFCxaEq6srMmTIgAwZMiA+Ph5hYWEIDQ3F27dvcefOHdy+fRsnTpzA9evXU7RVqlQpHDp0iIlAROncuXPn8P333+PGjRuws7ND7969MWXKFOTJk8fSoZEFBAQEoEKFCggODtb4WFdXVzRq1AjlypVD0aJFUbRoUWTLli3pO8fe3h5hYWEICwtDSEgIHjx4gNu3b+Pq1as4evQooqKiktpydHTE2rVr0aVLF1MeHgFo0aIFDh06pLbe2dkZERERFoiIiIiIiIiIiIiIyLqkx1wGKX///TdatWqF6OhoFClSBEeOHEGBAgUsHRYREcmYPn065s6di48fPyJXrlz4+eef0b9/f9jb21s6NLIA5pOlb+/fv0eOHDkktw0ZMgRLliwxc0RERERERGRtWCiCiIiIiKzGjBkz8PPPPyMhIQF169bFgQMHkDFjRkuHpbPIyEh07doVe/fuhaOjI1avXo1u3bpZOixKJ3766Sf89ttvZuuvVatW2LhxIzJlymS2PonIMubPn48//vgDPXv2xMCBA1GoUCFLh0QWdv78ebRu3RpBQUFm6S937tzYtm0batWqZZb+vnbly5dXS+ZJFBwcjCxZspg3ICIiIiIiIiIiIiIrlV5yGaQcO3YMbdq0QUREBOrUqYPdu3fD3d3d0mEREZGC8uXLw8nJCf369UO3bt3SXQEj0h3zydKvGzduoFy5cpLbWrdujb1795o3ICIiIiIisjosFEFEREREVuWff/7Bd999h3fv3qFcuXLYv39/mprJ/NWrV/j2229x5coVFCxYEFu2bEGVKlUsHRalMzt27MCIESMQGBhosj4yZcqEP/74A4MHDzZZH0RkXd69ewd3d3fY2dlZOhSyIgEBARgwYAD+/vtvk/bTpUsXLF68mMmnZhIcHIxcuXIhJiZGcvuuXbvQtm1bM0dFREREREREREREZL3Sei6DlEWLFmHUqFGIj4/HiBEj8Mcff8DBwcHSYRERkQaBgYHInTu3pcMgK8N8svRp0aJFGDZsmOQ2Dw8PPHv2DE5OTmaOioiIiIiIrImNpQMgIiIiIkquYcOGuHXrFjp27Ijr16+jcuXKOH36tKXD0sq+fftQqVIlXLlyBb169cL169dZJIJMokOHDnj48CGmTJkCFxcXo7bt7OyMH374Af7+/hzUI/rK5MiRg0UiSE2+fPlw9OhRHDhwACVKlDB6+7Vq1cLZs2exZcsWFokwk9jYWAwePFi2SAQAjBkzBi9evDBjVERERERERERERETWLS3nMqQWHByMHj16YNiwYfDw8MChQ4cwb948FokgIkojWCSCpDCfLP15+PAhpk+fLrv97du3GDFiBBISEswYFRERERERWRuVEEJYOggiIiIiIil79uzBiBEj8OrVK/z2228YN26cpUOSFBkZiV69emH79u0oWbIklixZgrp161o6LPpKBAcHY9u2bdi4cSPOnTundzsVK1ZEly5d0LdvX96oS0REkuLj4/HPP/9gw4YN2LNnD8LCwvRqJ2fOnGjTpg0GDhyIChUqGDlKSs3f3x+fPn3Cq1evcOHCBaxbtw6vXr3SuJ+7uzsGDRqEatWqwdPTE5kyZUKRIkXMEDERERERERERERGRdUsruQxSDh06hD59+iA4OBgjRoyAj48PMmbMaOmwiIiIyIiYT5b2RERE4Pnz5wgKCsLz58+xd+9e7N27F9HR0Rr3rVKlCnr06IGSJUsiW7ZsyJ07N7Jly2aGqImIiIiIyBqwUAQRERERWbWoqCgsWLAAfn5+OHnypKXDkfTs2TM0atQIkyZNQo8ePTgbO1nMy5cvcfHiRVy9ehX//fcfXr58iU+fPiEkJATh4eFwdHREhgwZkCNHDuTLlw8lSpRA5cqVUbt2bXh6elo6fCIiSkMiIiJw6dIlXL16FdeuXcODBw/w8eNHfPr0CZ8+fYJKpYKLiwuyZMmCvHnzomDBgqhQoQKqV6+OihUrQqVSWfoQvhr58+dHQECAwe3ky5cPz549MzwgIiIiIiIiIiIionQgLeQySOnfvz9iY2Px888/o3DhwpYOh4iIiEyM+WRpw8mTJ1G/fn2jtDVlyhT4+PgYpS0iIiIiIrJ+LBRBRERERGlCVFQUnJycLB2GpNjYWKhUKhaIICIiIiIiIiIiIiIiIiIi+opYcy6DlMjISDg7O1s6DCIiIiIiIiIiIiIyAhaKICIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJKI2wsHQAREREREREREREREREREREREREREREREREREREREREREWmHhSKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiNIIFoogIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIkojWCiCiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCiNsLN0AES6CAkJwalTp5L+9vLygqOjowUjIiIiIiIiIiIiIiIiIiKi9Cw6OhovXrxI+rtu3bpwc3OzXEAkizkFRERERERERERERERERERkTpbMKWChCEpTTp06hW+//dbSYRARERERERERERERERER0Vdqz549aNOmjaXDIAnMKSAiIiIiIiIiIiIiIiIiIksyZ06BjVl6ISIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIig7FQBBERERERERERERERERERERERERERERERERERERERERFRGmFn6QBM6e3bt3j+/DlCQ0MRFhaG8PBwqFQqODk5IWPGjPDw8ECuXLmQLVs2S4dKWvLy8krx9549e1C4cGELRUNEREREREREREREREREROnd48eP8e233yb9nXrcmqwHcwqIiIiIiIiIiIiIiIiIiMicLJlTkG4KRTx48ABnzpzBmTNncOPGDTx58gTh4eFa7ZspUyaUKFECZcqUQc2aNVGrVi0UKFDAxBGTPhwdHVP8XbhwYXh7e1soGiIiIiIiIiIiIiIiIiIi+tqkHrcm68GcAiIiIiIiIiIiIiIiIiIisiRz5hSk6UIR//77L7Zt24adO3fizZs3SeuFEDq18+nTJ1y8eBEXL17EypUrAQDFihVD69at0a1bN5QuXdqocVuryMhIvH37Fp8/f0Z0dDRiYmLg6OgIFxcXODs7w83NDVmyZLF0mERERERERERERERERERERGQBzCsgIiIiIiIiIiIiIiIiIiKyDmmuUMSnT5+wbNkyLFmyBC9fvgQgXRhCpVLp1G7qNu7fv48HDx5g1qxZKF++PIYOHYru3bvD3t5e/+CthBAC165dw5kzZ3Dt2jXcvXsXjx49QlhYmMZ9M2TIgLx58yJ//vyoWLEiqlWrhmrVqjHRg4iIiIiIiIiIiIiIiIiIKJ1gXgEREREREREREREREREREZF1SzOFIt69e4f//e9/8PX1RXh4eIrCDnJFIYQQWheMkHpcYh/Xrl1D//798fPPP2P8+PEYMmRImiwYcezYMWzZsgV79uxBSEhI0nqpQhtywsLCcPfuXdy7dw9+fn4Avjx31atXR+fOndGhQwfkzJnT2KETERERERERERERERERERGRiTGvgIiIiIiIiIiIiIiIiIiIKG2wsXQAmsTExOD3339HkSJFsGjRIoSFhSUVgEhc5GhbJEJp/8Q2hBAIDAzEqFGjUKxYMWzfvt2gts1FCIFVq1ahZMmSaNq0KdauXYuPHz9CCJG0AEjxfGpaEttNXBISEnDu3DmMGDECefPmRY8ePXD79m1LHjYRERERERERERERERERERFpgXkFREREREREREREREREREREaY9VF4o4d+4cSpYsiUmTJiE0NDRFgYjkkicXpF4AIGPGjHB3d4eHhwfy5MmDXLlyIev/Y+/Ow6yu6/7xP88wgCIIAoIpIiIqijulJm6E+65pLlmalpaa38xd0zRvl9Jyi9vbUrNU3ErTxF0UXDJRzBCXQATBBRAEBQSE+fz+6DcTCCgwy2GGx+O6PpfnnJnzej8/B/+b1/U8HTqkTZs2qaio+NL3z7/MUBRFxowZk8MOOyz77rtvxo0b1+Cfy5IaNGhQNt100xx//PF54403au5pSZY0lvTzmP9zKYoic+fOzYABA7L55pvn8MMPzwcffFDOjwAAAAAAAAAAWAx7BQAAAAAAAADQOFWWO8CiVFVV5YILLshll12WuXPnJskCSwfVSqVS1llnnfTs2TMbbbRR1l133XTp0iVdunRJ586d07Zt27Rp02ahYonPmzp1aiZPnpwPPvggb7/9dsaMGZORI0fmX//6V15//fXMmTNngTOrczz44IPZfPPNc+ONN+bAAw+s649hmc2ZMyenn356+vfvv8ASx5dZkt9ZkvdW/xvdddddefjhh3PVVVflqKOOWubZAAAAAAAAAEDdsVcAAAAAAAAAAI3bclcUMW3atOy///55+umnaxYRqpcSWrVqlR122CE777xzttlmm/Tu3Ttt2rSp9Znt2rVLu3btst5666VPnz4L/Gzu3LkZPnx4nnrqqZrrk08+qfn51KlTc/DBB+eUU07JFVdcUesstfXhhx9m//33z/PPP7/At3zMb/6yjboy/xnzl2lMmzYtxxxzTP71r3/liiuuqNXSCAAAAAAAAABQO/YKAAAAAAAAAKDxW66KIsaOHZu99torb7zxRs1rlZWV2WeffXLUUUdlt912y0orrdSgmSorK7Pllltmyy23zCmnnJLZs2fnwQcfzJ133pl77703n332WYqiyJVXXpm33nort99+e4NnrDZx4sR84xvfyOuvv77At33Mv8DRtm3bbLTRRtl4443TvXv3dO7cOZ06dcrqq6+eli1b1lzNmjXLvHnzUlVVlVmzZmX27NmZPn16Pv7440ydOjWTJk3KhAkTMm7cuIwZMyYjR47MlClTFsgz//lXXXVVZs+end/+9rcN94EAAAAAAAAAADXsFQAAAAAAAABA07DcFEW8+eab6du3byZMmJCiKFJRUZHvfOc7ufDCC7POOuuUO16Nli1b5sADD8yBBx6Y9957L1dffXWuu+66TJ8+Pffff3/23Xff/O1vf2vwsog5c+Zk//33z2uvvVbzbR9FUWTllVfOXnvtlX79+qVv377ZcMMN6y3De++9l2HDhuWZZ57Jgw8+mFdffTVJarJcd9116dmzZ0466aR6ywAAAAAAAAAALMxeAQAAAAAAAAA0HaVi/q+FKJNx48Zl++23z/jx41MURfr06ZPrr78+G2+8cbmjLZH3338/p59+egYMGJBSqZRdd901AwcOTLNmzRosw+mnn55f//rXNcsT6667bs4888wcfvjhadOmTYPlmN+oUaNyzTXX5MYbb8ysWbNqFkyGDx+e7t27L9PMESNGZJNNNql5/uqrr6ZXr151FRkAAAAAAAAAFtBU/k69IuwVNJV/KwAAAAAAAAAah3L+nbqiQU75AjNnzsxee+2VcePGpVmzZrnooosyePDgRlMSkSRf+cpXcuutt+a+++5Lu3bt8thjj+XEE09ssPNHjhyZq666KqVSKRUVFbngggvy5ptv5rjjjivbMkeS9OjRI9dcc01eeeWV9O7dO0kya9asnHLKKWXLBAAAAAAAAAArGnsFAAAAAAAAANC0lL0o4gc/+EFGjBiR1VdfPUOGDMm5556bioqyx1om++67b1566aWsv/76+f3vf58bb7yxQc69+uqrM2/evFRUVOT222/P+eefn8rKygY5e0n06NEjTz75ZL72ta+lKIo88MADee2118odCwAAAAAAAABWCPYKAAAAAAAAAKBpKWsjw6233prbb789a6+9dv7+979n2223LWecOtGtW7c8/fTT6dWrV37yk59k5MiR9X7mX/7yl5RKpRx33HE5+OCD6/28ZbHKKqvkzjvvzEorrZQk+dOf/lTmRAAAAAAAAACwYrBXAAAAAAAAAABNS9mKIiZNmpRTTjklnTt3zpNPPpnu3buXK0qdW3311fPII4+kbdu2+eEPf1ivZ40fPz4TJkxIkvzgBz+o17Nqq1u3bvne976Xoijy+OOPlzsOAAAAAAAAADR59goAAAAAAAAAoOkpW1HEGWeckenTp+evf/1rkyqJqPaVr3wlf/3rX/Pss8/mzjvvrLdzPvjgg5rHG2+8cb2dU1f22GOPJMnbb79d5iQAAAAAAAAA0PTZKwAAAAAAAACApqcsRRHDhw/PLbfckquuuirbbLNNOSI0iK9+9as5++yzc/7556coino5o2XLljWPP/3003o5oy61atUqSTJz5swyJwEAAAAAAACAps9eAQAAAAAAAAA0PWUpinjzzTdzySWX5Pjjjy/H8Q3qnHPOyYEHHpi33nqrXuZ36dIlpVIpSTJkyJB6OaMuvfLKK0mSjh07ljkJAAAAAAAAADR99goAAAAAAAAAoOkpS1HEwQcfnDPOOKMcRze45s2b57LLLkuPHj3qZf5qq62WTTbZJEVR5Be/+EWqqqrq5Zy6MGfOnFx//fUplUrZcsstyx0HAAAAAAAAAJo8ewUAAAAAAAAA0PSUpSiCunXkkUcmSYYNG5ajjjpquV3qOO644zJy5MgkyV577VXmNAAAAAAAAACwYrBXAAAAAAAAAABNi6KIJuC4445Lhw4dkiQDBgxInz59MmrUqDKn+q8xY8Zkt912yy233JIkadu2bc0SCgAAAAAAAABQv+wVAAAAAAAAAEDToiiiCWjbtm0uv/zyFEWRJPnHP/6RXr165eijj87LL79ctlzPPfdcjj322Gy00UZ54oknUhRFSqVSLr744rRu3bpsuQAAAAAAAABgRWKvAAAAAAAAAACalspyByiHDz/8MG+88UY++OCDNGvWLGuuuWa23HLLtGjRotzRltnRRx+dIUOG5Oabb06pVMpnn32WW265JbfcckvWWWed7LPPPtluu+2y5ZZbZoMNNkipVKrzDOPGjctLL72URx55JPfdd18mTJiQJDWLJqVSKfvtt19+9KMf1fnZAAAAAAAAAMDi2SsAAAAAAAAAgKZjhSqK+NOf/pTrr78+L7zwQqqqqhb4WcuWLbP77rvnpJNOSr9+/cqUsHZ+97vfZdy4cXniiSdSKpVqFinGjBmT/v37p3///kn+c69dunRZ6FpjjTXSqlWrtGrVKiuvvHLNf5Nk1qxZNdf06dPz3nvv5d1338348ePz9ttvZ9iwYZk8eXJNluqzk9Rk2WGHHXLbbbc14CcCAAAAAAAAAFSzVwAAAAAAAAAATUOjKIp46623Mnr06EyePDlt2rTJeuutl549ey7x+0ePHp1vfetbefnll5MsuGxQbdasWbn//vtz//33Z/fdd8///u//plu3bnV1Cw2isrIyAwcOzDHHHJMBAwYs8O0e89/zrFmzMmrUqLz11lt1dvbnP9PPn33QQQfl1ltvzUorrVRnZwIAAAAAAAAAS85eAQAAAAAAAAA0DRXlDrA4U6ZMyXnnnZdu3bplgw02yB577JFvf/vb2W+//dKrV6+sscYaOffcczNp0qQvnPP8889n2223zcsvv5yiKFIURUql0iKv6p8//PDD+drXvpYnn3yyge627rRo0SK33nprLr/88qy00ko1ixZfdL91cX1+dvKfRY6VVlopV111Vf785z9b5gAAAAAAAACAMrNXAAAAAAAAAACNX2W5AyzKgAEDcsIJJ+STTz5Z6Bslqk2cODGXXXZZrr/++vTv3z+HHnroQr8zfvz47L///vnwww8XWDRIFv1NFfMvIkyePDl77713Hn300Wy//fZ1eHcN49RTT80BBxyQE088MY8++miSBb+NY1HP60r1gsdBBx2UX//611lnnXUW+XsTJ0780qKPzxs1alRdRAQAAAAAAACAFdryvldgpwAAAAAAAAAAFm+5K4o47bTTcuWVVy7wjRWLUxRFpkyZkiOOOCLjx4/PqaeeusDPTzjhhEyaNGmBAogvmlWt+vdnzZqVAw44ICNGjEjnzp2X+Z7KZb311svDDz+c559/PhdffHEGDhxY87PFfa5f9BktyfuaN2+eww8/PGeccUY23njjL5z1v//7v7nwwgu/8HcAAAAAAAAAgPqxPO8V2CkAAAAAAAAAgMVbrooizj///PzmN79JsuDiwKKWDEql0gIFEGeccUa6d++eAw88MEny3HPP5YEHHlioJGJJvu2i+psrkuSjjz7KSSedlLvvvrsWd1Ze2267bf72t79l7Nixuf3223PnnXfmlVdeWeB3qu93Sb8NZP5/k2bNmqVPnz7Zd999c9hhh2Wttdaqu/AAAAAAAAAAQL2yVwAAAAAAAAAAjctyUxQxZMiQXHzxxQsVRMxfCPF58/+8KIoce+yx2WmnndK+fftcd911C/3e/M8XZ/551f+955578sorr2TzzTevgzstn3XWWSdnnXVWzjrrrEyYMCHPPfdcnnvuubzyyit5++23M27cuMyZM+cLZ5RKpay77rrp1atXevXqlc033zy77bZbVltttQa6CwAAAAAAAACgPtgrAAAAAAAAAIDGoVR8UWtCA6mqqkrPnj0zatSoBUoaqi0q4ufLI6rfc/LJJ+eSSy5Jx44dM2vWrIV+p23btjn44IPTr1+/9OzZM6usskomTJiQN998M/fcc08ee+yxzJ07t2Z+9dzvfe97ueGGG+rh7pcfRVFk4sSJ+fjjjzNz5szMnDkzRVGkdevWadOmTdq0aZO2bdumefPmdXLexIkTM2nSpKV6z6hRo3LAAQfUPH/11VfTq1evOskDAAAAAAAAAJ83YsSIbLLJJjXPV+S/UzfkXoGdAgAAAAAAAACWd+XcKahskFO+xN13373IkoiiKNKlS5fsu+++6datW1ZbbbVMmjQpw4YNy8MPP5wZM2bU/G71e2+88cbssMMO+fTTTxeY07x585x11lk57bTT0qZNmwXOX3/99bP99tvn2GOPzfDhw/PDH/4wf//731MqlWrm3n///QsVWDQ1pVIpnTt3TufOnRvkvE6dOqVTp04NchYAAAAAAAAAUDsNuVdgpwAAAAAAAAAAFm+5KIq45pprah5XFzN06dIl1157bfbff/9FvmfGjBm55pprcvHFF+fTTz9d4PWf/vSnNc+Lokj79u0zcODAbLPNNl+aZdNNN83gwYNz5JFH5q677qophpg8eXJefPHFfO1rX1vW2wQAAAAAAAAAAAAAAAAAAAColYpyB5gwYUKef/75moKIoiiy0047ZcSIEYstiUiSVVZZJWeffXaGDh2aLl26JElNqcM777xTM69FixZ56KGHlqgkolplZWVuv/327LLLLimKoub1f/7zn8t2kwAAAAAAAAAAAAAAAAAAAAB1oOxFEQ8++GBNGUOpVMr222+fhx56KG3atFmi92+00UZ57LHHssoqq9S8Vl0SUSqV8vOf/zxf+9rXljpXqVTKH/7wh7Rr166mgGLEiBFLPQcAAAAAAAAAAAAAAAAAAACgrpS9KOLvf/97kqQoirRu3Tq33nprVlpppaWascEGG+QXv/hFTeFEtbXWWiunnnrqMmdba621csIJJ9TMffvtt5d5FgAAAAAAAAAAAAAAAAAAAEBtVZY7wD//+c8kSalUys9+9rN07dp1meaccMIJueiiizJ16tQURZFSqZQTTzwxLVq0qFW+448/PpdddlmKosjEiRNrNaspmj17dp577rmMGjUqU6ZMSbt27fKVr3wl2223XTp27FjueAAAAAAAAABAGdkrAAAAAAAAAIC6V/aiiLfffjtJ0qJFixx77LHLPKdFixbZd99986c//anmtW9/+9u1zrf22mtniy22yLBhwxpdUURRFBkyZEhGjhyZKVOmpHPnztl+++2z3nrr1Xr2yy+/nCuuuCL33ntvZs+evdDPKyoqsv322+f000/PXnvtVevzAAAAAAAAAIC6Za8AAAAAAAAAABqnshZFzJo1K5MnT06pVMpee+2V9u3b12re17/+9fzpT39KqVTKhhtumC5dutRJzq233jrDhg3LtGnT6mRefZs3b15+9atf5ZprrllkucV2222X888/P7vuuutSz542bVpOP/303HjjjUn+szSyuAyDBw/OkCFDsvvuu+ePf/xjVl999aU+DwAAAAAAAACoW/YKAAAAAAAAAKBxqyjn4VOmTKl5/PWvf73W8zbZZJOax3369Kn1vGqbb755kmTOnDl1NrO+jB8/PltttVV+9rOfZcKECSmKYqHr2WefzR577JHvfOc7mTVr1hLPHjFiRLbccsvceOONNbNKpdIXXkVR5JFHHsl2222Xt956qx7vHAAAAAAAAAD4MvYKAAAAAAAAAKDxK2tRxNSpU2sef+1rX6v1vDXXXLPm8frrr1/redU6dOiQZPkvihg9enR22GGHDB8+/EuXLYqiyIABA7Ljjjtm2rRpXzr7+eefT58+fTJ27NgFZs9vUcsj1d56663svPPOmTRpUp3fNwAAAAAAAADw5ewVAAAAAAAAAEDTUNaiiNmzZ9c87tq1a63ndezYsebxOuusU+t51dq2bZsk+eyzz+psZl2bM2dOvvnNb2bs2LELLG0s7qpexnjppZey7777fuE3gPzjH//InnvumY8//jhJamZXK4oiXbt2zc9//vM88cQTeeONN/LPf/4zd955Zw466KCa97z77rs54ogjFngvAAAAAAAAAFD/7BUAAAAAAAAAQNNRWc7D58yZU/O4uoyhNlZaaaWax6uuumqt51Vr3rx5nc2qL+edd15eeeWVmmWL1VZbLUcddVR23nnnrLPOOmndunU++eSTjBw5MoMHD85dd92VDz/8MKVSKc8++2y+//3v59Zbb11o7siRI7P33ntn2rRpC3zTR/U5lZWVueCCC3L66acv9DltttlmOeSQQ/L888/n4IMPznvvvZdBgwbltttuy5FHHlnvnwkAAAAAAAAA8B/2CgAAAAAAAACg6ago5+Hz5s2reVwXRRHzLxSsssoqtZ5XrfobL5ZXH330Ufr371+zZPG9730v77zzTn7zm99kv/32y+abb5711lsvW2yxRQ455JD89re/zbhx43LxxRenZcuWKYoit99+e6677roF5k6aNCl77rlnpkyZssAyR/Kfb/vo2LFjnnjiiZxzzjlfWKax7bbb5umnn06HDh2SJJdddlndfwgAAAAAAAAAwCLZKwAAAAAAAACApqWsRRFFUdQ8njNnTq3nzV88UVlZWet51aZOnVpns+rDDTfckJkzZyZJTjzxxNx4441fWpTRsmXLnH322XnmmWey9tprpyiKnHrqqXnjjTeSJHPnzs1BBx2U0aNHL3KZo2vXrnnmmWeyww47LFHGddddN9ddd12Kosjrr7+ep59+ehnuFAAAAAAAAABYWvYKAAAAAAAAAKBpKWtRxPymTZtW6xl1UTaxKMt7UcRjjz2WJOnWrVuuuuqqpXrvVlttleeeey49e/bMrFmzcvTRR6coivz4xz/Os88+u8hljnXXXTeDBw/OBhtssFRnHXzwwdloo42SJIMGDVqq9wIAAAAAAAAAy8ZeAQAAAAAAAAA0LU2qKGL69Ol1kGRho0ePrpe5daGqqip///vfUyqVctJJJ6VZs2ZLPWOttdbK008/nV69emXo0KHp169frr/++kUuc6y11lp54oknss466yxT3v322y9FUWTIkCHL9H4AAAAAAAAAYMnZKwAAAAAAAACApme5KYr497//XesZkyZNqnlcVVVV63nVhg8fXmez6trEiRMzY8aMJEm/fv2WeU6HDh3y2GOPZb311svgwYMX+nlRFFlttdXyyCOPpFu3bst8zlZbbZUkGTdu3DLPAAAAAAAAAACWjL0CAAAAAAAAAGh6lpuiiJdffrnWM8aPH1/z+OOPP671vGr/+te/6mxWXZsyZUrN49osWiRJ586ds+GGG6YoigW+9aMoirRs2TJ//etfs/HGG9fqjA4dOiRJJk+eXKs5AAAAAAAAAMCXs1cAAAAAAAAAAE1PZbkDVHvooYdqvZDw1FNP1Ty+66678uGHH9YuVJKZM2cu18sH1d/6kSStWrWq1ayzzjorAwcOTKlUqlnqqP7v73//++ywww61jZvZs2cnWTA3AAAAAAAAAFA/7BUAAAAAAAAAQNOz3BRFvPDCC3nhhRfqZFZRFLnllltyyy231Mm86sWG5dFqq61W83jKlCnp1KnTMs35wx/+kMsvv3yRyxxnnHFGjjzyyDrJO27cuCRJ+/bt62QeAAAAAAAAALB49goAAAAAAAAAoOmpKHeAakVR1MlV1/OW14KIah06dKh5/PLLLy/TjCFDhuSHP/xhSqVSkiywzLHtttvm0ksvrZOsSfLwww8nSVZfffU6mwkAAAAAAAAALJq9AgAAAAAAAABoepaboohSqVQnV13Pm3/m8mi11VbLV77ylSTJ/fffv9Tvf+utt/LNb34zn332WZLUFGNUL3W8+OKLGThwYJ1kHTNmTB566KGUSqV069atTmYCAAAAAAAAAItnrwAAAAAAAAAAmp7lpiiiKIqaqzbqstyhLvI0hJ122ilFUeTmm2/O+PHjl/h977//fvbee+9Mnjx5gW/7qL7nY489Nu3bt8/BBx+cO+64o1YZi6LIiSeemNmzZydJdtttt1rNAwAAAAAAAACWjL0CAAAAAAAAAGhalpuiiOqCh7oqeagLy1uexdlvv/2SJLNmzcq3vvWtzJo160vf89prr+XrX/96/v3vf9fc4/xLHQceeGB+//vfZ8CAAZk7d26OPPLInHbaaTXfELI0iqLIj370ozz00EM1r+25555LPQcAAAAAAAAAWHr2CgAAAAAAAACgaVluiiKKoqi5WrZsmY4dO2bttddO165dG/Tq0qVLVl999TRv3rwmz/LukEMOybrrrpsk+cc//pFddtkl48aNW+TvfvbZZ7n44ovz1a9+Ne+8884if2fbbbfNbbfdliTp27dvLr300lRVVeXKK6/MxhtvnLvvvjtVVVVLlO2tt97KN77xjfz+979P8p+lkd133z3du3df2tsEAAAAAAAAAJaBvQIAAAAAAAAAaFoqyx2gWu/evXP22Wdn++23T6dOncodJ0ny3nvv5YknnsjPf/7zjBkzptxxFqtZs2b5xS9+ke985zsplUp57rnnstFGG+Xwww9Pv3790qFDh7z33nsZOnRo7rjjjnz00Uc13/Axv6IostVWW+Whhx5Ky5Yta14/7bTT8tZbb+X666/P6NGjc9hhh2WttdbKQQcdlH79+mWTTTbJGmuskZVWWilTp07NBx98kL///e/529/+lgceeCBVVVU1hRsVFRX55S9/2aCfDwAAAAAAAACsyOwVAAAAAAAAAEDTUiqq/9JeBs8++2x22GGHbLTRRhk6dGhatWpVrihf6L333svmm2+eKVOmZN68eeWOs1jHHHNMbr755pRKpUUubCSpWaxY1DLHFltskcceeywdOnRY6H1VVVU59NBD85e//OUL53/ZeWeeeWYuueSSpb63aiNGjMgmm2xS8/zVV19Nr169lnkeAAAAAAAAAHyRpvR36qa+V9CU/q0AAAAAAAAAWP6V8+/UFQ1yypc4++yzl9uSiCRZc80185Of/KTcMb7Uddddl7333rtm2aIoioWuUqm0yGWOfv36ZfDgwYtc5kj+840dd955Z4444ogvnL+484qiyHe+851alUQAAAAAAAAAAMvOXgEAAAAAAAAANA1lL4oolUrp27dvuWN8qW984xvljvClWrZsmfvuuy8nn3xyzdJG9ULF4hY5Kioqct555+Xhhx9OmzZtvnB+RUVFbr311lx00UULzV3cVb3YccIJJ+TGG2+st3sHAAAAAAAAAL6YvQIAAAAAAAAAaBrKXhSRJJ06dSp3hC/VuXPnckdYIhUVFbnqqqvywgsvZI899khlZeUiv5GjVatWOeqoozJixIhceOGFadas2RKfce655+bZZ59N7969a+Z9XvXr3bt3z1/+8pf89re/XaozAAAAAAAAAIC6Z68AAAAAAAAAABq/ynIHKIqiUfyhv1mzZotcXFhebbXVVnnwwQczderUPP300xk/fnw++uijtGvXLhtvvHG22WabrLzyyss8f5tttskLL7yQwYMH57bbbqs5oyiKrLHGGtl6662z//775+CDD24U/74AAAAAAAAAsCKxVwAAAAAAAAAAjVdZiyI23XTTPPnkk6moqChnjCWyxhpr5Mknnyx3jKXWrl277LvvvvU2f6eddspOO+1Ub/MBAAAAAAAAgPpjrwAAAAAAAAAAGp+yNjSsuuqqjWYZoGXLlo0mKwAAAAAAAAAAAAAAAAAAANA0lbUooj784Ac/yPvvv1/uGAAAAAAAAAAAAAAAAAAAAAB1rskVRfzxj3/MBx98UO4YAAAAAAAAAAAAAAAAAAAAAHWuyRVFFEWR0aNHlzsGAAAAAAAAAAAAAAAAAAAAQJ1rckURSfLHP/6x3BEAAAAAAAAAAAAAAAAAAAAA6lyTLIoYOHBgfvrTn2batGnljgIAAAAAAAAAAAAAAAAAAABQZyrLHeDLTJkyJZMmTcrEiRMzadKkVFRU5IADDvjS91199dXp379/Ntpoo6y99tpp27ZtWrRosUwZzj333Ky33nrL9F4AAAAAAAAAAAAAAAAAAACAulK2ooipU6fmsccey6RJkxZ7TZ48OVVVVTXvKYoi+++//xIVRRRFkc8++yz/+te/Mnz48FplnTt3bv70pz/VagYAAAAAAAAAAAAAAAAAAABAbZWtKOK1117LoYcemiQplUoL/KwoigWet2rVKkcffXS+973vpXfv3ks0v3pmURQLzVtat99+ey644IJ07969VnMAAAAAAAAAAAAAAAAAAAAAaqOiXAdvt912mT17dp555pl06dKlptChKIqakoeWLVvmzDPPzJgxY/Lb3/52iUsi5lcqlWp1JUlVVVWuvfbaOr1/AAAAAAAAAAAAAAAAAAAAgKVVtqKIJGnevHm22267HHnkkUn+W+pQFEW22267/POf/8yll16ajh07LtP8oihqnbE6z80335zZs2fXeh4AAAAAAAAAAAAAAAAAAADAsiprUUS1119/veZxURQ55phjMnjw4Gy44Ya1mlsqlRaYuyxXtY8//jj33XdfrfIAAAAAAAAAAAAAAAAAAAAA1EZluQPMmDEjjz76aE2pw3HHHZf/+7//q/Xc6pKHdu3aZa211sqqq66a5s2bL1AesSTefPPNfPDBB0mSP//5z/nWt75V62wAAAAAAAAAAAAAAAAAAAAAy6LsRRH3339/Zs6cmVKplO222y6//e1v62Tutttum//7v//LZpttVqs5f/vb37L//vunKIo89thjmTdvXpo1a1YnGQEAAAAAAAAAAAAAAAAAAACWRkW5A9xxxx1JkpVXXjl33XVXKitr313RrVu3PPbYY7UuiUiSfffdN1tssUWS5OOPP85rr71W65kAAAAAAAAAAAAAAAAAAAAAy6KsRRHTp0/Po48+mlKplB/+8If5yle+Uidzjz/++Kyyyip1MitJjjvuuJrH//znP+tsLgAAAAAAAAAAAAAAAAAAAMDSKGtRxCOPPJLZs2enZcuWOeuss+ps7hZbbFFns5LkkEMOSWVlZZLklVdeqdPZAAAAAAAAAAAAAAAAAAAAAEuqrEURjz76aJKkT58+6dixY53NrctZSdKhQ4dsvfXWSZLhw4fX6WwAAAAAAAAAAAAAAAAAAACAJVXWoojnnnsupVIpu+66a53NPP/887P22mvX2bxqvXv3TlEUmTRpUp3PBgAAAAAAAAAAAAAAAAAAAFgSleU6uCiKjBo1KknSp0+fOpt73nnn1dms+W266aZJko8//rhe5gMAAAAAAAAAAAAAAAAAAAB8mYpyHfzuu+9m9uzZSZI11lijXDGWWMeOHZMk06ZNK3MSAAAAAAAAAAAAAAAAAAAAYEVVtqKI+QsXVl999XLFWGLt2rVLknzyySflDQIAAAAAAAAAAAAAAAAAAACssMpWFDFjxoyax61bty5XjCU2Z86cckcAAAAAAAAAAAAAAAAAAAAAVnBlK4qorKyseTx9+vRyxVhikydPTpKsssoqZU4CAAAAAAAAAAAAAAAAAAAArKjKVhTRtm3bmscffvhhuWIssddffz2JoggAAAAAAAAAAAAAAAAAAACgfMpWFLHqqqvWPK4uYViePffcc0mSTp06lTkJAAAAAAAAAAAAAAAAAAAAsKIqW1FEhw4dstJKKyVJXnrppXLFWCIfffRRnnnmmZRKpXTv3r3ccQAAAAAAAAAAAAAAAAAAAIAVVNmKIioqKrLxxhunKIo8+OCD5YqxRAYMGJA5c+YkSdZbb70ypwEAAAAAAAAAAAAAAAAAAABWVGUrikiSzTbbLEny4osvZuTIkeWMslhz587NVVddVfN8q622Kl8YAAAAAAAAAAAAAAAAAAAAYIVW1qKIHXfcMUlSFEWuvPLKckZZrN/97nd56623ap7vsMMOZUwDAAAAAAAAAAAAAAAAAAAArMjKWhSx3377pbKyMkVR5IYbbsirr75azjgLGTNmTM4999yUSqUkSY8ePbLGGmuUORUAAAAAAAAAAAAAAAAAAACwoiprUUT79u2z0047JUnmzp2b733ve5k9e3Y5I9WYM2dODj300EybNi1FUaRUKuVb3/pWuWMBAAAAAAAAAAAAAAAAAAAAK7CyFkUkycknn5wkKZVKGTZsWI455pgyJ0pmz56dAw44IEOHDk2pVKp5/cgjjyxjKgAAAAAAAAAAAAAAAAAAAGBFV/aiiH333Tebb755kqQoitxxxx058sgjM2/evLLkmTx5cvbaa688/PDDKZVKKYoipVIpO++8czbccMOyZAIAAAAAAAAAAAAAAAAAAABIloOiiCS55JJLagoZiqLI7bffnp122injx49v0ByPP/54Nttsszz11FML/ez8889v0CwAAAAAAAAAAAAAAAAAAAAAn7dcFEXsueee+f73v79AWcRzzz2XTTfdNL/85S8za9asej1/9OjROfzww7PHHnvk/fffXyBHqVRKv379stNOO9VrBgAAAAAAAAAAAAAAAAAAAIAvs1wURSTJlVdeme7duydJSqVSkmTatGk555xzssEGG+TGG2/MzJkz6/TMoUOH5vvf/3423njj3HXXXamqqkqpVKo5P0lWWWWV/O53v6vTcwEAAAAAAAAAAAAAAAAAAACWxXJTFLHKKqvknnvuSdu2bZOkprChKIqMHz8+xx13XDp37pwjjzwyDz744DKXRrz44ou59NJLs+WWW2bbbbfNH/7wh8yZMydFUSxQEFH9/Iorrki3bt3q4hYBAAAAAAAAAAAAAAAAAAAAaqWy3AHmt9lmm2XgwIHZbbfdaoogqssbiqLIjBkzcvvtt+f2229PRUVF1l9//fTu3Tu9evVK+/bt065du7Rt2zbNmzfPJ598kunTp2fSpEl588038+abb+aVV17J1KlTa+ZVm78govpnpVIpJ5xwQo477riGuXkAAAAAAAAAAAAAAAAAAACAL7FcFUUkyde//vXce++9+eY3v5np06fXvD5/YUSSzJs3L2+88UbefPPNJZ49fznE/DOrfzb/8wMOOCDXXHPNMt0DAAAAAAAAAAAAAAAAAAAAQH2oKHeARdlll13y/PPPZ7311ltkucP8V1EUS3x90XvnL6I45phjcvfddy9QHAEAAAAAAAAAAAAAAAAAAABQbstlUUSSbLTRRhk6dGj233//hcoi5n/++fKHL7qq31t9zf/+oihSUVGRSy65JDfccEMqKpbbjwYAAAAAAAAAAAAAAAAAAABYQS3XbQht27bNvffem3vvvTddu3ZdoNwhWbD0YUmvap8vj1h//fXz1FNP5ayzzmr4GwUAAAAAAAAAAAAAAAAAAABYAst1UUS1/fffP6+99louvPDCdOjQoab0obrsYf5rcRb1e0VRZNVVV81FF12U4cOHp0+fPg11SwAAAAAAAAAAAAAAAAAAAABLrVEURSTJyiuvnPPOOy/vvPNO+vfvny222KKmMKIoiprfW1R5xPzFENVX9+7dc9lll2XMmDE599xz06JFi3LdGgAAAAAAAAAAAAAAAAAAAMASqSx3gKW10kor5Uc/+lF+9KMfZezYsbnvvvvy9NNP55///GdGjx69QGnE/Nq3b5/evXunT58+2XvvvdO7d+8GTg4AAAAAAAAAAAAAAAAAAABQO42uKGJ+66yzTk4++eScfPLJSZKZM2dm4sSJmTZtWqZPn57mzZundevWWWuttdK2bdsypwUAAAAAAAAAAAAAAAAAAAConUZdFPF5rVq1Srdu3codAwAAAAAAAAAAAAAAAAAAAKBeVJQ7AAAAAAAAAAAAAAAAAAAAAABLRlEEAAAAAAAAAAAAAAAAAAAAQCNRlqKISy65JFtssUVmz55djuMb1IgRI7LWWmtl1KhR5Y4CAAAAAAAAAAAAAAAAAAAANHJlKYo4/vjjM3r06FxwwQXlOL7BzJgxI4cddlj23HPP9OjRo9xxAAAAAAAAAAAAAAAAAAAAgEauLEURHTp0yNlnn50rrrgijz76aDki1LuiKHL44Ydn/Pjxufjii8sdBwAAAAAAAAAAAAAAAAAAAGgCylIUkSSnnXZa1ltvvRx66KF54403yhWj3hx33HEZOHBgfv3rX6dz587ljgMAAAAAAAAAAAAAAAAAAAA0AWUrimjevHn+9Kc/ZcaMGenbt2+GDx9erih1qqqqKj/4wQ9y0003Zffdd88xxxxT7kgAAAAAAAAAAAAAAAAAAABAE1G2oogk2XrrrXPxxRdnwoQJ2XnnnfPwww+XM06tffjhh9l7771z0003Ze21186tt95a7kgAAAAAAAAAAAAAAAAAAABAE1LWoogkOf300/Od73wnH330UfbZZ5+ceeaZmT17drljLbWBAwdm0003zaOPPppWrVrlL3/5S9q3b1/uWAAAAAAAAAAAAAAAAAAAAEATUvaiiCS54YYbsvvuu6eqqipXXHFFNtxww9x9993ljrVE3n777Rx55JHZb7/9MmHChLRo0SL33ntvevfuXe5oAAAAAAAAAAAAAAAAAAAAQBOzXBRFNG/ePPfdd1/22GOPFEWRcePG5bDDDsvGG2+cG264IbNmzSp3xIWMGjUqJ5xwQjbaaKPcfvvtKYoirVq1yp///Ofssssu5Y4HAAAAAAAAAAAAAAAAAAAANEHLRVFEkrRo0SL3339/jj766BRFkSR54403cvzxx6dTp0759re/nfvuuy8zZswoW8Y333wzV155ZXbcccdsuOGGuf766zNnzpwURZGOHTtm0KBB2XvvvcuWDwAAAAAAAAAAAAAAAAAAAGjaKssdYH6VlZW56aab0qtXr5xzzjmZO3duiqLI9OnTc8cdd+SOO+5Is2bN0rt37+y0007ZaqutssUWW2T99ddPqVSq0yzjx4/P66+/npdffjlDhw7Nc889lw8++KDm50VR1Jy56aab5i9/+Ut69OhRpxkAAAAAAAAAAAAAAAAAAAAA5rdcFUVUO/XUU7P99tvniCOOyNtvv51SqZSiKJIkc+fOzQsvvJAXXnih5vdXWmmldOvWLeuuu266deuWTp06pWPHjunQoUNatWqVFi1apEWLFimVSpk7d24+++yzzJ49O9OmTcvUqVMzderUvP/++3n33Xczfvz4vPXWW5kxY8YCmarPT1JTEFEURX784x/nV7/6VVq2bNkAnwwAAAAAAAAAAAAAAAAAAACwIlsuiyKSZJtttsmrr76a888/P1dddVXmzZu3QEHD/D799NO8/vrreeONN2p97udnV6s+u/p3evTokWuvvTa77757rc8EAAAAAAAAAAAAAAAAAAAAWBIV5Q7wRVZeeeVcfvnlefnll7PHHnukKIoURZFSqbTQlaTm57W5knzh/DZt2uRXv/pVRowYoSQCAAAAAAAAAAAAAAAAAAAAaFDLdVFEtU022SQPPvhgBg8evEBhxPwWVe6wrNf8qs/q1KlTLrrooowePTqnnXZamjdv3pAfAQAAAAAAAAAAAAAAAAAAAEAqyx1gaeywww7ZYYcd8tprr+V3v/tdBgwYkA8//DBJFip4qI3qEoqKiorstNNO+e53v5sjjjgiLVq0qLMzAAAAAAAAAAAAAAAAAAAAAJZWoyqKqLbxxhvnqquuyhVXXJGnnnoq999/fx599NH8+9//Xuh3v6hAoroQYn7t2rXLdtttlz333DMHH3xwOnfuXKfZAQAAAAAAAAAAAAAAAAAAAJZVoyyKqFZZWZlddtklu+yyS5Lkww8/zPPPP59XX301r7/+esaOHZsPPvggH374YT799NPMnj07lZWVad26dVZZZZW0b98+3bt3T48ePbLBBhtk6623ziabbPKF5RIAAAAAAAAAAAAAAAAAAAAA5dKoiyI+r2PHjtlnn32yzz77lDsKAAAAAAAAAAAAAAAAAAAAQJ2rKHcAAAAAAAAAAAAAAAAAAAAAAJaMoggAAAAAAAAAAAAAAAAAAACARkJRBAAAAAAAAAAAAAAAAAAAAEAjoSgCAAAAAAAAAAAAAAAAAAAAoJFQFAEAAAAAAAAAAAAAAAAAAADQSCiKAAAAAAAAAAAAAAAAAAAAAGgkFEUAAAAAAAAAAAAAAAAAAAAANBKKIgAAAAAAAAAAAAAAAAAAAAAaCUURAAAAAAAAAAAAAAAAAAAAAI2EoggAAAAAAAAAAAAAAAAAAACARkJRBAAAAAAAAAAAAAAAAAAAAEAjoSgCAAAAAAAAAAAAAAAAAAAAoJFQFAEAAAAAAAAAAAAAAAAAAADQSCiKAAAAAAAAAAAAAAAAAAAAAGgkFEUAAAAAAAAAAAAAAAAAAAAANBKKIgAAAAAAAAAAAAAAAAAAAAAaCUURAAAAAAAAAAAAAAAAAAAAAI2EoggAAAAAAAAAAAAAAAAAAACARqJRFkUMGTKk3BEAAAAAAAAAAAAAAAAAAAAAGlyjLIro27dv3nrrrXLHAAAAAAAAAAAAAAAAAAAAAGhQjbIooiiK3HTTTeWOAQAAAAAAAAAAAAAAAAAAANCgGmVRRJL86le/yu9///tyxwAAAAAAAAAAAAAAAAAAAABoMI22KKKqqio//OEPs/vuu+ehhx4qdxwAAAAAAAAAAAAAAAAAAACAetdoiyKSpCiKPP7449lnn32yzjrr5Be/+EXefffdcscCAAAAAAAAAAAAAAAAAAAAqBeNuigi+U9ZRFEUGT9+fC688MJ069Yt++23Xx544IEURVHueAAAAAAAAAAAAAAAAAAAAAB1prLcAZbVmmuumaOOOiqffPJJXnzxxTz//PMpiiLz5s3LwIEDM3DgwKy55po59thjc+yxx2bttdcud2QAAAAAAAAAAAAAAAAAAACAWqkod4Bl9Yc//CH/8z//k6uvvjrPPvts3nnnnVxwwQVZZ511UhRFiqLIe++9l4suuijdu3fP3nvvnfvvvz9VVVXljg4AAAAAAAAAAAAAAAAAAACwTBptUcS22267wPO11lor559/fkaPHp0HH3wwBx54YJo1a5aiKDJv3rw8/PDDOfDAA9O1a9ecf/75eeedd8qUHAAAAAAAAAAAAAAAAAAAAGDZNMqiiJ///Odp3br1In9WKpWyxx575C9/+UvGjRuXiy++ON27d09RFCmKIu+//37Na3vuuWf++te/Zt68eQ18BwAAAAAAAAAAAAAAAAAAAABLr9EWRSyJzp075+yzz86oUaPy+OOP55BDDknz5s1TFEWqqqry6KOP5pvf/GbWXnvt/OxnP8uYMWPqNzgAAAAAAAAAAAAAAAAAAABALTTKoohl8Y1vfCN33nln3n333Vx++eXp2bNniqJIURSZMGFCLr300vTo0SO777577rnnnsybN6/ckQEAAAAAAAAAAAAAAAAAAAAWsMIURVTr0KFDTj311Lz22msZPHhwvv3tb6dly5YpiiJVVVV5/PHHc8ghh6RLly4555xzMnr06HJHBgAAAAAAAAAAAAAAAAAAAEiyAhZFzG+HHXbILbfckvfeey+/+MUvUlHxn4+jKIpMmDAhv/zlL7PBBhtk1113zZ///OfMnTu3zIkBAAAAAAAAAAAAAAAAAACAFdkKXRSRJJMmTcrll1+eX//61ymKIklSKpVSKpVSFEWqqqoyaNCgHHrooenSpUvOOuusvPXWW2VODQAAAAAAAAAAAAAAAAAAAKyIVtiiiLFjx+akk05Kt27dctlll2XatGkpiqLmShYsjCiKIhMnTszll1+eDTbYIP369ctdd92Vzz77rMx3AgAAAAAAAAAAAAAAAAAAAKwoKssdoKGNGDEil112We68887MmzdvgVKIzyuKIh07dsyPf/zjVFVV5aabbsq4ceOSJE899VSeeuqpdOjQIccdd1x+/OMfp3Pnzg16LwAAAAAAAAAAAAAAAAAAAMCKpaLcARrK888/n/333z+bb755BgwYkLlz56YoipRKpQVKIoqiSFEU6dq1a6655pqMHTs25513Xn7+85/n7bffzt/+9rfsu+++qaioSFEU+fDDD3PppZemW7duOfXUU/PJJ5+U8S4BAAAAAAAAAAAAAAAAAACApqxRFkUcc8wxS/y7jzzySHbeeef06dMnDzzwQKqqqr6wIGLTTTfNrbfemlGjRuWkk07KyiuvXPM7FRUV2XvvvXPfffdl7NixOf/887PGGmukKIrMnj07V111VXr27JlBgwbV6f0CAAAAAAAAAAAAAAAAAAAAJI20KOKPf/xjpk+fvtifF0WRu+66K717985ee+2Vp59+uqYIYnEFETvuuGMGDhyYV155JUcccUSaNWv2hRnWXHPNXHDBBXn77bdzxRVXpHXr1kmS999/P3vssUf69+9fNzcLAAAAAAAAAAAAAAAAAAAA8P9rlEURRVHkH//4x0Kvf/bZZ7nhhhuy4YYb5vDDD8/LL7/8hQURSbL//vvn73//e5566qnsueeeS52lZcuW+elPf5phw4ala9euKZVKmTt3bk4++eTcdNNNy36TAAAAAAAAAAAAAAAAAAAAAJ/TKIsikuSkk07KSy+9lJkzZ+bFF1/MOeeck65du+b444/PqFGjaoogFlUQ0bx583zve9/LiBEjcu+992abbbapdZ4ePXrkz3/+c815RVHkhBNOyMsvv1zr2QAAAAAAAAAAAAAAAAAAAABJUlnuAMvq3//+d7beeusFXpu/HOLziqJI69atc9xxx+WnP/1p1lxzzTrP1Lt372y11VZ58cUXUyqVMmfOnHzve9/LP//5zzo/CwAAAAAAAAAAAAAAAAAAAFjxVJQ7QG0URbHAVSqVFiqJKIoiq6++ev7nf/4n77zzTq644op6KYmoPuvdd99dIMPw4cNz991318t5AAAAAAAAAAAAAAAAAAAAwIqlURdFVBdDfL4goro4olu3bunfv3/Gjh2bc845J+3atavXPE8++WTef//9hV6/5ZZb6vVcAAAAAAAAAAAAAAAAAAAAYMVQWe4AtVEURZLUlERUP99iiy1y5pln5pBDDklFRcN1Ydx5550LPC+VSimKIkOHDm2wDAAAAAAAAAAAAAAAAAAAAEDT1aiLIj5fENG3b9+ceeaZ2W233cqS5/HHH6/JNL+PPvqoDGkAAAAAAAAAAAAAAAAAAACApqZRF0Uk/ymJ2HTTTXP11Vdn5513LmuWCRMmLPL1ddZZp4GTAAAAAAAAAAAAAAAAAAAAAE1RRbkD1EapVMq5556bl156qewlEUmywQYbLPRaqVTKt7/97TKkAQAAAAAAAAAAAAAAAAAAAJqaRlsUUVlZmXvuuScXXXRRKisryx0nSfKzn/0sSVIURc2144475uyzzy5zMgAAAAAAAAAAAAAAAAAAAKApWD4aFpbB0Ucfnf3226/cMRZw0EEH5cknn8ytt96ayZMnp1+/fvnBD36Q5s2blzsaAAAAAAAAAAAAAAAAAAAA0AQ06qKI5dGOO+6YHXfcsdwxAAAAAAAAAAAAAAAAAAAAgCaootwBlsWTTz6ZddddN//v//2/7Lfffrniiisyb968cscCAAAAAAAAAAAAAAAAAAAAqFeV5Q6wLHr27Jmtt94648ePT5IMHDgww4YNy4ABA8qcDAAAAAAAAAAAAAAAAAAAAKD+VJQ7wLL42c9+lnHjxqUoiprrzjvvzLvvvlvuaAAAAAAAAAAAAAAAAAAAAAD1plEWRQwcODClUqnmqvbRRx+VMRUAAAAAAAAAAAAAAAAAAABA/WqURRFTpkxZ4HmpVMr666+fTTbZpEyJAAAAAAAAAAAAAAAAAAAAAOpfoyyK6NatW83joihSKpVy3XXXlS8QAAAAAAAAAAAAAAAAAAAAQANolEURBx10UIqiSJKUSqWccsop6du3b72eOW7cuMybN69ezwAAAAAAAAAAAAAAAAAAAAD4Io2yKOK0005Lp06dasoizjrrrHo9b/bs2enWrVvefPPNej0HAAAAAAAAAAAAAAAAAAAA4Is0yqKI9u3b59Zbb03z5s2TJMOHD6/X8z744IOaUgoAAAAAAAAAAAAAAAAAAACAcmmURRFJsssuu+TOO+9My5Yt8+1vfzuvvfZavZ316KOPplQq1dt8AAAAAAAAAAAAAAAAAAAAgCXRaIsikuSAAw7IU089lebNm+frX/96brvttjo/45NPPskvf/nLOp8LAAAAAAAAAAAAAAAAAAAAsLQadVFEkmy99dZ55ZVXcvDBB+e73/1u9tprr7zxxhu1nvvJJ5/kvvvuy9e//vWMHj26DpICAAAAAAAAAAAAAAAAAAAA1E5luQMsi+7duy/y9ebNm+eRRx7JZpttli5duizT7KqqqkyfPj0fffRRkqQoimXOCQAAAAAAAAAAAAAAAAAAAFCXGmVRxKRJkzJz5swFShxKpVKS/xQ7zJ07N2PGjKmTs0qlkrIIAAAAAAAAAAAAAAAAAAAAYLlQUe4Ay+Kb3/xmiqJIqVSquYqiWOi1urgAAAAAAAAAAAAAAAAAAAAAlheNsijiqKOOWug1xQ4AAAAAAAAAAAAAAAAAAABAU9coiyL69u2brl27LvR6URR1fgEAAAAAAAAAAAAAAAAAAAAsLyrLHWBZHXnkkbnkkktSKpVSFEV69OiRrbfeOu3bt8/KK6+c5s2bp1mzZimVSimVSks1e968eZk9e3befffd/PWvf83MmTPr6S4AAAAAAAAAAAAAAAAAAAAAllyjLYo46qijcskllyRJzjnnnPzP//xPvZwzbty47LTTThk7dmy9zAcAAAAAAAAAAAAAAAAAAABYUhXlDrCs1l9//WyzzTZJkjPPPLPezll77bVzwQUX1Nt8AAAAAAAAAAAAAAAAAAAAgCXVaIsikuSoo45KkhRFUa/n9OvXr17nAwAAAAAAAAAAAAAAAAAAACyJRl0Ucdhhh6VFixYZNmxYvZ6z5ppr1nsZBQAAAAAAAAAAAAAAAAAAAMCXqSx3gNpo165d7rvvvmy++eb1ek6pVMqYMWOy5ppr1us5AAAAAAAAAAAAAAAAAAAAAF+kURdFJMluu+3WIOd07dq1Qc4BAAAAAAAAAAAAAAAAAAAAWJyKcgcAAAAAAAAAAAAAAAAAAAAAYMlUljtAfRo7dmyeeuqpPPPMMxk/fnw+/PDDfPzxx2nTpk06dOiQjTfeOFtuuWV22223rLHGGuWOCwAAAAAAAAAAAAAAAAAAAPCFmlxRRFVVVe6+++5ceeWVGTp06AI/K4qi5nGpVMrjjz9e8/yrX/1qvv/97+eII47IKqus0mB5AQAAAAAAAAAAAAAAAAAAAJZURbkD1KWnn346PXv2zBFHHJGhQ4emKIoFruQ/BRFJFvrZ0KFD88Mf/jBdunTJZZddllmzZpXzVgAAAAAAAAAAAAAAAAAAAAAW0iSKIubOnZuTTz45ffv2zahRo2rKH0ql0kJXksW+XhRFpk2blnPPPTcbbbRRnn322XLeFgAAAAAAAAAAAAAAAAAAAMACGn1RxPTp07PHHnukf//+qaqqWqD8oSiKJZ7z+feNHTs2ffv2zbXXXluP6QEAAAAAAAAAAAAAAAAAAACWXGW5A9TGZ599lgMOOCCDBg1K8p+yh/lVP1+awoj53zd37tz85Cc/yWeffZaf/vSndZAYAAAAAAAAAAAAAAAAAAAAYNk16qKIM888M4MGDVqoICL5bzlEp06dsuWWW2bLLbfMhhtumLZt22bVVVdN27Zt06xZs8yYMSMzZszIBx98kDfeeCMjRozIoEGDMmPGjJRKpRRFkTPOOCObbrppdt1114a+RQAAAAAAAAAAAAAAAAAAAIAajbYoYujQobn66qsXKokoiiJdu3bNt7/97XznO99Jz549l3r27Nmz88ADD+S8887LG2+8kaqqqnz3u9/NyJEj07p167q6BQAAAAAAAAAAAAAAAAAAAIClUlHuAMvq7LPPTlEUNc+Losiaa66Z22+/PWPGjMnFF1+8TCURSdKyZct885vfzPDhw3PiiScmSSZOnJjLL7+8TrIDAAAAAAAAAAAAAAAAAAAALItGWRTx73//O4MGDUqpVEpRFCmKIj/96U/z5ptv5tBDD62zc5o1a5Zrr702xxxzTIqiyLXXXps5c+bU2XwAAAAAAAAAAAAAAAAAAACApdEoiyLuu+++JElRFGnWrFl+//vf54orrkirVq3q5byrr746a6yxRqZNm5a//e1v9XIGAAAAAAAAAAAAAAAAAAAAwJdplEURQ4YMSZKUSqWcfvrpOfbYY+v1vFVWWSVHHHFEiqLIY489Vq9nAQAAAAAAAAAAAAAAAAAAACxOoyyKeP3115MkX/nKV3LRRRc1yJnbbrttkuTFF19skPMAAAAAAAAAAAAAAAAAAAAAPq9RFkVMnDgxpVIpRx55ZJo1a9YgZ3bs2DFJMm7cuAY5DwAAAAAAAAAAAAAAAAAAAODzGmVRxKxZs5IkW265ZYOd+eGHHyZJpk2b1mBnAgAAAAAAAAAAAAAAAAAAAMyvURZFrLrqqkmSzp07N9iZTz/9dJKkoqJRfmQAAAAAAAAAAAAAAAAAAABAE9AoWw/WXHPNJMnEiRMb5Lxp06bltttuS5K0b9++Qc4EAAAAAAAAAAAAAAAAAAAA+LxGWRTRu3fvJMkTTzzRIOf9+Mc/zpQpU1IqlbLhhhs2yJkAAAAAAAAAAAAAAAAAAAAAn9coiyJ23XXXFEWRAQMGZOLEifV61plnnplbb7215vl2221Xr+cBAAAAAAAAAAAAAAAAAAAALE6jLIo44IADssoqq2TmzJk5/vjj6+WM999/P/vuu2+uuOKKlEqlmtf322+/ejkPAAAAAAAAAAAAAAAAAAAA4Ms0yqKIVq1a5Uc/+lGKosj999+fQw45JNOmTauT2R988EHOPffc9OzZMw8++GCKokiSlEql9O7dO1/72tfq5BwAAAAAAAAAAAAAAAAAAACApdUoiyKS5Mwzz0z79u2TJPfcc0822mijXHXVVZk6depSz5o+fXruueeefOc738m6666byy67LJ988kmKokipVKopi7j00kvr8hYAAAAAAAAAAAAAAAAAAAAAlkpluQMsqw4dOuT666/PIYccklKplA8++CCnnnpqzjrrrGy//fbZdttt07Nnz3Tp0iVt2rRJy5Yt8+mnn2b69On5+OOP8/bbb+e1117LiBEj8tJLL+Wzzz5LkppSiFKpVPO8VCrlmGOOSb9+/cp2vwAAAAAAAAAAAAAAAAAAAACNtigiSb75zW/mvPPOy0UXXZRSqZSiKDJnzpw8+eSTefLJJ5d4TnU5RPLfgoj5bb/99unfv3+dZAYAAAAAAAAAAAAAAAAAAABYVo26KCJJLrzwwjRr1iwXXnhhTcnD/MUPS2JR5RDVc/r27Zv77rsvLVq0qHVWAAAAAAAAAAAAAAAAAAAAgNqoKHeAunD++efnb3/7W1ZfffUURZFSqbRU1+cVRZGKioqcccYZefTRR9O6desy3BUAAAAAAAAAAAAAAAAAAADAgppEUUSS7LXXXhk5cmROPfXUtGzZMkVRLPWMoihSFEW+9rWvZejQobnsssvSrFmzekgLAAAAAAAAAAAAAAAAAAAAsPSaTFFEkrRp0yaXX355xo0bl4suuijdu3evKX+ovqp9/vVSqZR99tknDz30UP7xj39kiy22KN+NAAAAAAAAAAAAAAAAAAAAACxCZbkD1IcOHTrk3HPPzbnnnpsRI0Zk0KBBefnllzNy5MhMnTo1c+bMyWqrrZYOHTpkgw02yA477JAdd9wxHTt2LHd0AAAAAAAAAAAAAAAAAAAAgMVqkkUR8+vVq1d69epV7hgAAAAAAAAAAAAAAAAAAAAAtVZR7gAAAAAAAAAAAAAAAAAAAAAALBlFEUvh2GOPzfvvv1/uGAAAAAAAAAAAAAAAAAAAAMAKSlHEEvr0009z880356OPPip3FAAAAAAAAAAAAAAAAAAAAGAFpShiCQ0fPrzcEQAAAAAAAAAAAAAAAAAAAIAVnKKIJXTZZZeVOwIAAAAAAAAAAAAAAAAAAACwgqssd4D6UBRFpk6dmtmzZ+ezzz5LURRLPeOzzz7LRx99lLfeeit//OMf8/DDD6dUKtVDWgAAAAAAAAAAAAAAAAAAAIAl0ySKIj788MPcfPPNefzxx/Pqq69mwoQJqaqqKncsAAAAAAAAAAAAAAAAAAAAgDrVqIsiZs+enQsvvDBXX311Zs2alSQpiqLOzymVSnU+EwAAAAAAAAAAAAAAAAAAAGBpNdqiiClTpmTPPffMiy++uEA5hFKHpVdVVZXp06dn9uzZmTNnTlq2bJlWrVpl5ZVX9nkCAAAAAAAAwArOXgEAAAAAAAAALF8abVHEYYcdlqFDhyZRDrGkJk+enKeffjrDhg3La6+9lpEjR+aDDz7I5MmTFyjbmF/r1q2zzjrrpGvXrunWrVt69+6dbbfdNhtttFEDpwcAAAAAAAAA6pO9AgAAAAAAAABoHBplUcQDDzyQxx9/fJEFEYtbTKiNxlxEMXLkyNxxxx3585//nFdffXWBny3JZ/XJJ5/k1VdfzYgRIxZ4vW3bttl7771z6KGHZvfdd0/z5s3rNDcAAAAAAAAAUP/sFQAAAAAAAABA49MoiyL+8Ic/LPRaURRp37599tlnn2y11Vbp0qVLWrdunZYtWy7TGVVVVZk9e3befffdXHfddRk2bFhtYzeoxx9/PL/+9a/z6KOPJln88saSlGAURbHQ+6dOnZoBAwZkwIABadeuXU444YT8v//3/9KxY8fahwcAAAAAAAAA6pW9AgAAAAAAAABovBplUcQ//vGPmkWEoihSKpVy9NFHp3///ll55ZXr/Lzvfve7+cY3vpHnnnuuzmfXtddffz2nnHJKHnvssSQLLnJ80fLGFy18LO591e/56KOPcskll+Q3v/lNTj755Jx//vn18u8AAAAAAAAAANSOvQIAAAAAAAAAaPwqyh1gWUyaNCnJf0sidtlll9x00031tkTQvHnznHnmmfUyuy5deeWV6d27dx577LGab+uoXsj4sm/4mP/3luU9RVHk008/za9+9av06tUrgwYNqstbAwAAAAAAAABqyV4BAAAAAAAAADQNjbIo4vOFEKeffnq9n7n11lvX+xnLatasWTnkkENy2mmnZdasWQsscsyvesmjLq7Pm3+xY8yYMdljjz1y7bXXNtRHAAAAAAAAAAAshr0CAAAAAAAAAGhaKssdYFn06NEjL7/8cs3zr371q/V+ZqdOnb70mzDKYcaMGdl7773z9NNP1yxyJFlo6WKNNdbIxhtvnO7du6dz587p1KlTVl999bRs2bLmatasWebNm5eqqqrMmjUrs2fPzvTp0/Pxxx9n6tSpmTRpUiZMmJBx48ZlzJgxmTBhwgJnzL9EMnfu3PzkJz/JjBkzctZZZzXMhwEAAAAAAAAALMBeAQAAAAAAAAA0PY2yKGLnnXfOsGHDap63bNmyQc4dPXp01lxzzQY5a0kURZHDDjssQ4YMWeCbN5Kkd+/e6devX/r27Zttt902bdu2rfPzP/nkkwwfPjzDhg3LM888k8ceeywfffRRktRk+dnPfpYePXrk4IMPrvPzAQAAAAAAAIDFs1cAAAAAAAAAAE1Tqfj8V0Q0Av/617+yxRZbJPnP4sCIESPSs2fP8oYqg1/96lc566yzapYnVl111Zxwwgk55phj0qNHjwbPM2/evAwaNCjXXnttBg4cmOQ/SyerrbZaXn/99XTq1KnWZ4wYMSKbbLJJzfNXX301vXr1qvVcAAAAAAAAAFiUxvx36hVtr6Ax/1sBAAAAAAAA0PiU8+/UFQ1ySh3bbLPNst9++9U8f/TRR8uYpjzef//9XHDBBTXLHEcffXTGjBmTSy65pCzLHEnSrFmz7Lrrrrn//vvz1FNPZd11102STJ06NWeccUZZMgEAAAAAAADAisheAQAAAAAAAAA0XY2yKCJJfvvb36Zdu3ZJkj/84Q8NcmZlZWVee+21Bjnry1x99dWZNWtWkuQ3v/lNbrrppprPY3mwww475Jlnnsn666+foigyYMCAvPPOO+WOBQAAAAAAAAArBHsFAAAAAAAAANB0NdqiiC5duuTuu+9Os2bN8q9//Su33XZbvZ738ccfp6qqql7PWBp33XVXSqVSvvWtb+UnP/lJueMs0hprrJG77rorzZo1y7x583LzzTeXOxIAAAAAAAAArBDsFQAAAAAAAABA09VoiyKSpF+/frn11ltTUVGRk08+uV6/WeLVV19NqVSqt/lLY8KECRkzZkyS5OSTTy5vmC+x+eab5/DDD09RFHnkkUfKHQcAAAAAAAAAmjx7BQAAAAAAAADQtDXqoogk+da3vpUBAwZkxowZ2W+//TJ9+vR6Oec3v/lNvcxdFu+9917N4y222KJ8QZbQAQcckCQZOXJkeYMAAAAAAAAAwArAXgEAAAAAAAAANG2V5Q5QFw455JB06tQpBx54YA444IDccMMNqaioXQfG3LlzM2PGjIwfPz5//OMfc88996RUKtVR4tqZP0dVVVUZkyyZ1VZbLUny8ccflzkJAAAAAAAAADR99goAAAAAAAAAoGlrEkURjz32WP70pz8lSZ588smst956ZU5Uv9Zaa62axy+88EL69u1bxjRf7o033kjy38UOAAAAAAAAAKD+2CsAAAAAAAAAgKatotwBamPMmDHZcccds8cee2TAgAGZNm1aiqKol2t5svrqq2f99ddPklx66aVlTvPFiqLIjTfemFKplE033bTccQAAAAAAAACgybNXAAAAAAAAAABNW6Mtihg5cmT69OmTZ599doFCh1KpVC/X8uZb3/pWiqLIE088kXPOOafccRbrZz/7WYYNG5Yk2X333cucBgAAAAAAAABWDPYKAAAAAAAAAKDpapRFEfPmzcthhx2W999/P0mW60KH+nLSSSelVatWSZJf/vKXOeSQQzJlypQyp/qvTz75JMcee2wuu+yyJMlKK62Uo48+uryhAAAAAAAAAGAFYa8AAAAAAAAAAJquRlkUceedd+bll1+uKYYoiqLmZ0VR1Pm1POrcuXMuuOCCmnz33HNPNtxww1xwwQWZNGlS2XK9++67ueiii7Leeuvl5ptvTlEUKZVKOeuss9KhQ4ey5QIAAAAAAACAFYm9AgAAAAAAAABouirLHWBZ3H777Qs8L5VKKYoizZo1yze+8Y3ssMMOWW+99dKuXbusvPLKNYUSS2PevHmZPXt2xo0bl/79+2f48OF1Fb/O/PSnP82gQYPy8MMPp1QqZfLkybnoootyySWXpE+fPtl3332z3XbbZfPNN8/KK69cLxnmzZuX4cOH55FHHsm9996bF198cYGCjVKplK9//es5++yz6+V8AAAAAAAAAGDR7BUAAAAAAAAAQNPUKIsiXnrppZryh+rFgd69e+eOO+7IeuutV+fnHX300dlll13y7LPP1vns2qioqMhdd92VPn36ZPjw4TWFGXPnzs2QIUMyZMiQmt/r3r171llnnXTp0mWBa4011kirVq3SqlWrrLzyyjX/TZJZs2bVXNOnT897772Xd999N+PHj8/bb7+dYcOGZfjw4ZkzZ06S//5bJP8t7+jZs2fuvffeVFY2yv/VAAAAAAAAAKDRslcAAAAAAAAAAE1To/wr+5QpUxZ43qNHjzz11FNZZZVV6uW8Fi1a5Pzzz8/uu+9eL/Nro3Xr1hk8eHAOPPDADB48eKECjeQ/384xcuTIjBo1qk7Pnv+MavOfv8022+SBBx5Ihw4d6vRcAAAAAAAAAGDJ2CsAAAAAAAAAgKanotwBlkX79u2T/GdpoFQq5cILL6y3kohqW221Vb3Or4127drl0UcfzYknnljzWqlUWugqiqJOr0WdU/36T37ykwwZMsQyBwAAAAAAAACUmb0CAAAAAAAAAGhaGmVRRM+ePRf41ol+/frV+5nt27df5DddLC+aN2+ea6+9NkOGDFno86m2qCWP2l7Vqpc8evfunb///e/5zW9+k+bNmzfkRwAAAAAAAAAALIa9AgAAAAAAAABoOhplUcQ+++yzwPO2bds2yLljxozJBhts0CBnLas+ffrk1VdfzYABA7LJJpss8C0di7I03/LxRe/fcccd8+CDD2bo0KHZeuut6+PWAAAAAAAAAIBaslcAAAAAAAAAAI1foyyKOOqoo9K6deua52PHjm2Qc7t27ZrKysoGOas2SqVSDjvssLzyyit56qmncvzxx6dDhw6LXNBYmm/4+PySx9prr50TTzwxzz//fJ566qnsscce5bplAAAAAAAAAGAJ2SsAAAAAAAAAgMZt+W89WIQOHTrklFNOyUUXXZQkGTx4cDbYYIMyp1o+7bjjjtlxxx3z29/+Ni+++GKee+65PPfcc3nllVfyzjvvZM6cOUs0p0WLFtlwww3Tq1evbL755tlzzz2z2Wab1SrbxIkTM2nSpKV6z6hRo2p1JgAAAAAAAADwX8vrXoGdAgAAAAAAAABYvFIx/9dANCJz587NdtttlxdffDG9e/fO0KFD6/3MHj165OGHH06PHj3q/ayGUBRF3nvvvYwfPz4ff/xxZs6cmZkzZ6YoirRu3Tpt2rRJmzZtstpqq6Vbt25p1qxZnZ5/wQUX5MILL6zVjFdffTW9evWqo0QAAAAAAAAAsKARI0Zkk002qXm+Iv2dupx7BXYKAAAAAAAAAFjelXOnoLJBTqkHlZWV+ctf/pLtttsuw4YNy3333Zf999+/3s6bNWtWRo8evcTflNEYlEqlrLXWWllrrbXKHQUAAAAAAAAAWM7YKwAAAAAAAACA5VNFuQPUxtprr51BgwZljTXWyCmnnJLp06fX21ljx45NqVSqt/kAAAAAAAAAAAAAAAAAAAAAX6ay3AFqa/3118+TTz6Zvn375vvf/37uuOOOejnnpptuqpe5K7ITTjghhxxyyFK9Z9SoUTnggAPqJxAAAAAAAAAAsFywUwAAAAAAAAAAi9foiyKSZIMNNsjgwYPTt2/fnHzyybnmmmtqPXPevHmZNm1aRo8enZtvvjnXXXddHSRlfp06dUqnTp3KHQMAAAAAAAAAWM7YKQAAAAAAAACAxWuURRHNmjVb7M/69++f/v371/mZRVGkVCrV+dzG4vOfealUyty5c8uUBgAAAAAAAABYntgrAAAAAAAAAICG0yiLItq1a5ePPvqo3DFWKEVRlDsCAAAAAAAAALCcslcAAAAAAAAAAA2notwBlsWxxx6b5D/fPtFQF/FZAAAAAAAAAACLZa8AAAAAAAAAABpGoyyK+NGPfpSKiv9G960UAAAAAAAAAAAAAAAAAAAAwIqgURZFrLvuutl9991rCiKqv42iKIp6uQDg/2PvzsO0Kuv/gb+fYRdQIdxQwR1zyRUtTVxyT80VM7fUXEpLc2kxLZcsNc1KzCW/qZmVa1pupeKuuaFmKOIGarIogoAIA8P5/cGPCWQGBmZ55pl5va7ruZjnLPf9OTPjmzOc288AAAAAAAAAAAAAAAAAAEBr0LHcBSyp448/Pvfcc0+SOQ0iPvOZz2SHHXbIGmuskd69e6dbt27p2rVrqqqq0qFDh8UauyiKVFdXZ+LEiRk5cmRuv/32TJw4sTkuAwAAAAAAAAAAAAAAAAAAAKDBKrZRxG677ZY11lgjb731Vrbccsvcf//96d69e7PMdcEFF2THHXfMSy+91CzjL66zzz4755xzTovPWxTFfB8vTgOOUqmUWbNmNUdZAAAAAAAAAMA8rCsAAAAAAAAAgLatqtwFLKlSqZRjjz02SbLffvs1W5OIJOnTp08uueSSZht/SRRF0aKvpqgBAAAAAAAAAGgZ1hUAAAAAAAAAQNtVsY0ikuSoo45Kly5dMnHixGafa/PNN291ixJKpVKLvRozPwAAAAAAAADQ8qwrAAAAAAAAAIC2qWO5C2iM3r1758ADD8yDDz7Y7HP17Nkzq6++ejp37tzscy3KaqutNt/7eRtYWEABAAAAAAAAAO2bdQUAAAAAAAAA0LZVdKOIJDnvvPPSpUuXFpnrjTfeaJF5FuXwww/P8ssvn6OOOipjx46tXcRRFMV8izuaW0vOBQAAAAAAAAA0jHUFAAAAAAAAANC2VXyjiL59+5a7hLLYbbfd8tJLL+Woo47K3/72t5RKpZRKpWy44YY56aSTmvQ3gBRFkSOPPHK+hSOlUim///3vm2wOAAAAAAAAAKDpWFcAAAAAAAAAAG1XqWijv75h5syZGT9+fD744IOsueaa6dGjR73Hvvnmm1l99dWbdBFES/rd736Xk08+OR9//HFKpVK23Xbb/OEPf8gqq6zSZHNUVVUtsKCjpqamycZvqOHDh2eDDTaoff+f//wn66+/fovXAQAAAAAAAED70BaeU7eXdQVt4WsFAAAAAAAAQOUo53PqqhaZpYW89957OeecczJo0KD07Nkz/fr1y6abbpp///vf9Z7zyiuvZMCAAenVq1f23nvv/P3vf8/s2bNbsOrGO/roozNs2LAMHDgwRVHk4YcfzkYbbZSbb7653KUBAAAAAAAAAGVmXQEAAAAAAAAAtC1tolHElClT8q1vfStrrrlmzj777Dz++OOprq5OURSLPPezn/1sRowYka9//ev5xz/+kb333jvrrLNObr/99uYvvAmtvfbaeeKJJ3LGGWekqqoqEydOzFe/+tUcccQR+fjjj8tdHgAAAAAAAABQRtYVAAAAAAAAAEDbUfGNIoYPH57NN988V155ZWbMmJGiKFIURUqlUoPHWHPNNfOrX/0qI0aMyE477ZQ333wz++23X/bcc89MmjSp+YpvYh06dMg555yThx9+OGussUaKosgf/vCHbLzxxnn66afLXR4AAAAAAAAAUEbWFQAAAAAAAABA21DRjSJeffXVbLPNNnn99ddrm0PMfS2J/v3759577833vve9FEWRu+++OwMHDszLL7/cxJU3r6222iovvPBCDj/88BRFkTfeeCNf/OIXc+6556YoinKXBwAAAAAAAACUkXUFAAAAAAAAAFDZKrZRxEcffZQ99tgjkyZNSpIlbg5Rl/PPP3++xRA77rhj3nzzzSYbvyX06NEj11xzTW6++eb07t07s2bNyllnnZVBgwZl9OjR5S4PAAAAAAAAACgj6woAAAAAAAAAoHJVbKOI8847L2+88cYCDSKKoqh9NcZvfvObLLfccimVShk7dmx22WWXTJ06tVFjlsN+++2Xl156KTvuuGOKosgTTzyRjTbaKDfccEO5SwMAAAAAAAAAysy6AgAAAAAAAACoPBXZKGLs2LEZMmTIfE0iiqJI165ds+WWW2afffbJIYcc0qg5evbsmaOOOipFUaRUKuXNN9/Mueee29jSy2KllVbKP//5z/zyl79Mly5dMnny5Bx22GE55JBDMmXKlHKXBwAAAAAAAACUkXUFAAAAAAAAAFBZKrJRxB133JHp06fXvu/UqVPOOuusTJgwIU8++WRuvfXW/OEPf2j0PHvssUftx0VR5Ne//nXGjBnT6HHL5aSTTsrTTz+dDTfcMEVR5M9//nM22mijPPHEE+UuDQAAAAAAAAAoM+sKAAAAAAAAAKAyVGSjiHvuuSfJnOYNXbt2zdChQ/PjH/84Xbt2bdJ51ltvvfnez5w5M7fddluTztHSNthggzzzzDP57ne/myQZNWpUtt122/z4xz/O7Nmzy1wdAAAAAAAAAFBO1hUAAAAAAAAAQOtXkY0iXn311SRJqVTKlVdema222qpZ5unRo8cC2+68885mmaslde7cORdffHH++c9/ZuWVV05NTU3OO++8bL311nnzzTfLXR4AAAAAAAAAUEbWFQAAAAAAAABA61aRjSLGjRuXUqmUzTffPIccckizzTN27Njaj0ulUoqiyBtvvNFs87W0L33pS3nppZdywAEHpCiKPP3009l4441z7bXXlrs0AAAAAAAAAKDMrCsAAAAAAAAAgNapIhtFTJ06NUly8MEHN+s8dTWFmLd5RFuw7LLL5sYbb8y1116bnj17ZurUqTnqqKMyePDgTJo0qdzlAQAAAAAAAABlZF0BAAAAAAAAALQ+FdkoomfPnkmS9ddfv1nnufXWWxfYVl1d3axzlsthhx2WF154IVtvvXWKositt96az33uc3nooYfKXRoAAAAAAAAAUGbWFQAAAAAAAABA61GRjSJWW221JMmsWbOabY6PP/44f/7zn1Mqlebb3qdPn2abs9xWW221PPLIIzn33HPTsWPHvPvuu9lxxx3z/e9/v9ylAQAAAAAAAABlZl0BAAAAAAAAALQOFdkoYtNNN02SjBw5stnmOO200zJhwoTa90VRpFQqZb311mu2OVuDUqmUH/3oR3n88cez9tprZ/bs2bnoootSKpVSFEW5ywMAAAAAAAAAysi6AgAAAAAAAAAov4psFLHLLrukKIrcdtttzTL+HXfckSuvvDKlUmmBfdtvv32zzNnabL755nnhhRdyzDHH1C7kqOvzAQAAAAAAAAC0P9YVAAAAAAAAAED5VGSjiD333DO9e/fOI488kvvvv79Jx/7b3/6Wr371q3XuK5VK+drXvtak87Vm3bp1yxVXXJG//e1v6dOnT4qi8Ns/AAAAAAAAAIAk1hUAAAAAAAAAQLlUZKOILl265JRTTklRFDn88MPz3nvvNXrM2bNn57zzzsvgwYMzY8aMJKldvFAURUqlUg444ID079+/0XNVmj322CPjxo3L7Nmza181NTXlLgsAAAAAAAAAaAWsKwAAAAAAAACAllWRjSKS5JRTTsmAAQMyZsyYbL311vn3v/+9xGPdd9992WKLLfLjH/841dXVKZVKSVL7Z5L07NkzF154YaPrBgAAAAAAAAAAAAAAAAAAAFhSFdsoonPnzrnxxhvTvXv3vP3229l8883zzW9+M8OGDVvkuZ988kkeffTRnHfeeVlrrbWy66675vnnn09RFLXNIYqiqP2zVCrld7/7XVZdddVmvSYAAAAAAAAAAAAAAAAAAACAhelY7gIa43Of+1xuu+22fOUrX8n06dNz1VVX5aqrrsryyy+fDTbYoPa4s88+O126dMlHH32U999/P6+//npqamqS/K8hRJL5mkSUSqXafb/4xS9ywAEHtOCVAQAAAAAAAAAAAAAAAAAAACyoohtFJMlOO+2Uhx9+OAcddFDefPPNJMm4ceMyfvz4JHOaPtx///21x8/bGCL5X3OIuftKpVJtk4gePXrk8ssvz8EHH9wCVwIAAAAAAAAAAAAAAAAAAACwcFXlLqApDBw4MC+88EIOO+yw+Ro/zG36kMxpAjFvI4h59817/NzjBg4cmGHDhmkSAQAAAAAAAAAAAAAAAAAAALQabaJRRJL06NEj1157bV599dUcf/zx6d69e23Th6IokmSBxhBJ5jumKIrsuOOOueeee/LUU09lrbXWaunLAAAAAAAAAAAAAAAAAAAAAKhXx3IX0NTWWmutXHrppfnFL36Rp59+Ok888USefPLJvPPOO5k4cWImTpyYadOmZemll07v3r3Tp0+fbLzxxtlmm22yzTbbZJVVVin3JQAAAAAAAAAAAAAAAAAAAADUqc01ipira9euGTRoUAYNGlTuUgAAAAAAAAAAAAAAAAAAAACaRFW5CwAAAAAAAAAAAAAAAAAAAACgYTSKAAAAAAAAAAAAAAAAAAAAAKgQZW8U8fbbb5e7hAYbO3Zsampqyl0GAAAAAAAAAAAAAAAAAAAA0E6VvVHE6quvXu4SGmznnXfOq6++Wu4yAAAAAAAAAAAAAAAAAAAAgHaq7I0iiqJIURTlLqNBampqyl0CAAAAAAAAAAAAAAAAAAAA0I6VvVFEkowfP77cJTTIhAkTyl0CAAAAAAAAAAAAAAAAAAAA0I61ikYRjz76aLlLWKQ33ngj77//frnLAAAAAAAAAAAAAAAAAAAAANqxVtEo4rzzzkt1dXW5y1ion/70p+UuAQAAAAAAAAAAAAAAAAAAAGjnWkWjiH//+9/ZYYcdcv/992fKlCnlLqfW9OnT869//StHHXVUrrvuunKXAwAAAAAAAAAAAAAAAAAAALRzHctdwFxPPvlkdtlllyRJz54906NHj3Tu3LkstVRXV2fatGn56KOPyjI/AAAAAAAAAAAAAAAAAAAAQF1aTaOIoihqP548eXImT55cxmoAAAAAAAAAAAAAAAAAAAAAWp9W0yiiVCqVu4SFmreRBQAAAAAAAAAAAAAAAAAAAEA5tJpGEfM2YmgtTSPm1tRa6gEAAAAAAAAAAAAAAAAAAADat6pyF1CXeZtGlFOpVNIkAgAAAAAAAAAAAAAAAAAAAGg1Opa7gLnmNmSY2ySitTSLSKJZBAAAAAAAAAAAAAAAAAAAANAqlL1RxDe+8Y1cf/31mTFjRkqlUkqlUoqiSFVVVXbffffsu+++Ld6oobq6OtOmTcuYMWPy/PPPZ+jQoampqWnRGgAAAAAAAAAAAAAAAAAAAAA+reyNIq666qqcd955+c1vfpMrrrgiEyZMqG0Wcdddd+WVV17JySefnCOOOCJdu3YtS40vvPBCdt1117z//vtlmR8AAAAAAAAAAAAAAAAAAAAgSarKXUCSLLfccjn33HPz9ttv59JLL80aa6yRoihSFEXefPPNnHDCCenXr1/OOeecTJgwocXr23jjjfOLX/yixecFAAAAAAAAAAAAAAAAAAAAmFeraBQxV7du3XL88cdn5MiRufnmm/OFL3yhtmHEBx98kLPPPjv9+vXL8ccfnzfeeKNFa9t///3TqVOnFp0TAAAAAAAAAAAAAAAAAAAAYF6tqlHEXKVSKfvtt18ef/zxPProo9lrr71SVVWVoijyySef5Iorrsi6666bAw44IP/6179apKZu3bqlb9++LTIXAAAAAAAAAAAAAAAAAAAAQF1aZaOIeW299da5/fbb88orr+SYY45Jt27dUhRFampqctttt2XrrbfOoEGD8ve//73Za+nevXuzzwEAAAAAAAAAAAAAAAAAAABQn1bfKGKutddeO1dccUVGjx6dH//4x1luueVSFEWKosjjjz+evffeO5/97Gdz9dVXp7q6ullq2HvvvdOrV69mGRsAAAAAAAAAAAAAAAAAAABgUSqmUcRcffr0yVlnnZXRo0fnt7/9bdZee+3ahhEjR47Msccem/79++dnP/tZJk6c2KRzn3vuuVlppZWadEwAAAAAAAAAAAAAAAAAAACAhqq4RhFzde3aNccdd1xGjBiRW2+9NVtttVVtw4jx48fnzDPPTL9+/XLiiSdm1KhR5S4XAAAAAAAAAAAAAAAAAAAAoNEqtlHEXKVSKfvss08ee+yxPPnkk9lnn31SKpVSFEU+/vjjDBkyJOuss04OOuigPPfcc+UuFwAAAAAAAAAAAAAAAAAAAGCJVXyjiHltueWWufXWWzNy5Mh885vfzFJLLZWiKDJr1qzcdNNN2WKLLbLDDjvknnvuKXepAAAAAAAAAAAAAAAAAAAAAIutTTWKmGuNNdbIZZddlrfffjtnn312ll9++RRFkaIo8vDDD2ePPfbIBhtskOuuuy6zZs0qd7kAAAAAAAAAAAAAAAAAAAAADdImG0XM1bt375x55pkZPXp0rrjiigwYMKC2YcQrr7ySI488Mv3798+FF16YyZMnl7tcAAAAAAAAAAAAAAAAAAAAgIVq040i5urSpUuOOeaYvPLKK7n99tuzzTbb1DaMGDt2bH74wx9m1VVXzSmnnJJ33nmn3OUCAAAAAAAAAAAAAAAAAAAA1KldNIqY11577ZWHH344Tz31VPbff/9UVVWlKIpMmTIlv/rVr7LWWmvl0EMPzYsvvljuUgEAAAAAAAAAAAAAAAAAAADm0+4aRcw1cODA3HTTTRk5cmROOOGEdO/ePUVRZObMmfnTn/6UTTfdNDvvvHPuu+++cpcKAAAAAAAAAAAAAAAAAAAAkKQdN4qYa7XVVssXv/jFrL766kmSUqmUoihSFEUeeOCB7Lrrrtl4441zww03pKampszVAgAAAAAAAAAAAAAAAAAAAO1Zu20UMWPGjFx++eVZZ511ctBBB2X48OG1+0ql0nwNI1566aUcdthhWWONNfLee++VsWoAAAAAAAAAAAAAAAAAAACgPetY7gJa2sSJEzNkyJAMGTIkH3zwQYqimG//3Pdzm0XMu61///7p0qVLyxYMAAAAAAAAAAAAAAAAAAAA8P+1m0YRb7/9di6++OL8/ve/z7Rp0+ZrCDFXURQLvK+qqso+++yT0047LVtuuWWL1w0AAAAAAAAAAAAAAAAAAAAwV5tvFPHvf/87F1xwQW6++ebU1NQstEHE3G1FUaRbt275+te/npNPPjlrrrlmWWoHAAAAAAAAAAAAAAAAAAAAmFebbRQxdOjQXHjhhbnvvvuSpMENIvr06ZPjjz8+xx9/fPr06dPyhQMAAAAAAAAAAAAAAAAAAADUo001iiiKIjfffHN+8YtfZNiwYbXbkvkbRMxVKpVq96+55po5+eSTc8QRR6Rr164tVzQAAAAAAAAAAAAAAAAAAABAA7WJRhHTp0/P73//+/zyl7/MW2+9lWThDSLm3b/FFlvktNNOy7777lvvsQAAAAAAAAAAAAAAAAAAAACtQUU3ivjwww8zZMiQXHbZZfnggw9qmz8k/2sQURTFfA0g5r7fY489ctppp2WbbbZp8boBAAAAAAAAAAAAAAAAAAAAlkRFNooYPXp0Lr744lxzzTWZNm1abYOIuhpCzNswonPnzjnkkENy6qmnZt111y1L7QAAAAAAAAAAAAAAAAAAAABLqqIaRbz44ou58MILc/PNN6empqbBDSKWXXbZHHfccfnOd76TFVdcsSy1AwAAAAAAAAAAAAAAAAAAADRWRTSKeOCBB3LhhRfm/vvvT5JFNoiYu79fv3456aSTcvTRR6d79+4tXzgAAAAAAAAAAAAAAAAAAABAE2q1jSKKoshNN92UX/ziF3n++edrtyXzN4iYa94GERtttFFOO+20HHjggenQoUPLFQ0AAAAAAAAAAAAAAAAAAADQjKrKXcCnTZ8+PZdddlnWWmutfO1rX8uwYcNSFEWKokipVKqzScTc/TvttFP++c9/5vnnn8/Xvva1Jm8ScdRRR2X06NFNOiYAAAAAAAAAAAAAAAAAAABAQ3UsdwFzffjhh7n00ktz2WWXZcKECSmKonbf3OYQc5tFzFUURTp27JgDDzwwp556ajbaaKNmrfHpp5/Oxx9/3KxzAAAAAAAAAAAAAAAAAAAAANSn7I0iRo0alYsvvjjXXHNNPvnkk9oGEZ9uCFEqleZrGNGzZ88cffTROemkk7LKKqu0SK1Tp05tkXkAAAAAAAAAAAAAAAAAAAAA6lL2RhFrr712Zs+e3eAGESuttFJOPPHEHHfccVl66aVbrM6PP/447733XovNBwAAAAAAAAAAAAAAAAAAAPBpZW8UUVNTM18ziGT+BhFzG0ist956OfXUU3PwwQenU6dOLV7nTTfdlFmzZrX4vAAAAAAAAAAAAAAAAAAAAABzlb1RxLzmNoWYt0HEdtttl9NOOy277bZb2er617/+lVNPPbVs8wMAAAAAAAAAAAAAAAAAAAAkrahRRFEUKZVKtR9XVVVlt912y8CBA/PMM8/kmWeeabFaqqurM23atIwZMyb//ve/M2LEiPnqAwAAAAAAAAAAAAAAAAAAACiHVtMoYl6lUilFUeTuu+/O3XffXdZaiqIo6/wAAAAAAAAAAAAAAAAAAAAAc7WaRhGlUilJ62zMMLdxBQAAAAAAAAAAAAAAAAAAAEA5tZpGEUVRZPnll8/OO++cAQMGpE+fPunSpUttA4mWVF1dnWnTpmXMmDF5/vnnM3To0NTU1LR4HQAAAAAAAAAAAAAAAAAAAADzajWNIr7xjW9kyJAh6dy5c7lLWcALL7yQXXbZJR988EG5SwEAAAAAAAAAAAAAAAAAAADasapyF5AkW265Za688spW2SQiSTbeeONceOGF5S4DAAAAAAAAAAAAAAAAAAAAaOdaRaOIb3/72ymVSuUuY6EGDx6cTp06lbsMAAAAAAAAAAAAAAAAAAAAoB1rFY0ittxyy3KXsEjdunVL3759y10GAAAAAAAAAAAAAAAAAAAA0I61ikYRK620UrlLaJDu3buXuwQAAAAAAAAAAAAAAAAAAACgHSt7o4jDDz883bp1K3cZDbL33nunV69e5S4DAAAAAAAAAAAAAAAAAAAAaKc6lruAa665ptwlNNi5555b7hIAAAAAAAAAAAAAAAAAAACAdqyq3AUAAAAAAAAAAAAAAAAAAAAA0DAaRQAAAAAAAAAAAAAAAAAAAABUCI0iAAAAAAAAAAAAAAAAAAAAACqERhEAAAAAAAAAAAAAAAAAAAAAFUKjCAAAAAAAAAAAAAAAAAAAAIAKoVEEAAAAAAAAAAAAAAAAAAAAQIXQKAIAAAAAAAAAAAAAAAAAAACgQmgUAQAAAAAAAAAAAAAAAAAAAFAhNIoAAAAAAAAAAAAAAAAAAAAAqBAaRQAAAAAAAAAAAAAAAAAAAABUCI0iAAAAAAAAAAAAAAAAAAAAACqERhEAAAAAAAAAAAAAAAAAAAAAFUKjCAAAAAAAAAAAAAAAAAAAAIAKoVEEAAAAAAAAAAAAAAAAAAAAQIXQKAIAAAAAAAAAAAAAAAAAAACgQmgUAQAAAAAAAAAAAAAAAAAAAFAhNIpYDB07dszLL79c7jIAAAAAAAAAAAAAAAAAAACAdqpiG0Wcc845LTrf1KlTM3v27BadEwAAAAAAAAAAAAAAAAAAAGBeFdso4uyzz86ECRNabL7//Oc/KZVKLTYfAAAAAAAAAAAAAAAAAAAAwKdVbKOIoihatFHEr371qxabCwAAAAAAAAAAAAAAAAAAAKAuFdsoIkmGDRvWIvP88Y9/zE033dQicwEAAAAAAAAAAAAAAAAAAADUp6IbRdx7773NPsedd96Zo446qtnnAQAAAAAAAAAAAAAAAAAAAFiUim4Ucdttt2XChAnNNv7111+f/fffP7NmzWq2OQAAAAAAAAAAAAAAAAAAAAAaqqIbRXz88cc57bTTmmXs008/PV//+tdTXV3dLOMDAAAAAAAAAAAAAAAAAAAALK6KbhSRJNddd11uvvnmJhtvypQp2WuvvXLBBRekKIqUSqUmGxsAAAAAAAAAAAAAAAAAAACgMSq+UURRFDniiCPyzDPPNHqsl19+OZtvvnnuuusuTSIAAAAAAAAAAAAAAAAAAACAVqfiG0WUSqVMmzYtu+++e1555ZUlHuemm27K5z//+bz++uu1TSKKomjCSgEAAAAAAAAAAAAAAAAAAAAap+IbRcxt5jBhwoTsvPPOGTVq1GKdX1NTk+9+97s56KCDMnXq1CRzmk/M/bMoCg0jAAAAAAAAAAAAAAAAAAAAgFahohtFbL/99nn44Yfzve99L0ny3nvvZccdd8zYsWMbdP7YsWOz/fbb5ze/+U2KoqhtEDFXURTZaKONcskll2TXXXdt8voBAAAAAAAAAAAAAAAAAAAAFkfHchfQGJdffnnWXnvtbLPNNll99dXzrW99K2+99VZ22mmnPPzww+ndu3e95z766KM58MADM27cuAWaRBRFkQ4dOuTss8/OD37wg1RVVWXw4MFZeeWVW+KyAAAAAAAAAAAAAAAAAAAAAOpUVe4CltRPfvKTrLXWWrXvjz322AwZMiRFUeTll1/ObrvtlqlTp9Z57i9/+cvsuOOOGTt2bJ1NIlZcccU88MADOf3001NVNedTtNJKK+Wss87K8ssv37wXBgAAAAAAAAAAAAAAAAAAAFCPim4UMW+DhyT55je/mQsvvDBFUeTZZ5/NXnvtlRkzZtTu//jjj3PggQfmtNNOy8yZM1MqlRZoErHddtvl+eefz6BBgxaY88c//nH69OnTfBcFAAAAAAAAAAAAAAAAAAAAsBAV2yiiPqeeemp++MMfpiiKPPzww9l///1TU1OTESNGZIsttsgtt9ySoigWaBCRJD/84Q9z//33Z4UVVihX+QAAAAAAAAAAAAAAAAAAAAD16ljuAprDeeedl48++ii//e1vc/fdd2ennXbKc889lylTpiTJAk0ievfunT/84Q/Zfffdy1UyAAAAAAAAAAAAAAAAAAAAwCJVlbuA5jJkyJAcfPDBKYoiDz/8cL1NIgYOHJhhw4Y1qElEx44d8/LLLzdbzQAAAAAAAAAAAAAAAAAAAAAL02YbRSTJtddem7322itFUaRUKi3QJOL444/PY489ln79+i1yrOnTp2f27NnNWS4AAAAAAAAAAAAAAAAAAADAQrXpRhEdOnTITTfdlB122CFFUSSZ0yCie/fu+ctf/pJLL700nTp1atBYb7311nyNJgAAAAAAAAAAAAAAAAAAAABaWptuFJEknTt3zh133JEtttgiRVFkgw02yDPPPJPBgwcv1jgXX3xxM1UIAAAAAAAAAAAAAAAAAAAA0DAdyzHpI4880uJz/uAHP8hFF12UM844I+PGjcu4ceMWevysWbMyefLkjB49Orfeemsee+yxlEqlFqoWAAAAAAAAAAAAAAAAAAAAYEFlaRSx3Xbbla3pwpe//OWyzAsAAAAAAAAAAAAAAAAAAADQWGVpFNGvX7+8/fbb5Zh6iZSrqQUAAAAAAAAAAAAAAAAAAADAvKrKMek3v/nNJHMaMFTCCwAAAAAAAAAAAAAAAAAAAKA1KEujiKOPPjpdu3atfV8URTnKAAAAAAAAAAAAAAAAAAAAAKgoZWkU0bt37xx44IG1DSJKpVKKomjVLwAAAAAAAAAAAAAAAAAAAIBy61iuib/97W/nuuuuS5IURZF99tkn++yzT/r375+ePXuma9eu6dSpUzp06JBSqdTi9VVXV+fDDz/Myy+/nOuuuy6PPPJIi9cAAAAAAAAAAAAAAAAAAAAAMK+yNYrYdNNNs+WWW+bpp5/OUUcdld/97nflKmWhttxyyxxxxBHZa6+9ctddd5W7HAAAAAAAAAAAAAAAAAAAAKAdqyrn5CeccEKKosiWW25ZzjIa5Dvf+U65SwAAAAAAAAAAAAAAAAAAAADaubI2ihg8eHBWWGGFDB8+vJxlNMgmm2xS7hIAAAAAAAAAAAAAAAAAAACAdq6sjSI6deqUb3zjG3nnnXfKWUaDfOYzn0lRFOUuAwAAAAAAAAAAAAAAAAAAAGjHOpa7gJ/85Cfp2LHsZSxgzJgxef/997P66qunZ8+eSZJRo0alb9++Za4MAAAAAAAAAAAAAAAAAAAAaK+qyl1Aa2wSkSRFUeSAAw7IJptskuHDhydJ+vXr12rrBQAAAAAAAAAAAAAAAAAAANq+sjeKaK369u2bBx54INXV1dlmm23y1FNPlbskAAAAAAAAAAAAAAAAAAAAoJ3TKGIhVllllVx33XWZNGlSdt9994wYMaLcJQEAAAAAAAAAAAAAAAAAAADtmEYRi7DpppsmSSZNmpT9998/M2fOLHNFAAAAAAAAAAAAAAAAAAAAQHvVsdwFNLWampp89NFHqa6uzsyZM1MURYPPLYoiNTU1qa6uzscff5zRo0fnqquuqt33yiuv5Iorrsi3v/3t5iofAAAAAAAAAAAAAAAAAAAAoF4V3yjik08+yRVXXJHbb789L7/8cj788MMmn6NUKqUoihRFkWuvvVajCAAAAAAAAAAAAAAAAAAAAKAsKrpRxLBhw7Lffvvl7bffTpIURdEs85RKpdpmEa+88kqzzAEAAAAAAAAAAAAAAAAAAACwKBXbKOLNN9/MjjvumEmTJtVuK5VKzT7vMsss0+xzAAAAAAAAAAAAAAAAAAAAANSlqtwFLKkTTzwxkyZNSqlUqn3VpyiKJZrj0+eVSqUceuihSzQWAAAAAAAAAAAAAAAAAAAAQGN1LHcBS+K1117L3XffvUBziIU1hFiSZhGlUqn2vO7du+fII4/Mz372s8UeBwAAAAAAAAAAAAAAAAAAAKApVGSjiDvuuCNFUdQ2iiiKIv37989uu+2Wz372s1l55ZXTvXv3dO3aNTfccEOuvvrq7Lvvvvn2t7/d4Dm+//3v55lnnsmxxx6bb3/721l77bXTqVOn5rokAAAAAAAAAAAAAAAAAAAAgEWqyEYRjz76aO3HvXr1yhVXXJH999+/zmNXWWWVXH311XnyySdz4403pkOHDg2a47rrrssmm2yS66+/PieeeKImEQAAAAAAAAAAAAAAAAAAAEDZVZW7gCXx6quvJkmqqqpy991319skIknWXHPNfPGLX8zYsWNzxx13NHiOAQMG5Ic//GGmTZuWwYMHZ8aMGY2uGwAAAAAAAAAAAAAAAAAAAKAxKrJRxLhx41IqlTJ48OBsscUWizz+G9/4RoqiyGWXXbZY85xyyilZYYUVMnz48Jx66qlLWi4AAAAAAAAAAAAAAAAAAABAk6jIRhEff/xxkmS33XZr0PGDBw9Or1698tBDD+U///lPg+dZaqmlctRRR6Uoivz2t7/N/fffv0T1AgAAAAAAAAAAAAAAAAAAADSFimwU0aVLlyTJyiuv3KDju3btmsMOOyxFUeSiiy5arLn233//JElRFDn22GNTXV29eMUCAAAAAAAAAAAAAAAAAAAANJGKbBSx7LLLJkk++eSTBp9z/PHHp1Qq5U9/+lNGjhzZ4PMGDBiQJCmVShk1alRuvfXWxaoVAAAAAAAAAAAAAAAAAAAAoKlUZKOIvn37JkmefvrpBp+z1lprZY899sisWbNywgknNPi8KVOmzPf+5ptvbvC5AAAAAAAAAAAAAAAAAAAAAE2pIhtFDBw4MEVR5IorrsiECRMafN73vve9JMkDDzyQIUOGNOicm266qfbjoijy4osvLl6xAAAAAAAAAAAAAAAAAAAAAE2kIhtFDBo0KEny/vvvZ5dddslbb73VoPO23nrrbLfddimKIieffHJuv/32hR4/YsSI/OQnP0mpVKrdNnbs2CWuGwAAAAAAAAAAAAAAAAAAAKAxKrJRxN57750+ffokSYYNG5Z11lknm2++eXbYYYd86Utfyle/+tVcffXVmT179gLnnnfeeUmSWbNm5YADDsjpp5+eyZMnL3DcX/7ylwwaNCgTJ06cb3vXrl2b4YoAAAAAAAAAAAAAAAAAAAAAFq1juQtYEp07d853v/vd/OhHP0qpVEpNTU2GDRuWUqlUe8zNN9+c5557Lpdffvl8537hC1/IoYcemuuvvz41NTW54IIL8pvf/CZf+MIXstJKK2XSpEl55plnMn78+BRFUTvm3I/XWWedFr1WAAAAAAAAAAAAAAAAAAAAgLmqyl3Akvre976XzTbbbIFmDvO+rr322tTU1Cxw7q9+9ausuOKKKZVKKYoi06ZNy9ChQ3PDDTfkrrvuyrhx4+Ybd1777LNPs18bAAAAAAAAAAAAAAAAAAAAQF0qtlFEhw4dcuedd2adddapbeow7ytJnY0ekqRXr1658cYb07Fjx9rj520wMe8Y81pxxRVz/PHHN+t1AQAAAAAAAAAAAAAAAAAAANSnYhtFJMkKK6yQxx57LHvttdd8jR6KokiSHHvssenQoUOd526zzTb54x//WLv/000m5lUURbp165bbbrst3bt3b74LAgAAAAAAAAAAAAAAAAAAAFiIjuUuoLH69OmT22+/PU888URuvPHGvPHGG1l66aWz++675+CDD17ouQcccECWW265HH744XnnnXdqt5dKpdpmE0my/vrr54YbbsjnPve5ZrsOAAAAAAAAAAAAAAAAAAAAgEWp+EYRc2211VbZaqutFvu87bbbLm+88UZuuumm3HHHHRk1alQ++uij9O7dO5/73Oeyxx575Mtf/nJKpVIzVA0AAAAAAAAAAAAAAAAAAADQcG2mUURjdOzYMV/72tfyta99rdylAAAAAAAAAAAAAAAAAAAAANSrqtwFAAAAAAAAAAAAAAAAAAAAANAwGkUAAAAAAAAAAAAAAAAAAAAAVAiNIgAAAAAAAAAAAAAAAAAAAAAqRMdyF9DURo8enQceeCCPPPJI/vvf/+aDDz7I73//+2yyySZ1Hj9hwoTst99+2WCDDbLjjjtmjz32SMeObe7TAgAAAAAAAAAAAAAAAAAAALQBbaYjwlNPPZWf/vSnufvuu2u3FUWRUqmUTz75pN7ziqLIoEGDcvXVV+fyyy/Pcsstl+OOOy6nnXZaunfv3hKlAwAAAAAAAAAAAAAAAAAAADRIVbkLaKyiKPL9738/W221Ve6+++4URVH7aog+ffrknHPOyZtvvpnzzjsv06ZNy7nnnpsBAwbk1ltvbebqAQAAAAAAAAAAAAAAAAAAABquohtFzJo1K7vvvnsuuuii2uYQpVKp9rU4unbtmh/84Ad59tlns9566+W9997L4MGDc/LJJ2f27NnNdAUAAAAAAAAAAAAAAAAAAAAADVfRjSKOPfbY/OMf/5ivQcTchhFLap111smDDz6YddZZJ0VR5Ne//nX2228/zSIAAAAAAAAAAAAAAAAAAACAsqvYRhE33XRTrrnmmtoGEXN9+v2S6NOnT66//vp06NAhRVHkb3/7W4455pjGlgwAAAAAAAAAAAAAAAAAAADQKBXZKGLWrFk544wzFtheFMV8r8YYOHBg9tprr9pxr7nmmvz1r39t1JgAAAAAAAAAAAAAAAAAAAAAjVGRjSL+8Y9/5PXXX0+pVEoyp5HDgAEDcu211+aVV17JRx99lJkzZzZ6noMPPjhJUiqVUhRFTjnllCYZFwAAAAAAAAAAAAAAAAAAAGBJVGSjiLvvvnu+98cff3xeeOGFHHbYYRkwYEB69uyZDh06NHqeLbfccr73o0ePzr333tvocQEAAAAAAAAAAAAAAAAAAACWREU2injyySdrPz7wwANz6aWXpnPnzk0+z/LLL7/Atr/+9a9NPg8AAAAAAAAAAAAAAAAAAABAQ1Rko4ixY8cmSfr06ZOrrrqq2eaZOnXqfO+Loshzzz3XbPMBAAAAAAAAAAAAAAAAAAAALExFNoqYMGFCSqVSDjvssPTo0aPZ5nnnnXdqPy6VSkmSMWPGNNt8AAAAAAAAAAAAAAAAAAAAAAtTkY0iOnfunCTZZpttmnWeBx98cIFtkyZNatY5AQAAAAAAAAAAAAAAAAAAAOpTkY0iVlxxxSTJ0ksv3azzXHfddQts69GjR7POCQAAAAAAAAAAAAAAAAAAAFCfimwUsd566yVJ3nvvvWab46abbsoLL7yQUqmUJCmKIkmyxhprNNucAAAAAAAAAAAAAAAAAAAAAAtTkY0itttuuxRFkaFDhzbL+OPHj88JJ5xQ2yRirlKplM9//vPNMicAAAAAAAAAAAAAAAAAAADAolRko4j9998/VVVVufHGGzN27NgmHfuDDz7ITjvtlA8++CBJUhTFfPv32WefJp0PAAAAAAAAAAAAAAAAAAAAoKEqslHEqquumn322Scff/xxjj322CYb9/XXX88OO+yQl156KaVSKUVRzPfnuuuumy996UtNNh8AAAAAAAAAAAAAAAAAAADA4qjIRhFJ8rOf/Sxdu3bNnXfemWOOOSazZ89e4rGKosgvf/nLbLzxxhk+fHi9x51//vlLPAcAAAAAAAAAAAAAAAAAAABAY1Vso4i11147559/foqiyP/93/9lm222yVNPPbVYY/z3v//NOeeck9VWWy2nnXZapk2blqIoUiqVFvjzsMMOy5577tlMVwMAAAAAAAAAAAAAAAAAAACwaB3LXUBjfOc738nLL7+cq666Kv/617+y1VZbZf31188ee+yR9ddfv/a4Z555JmPHjs1HH32U999/P88//3yefvrpjBo1KklSFEWSpFQq1b6f+3GSbLXVVrnyyitb7sIAAAAAAAAAAAAAAAAAAAAA6lDRjSKS5Iorrkj37t1zySWXJEmGDx+e4cOH1+4viiInn3zyAufNbQ6RZL6mEPO+L4oiO+20U2699dZ07ty5OcoHAAAAAAAAAAAAAAAAAAAAaLCqchfQFC6++OL8/e9/z3LLLVfbAKIoipRKpZRKpRRFscBr7r5PN4mYe26HDh3y85//PPfee2969OjR0pcEAAAAAAAAAAAAAAAAAAAAsIA20SgiSb785S9n+PDh+dGPfpQ+ffokSW3TiHmbQiysOURRFKmqqsqBBx6YZ555Jt///vfrPBYAAAAAAAAAAAAAAAAAAACgHDqWu4Cm1KdPn5x77rk544wzcsstt+SBBx7IE088kZEjRy70vB49euQLX/hCBg0alEMPPTT9+vVroYoBAAAAAAAAAAAAAAAAAAAAGq5NNYqYq0uXLjn44INz8MEHJ0k+/PDDvPvuu5k4cWImTpyYadOmZemll07v3r3Tp0+frLXWWqmqqipz1QAAAAAAAAAAAAAAAAAAAAAL1yYbRXxa796907t373KXAQAAAAAAAAAAAAAAAAAAANAoVeUuAAAAAAAAAAAAAAAAAAAAAICG0SgCAAAAAAAAAAAAAAAAAAAAoEJoFAEAAAAAAAAAAAAAAAAAAABQITqWu4BFee2113L//fdn2LBhGT9+fGbNmpUVVlghK620UrbZZptsv/326dKlS7nLBAAAAAAAAAAAAAAAAAAAAGh2rbZRxNNPP50zzzwz999/f73HnH/++enWrVuOPPLInHnmmVluueVasEIAAAAAAAAAAAAAAAAAAACAllVV7gLqcuaZZ+aLX/xi7r///hRFsdDXtGnTctlll2WttdbKn//853KXDgAAAAAAAAAAAAAAAAAAANBsOpa7gHnV1NTkiCOOyA033JCiKJIkpVJpkecVRZEpU6bkkEMOyVtvvZXTTz+9uUsFAAAAAAAAAAAAAAAAAAAAaHFV5S5gXieffHL++Mc/piiKlEqllEqlFEWx0FeS+Y4988wzc/3115f5SgAAAAAAAAAAAAAAAAAAAACaXqtpFHHrrbfm0ksvrW36kGSBRhB1vT7dMKIoinzrW9/KyJEjy3YtAAAAAAAAAAAAAAAAAAAAAM2hVTSK+OSTT3LSSSfVvp/b/OHTTSM+/UoyX8OIuaZNm5azzjqrJS8BAAAAAAAAAAAAAAAAAAAAoNl1LHcBSXLdddflv//9b23Dh3mbQyRJp06dsu6662aNNdZIjx49Mnny5IwbNy4vvPBCqqurk6T2nLlj3HLLLbnggguy6qqrlueiAAAAAAAAAAAAAAAAAAAAAJpYq2gUcdVVV9V+PG+TiG233Tbf+ta3sttuu6VHjx4LnPfJJ5/kH//4R84///w8/fTTtecmSU1NTW644Yb84Ac/aP4LAAAAAAAAAAAAAAAAAAAAAGgBVeUu4L333ssLL7wwX4OIlVZaKffcc08efPDBHHDAAXU2iUiSbt26Ze+9986//vWvXHrppenUqdN8+x977LFmrx8AAAAAAAAAAAAAAAAAAACgpXQsdwEPPfTQfO8HDBiQhx56KCussMJijXP88cdnzTXXzF577ZWampoURZEnn3yyCSsFAAAAAAAAAAAAAAAAAAAAKK+qchfw73//O0lSFEWWWmqp3HXXXYvdJGKuXXfdNb/4xS9SFEWSZNKkSZk0aVJTlQoAAAAAAAAAAAAAAAAAAABQVmVvFPHKK68kSUqlUr73ve9ljTXWaNR43/72t7PBBhvUvp84cWKjxgMAAAAAAAAAAAAAAAAAAABoLcreKGLMmDFJko4dO+aEE05o9HhVVVU5+uija99rFAEAAAAAAAAAAAAAAAAAAAC0FWVvFDFu3LiUSqVsvfXW6dWrV5OMufPOO9d+XFNT0yRjAgAAAAAAAAAAAAAAAAAAAJRb2RtFTJkyJUmy8cYbN9mYq6yySu3HPXr0aLJxP/e5z+Xll19usvEAAAAAAAAAAAAAAAAAAAAAFkfZG0XMmDEjSbLCCis02Zhdu3at/bgpxy2KosnGAgAAAAAAAAAAAAAAAAAAAFhcraZRRKlUarIxJ02alCRZaqml0rt37yYbd/LkyU02FgAAAAAAAAAAAAAAAAAAAMDiKnujiNmzZydJ3n///SYb87///W+SZJ111mmyMcePH187LgAAAAAAAAAAAAAAAAAAAEA5lL1RxFxvvPFGk401cuTIJMn666/fZGNeeumlKYqiycYDAAAAAAAAAAAAAAAAAAAAWFwdy13AXM8//3yTjTV8+PCUSqVsttlmjR5r+vTpufLKK/Pzn/+8CSoDAAAAAAAAAAAAAAAAAAAAWHKtplHE22+/nSOOOCKlUqnRYz3++ONJkjvvvDMvvvjiYp1bFEWqq6szderUvPPOO3nllVdSXV2doiiapDYAAAAAAAAAAAAAAAAAAACAJdVqGkUURZE//OEPTTre0KFDGz1GW/Thhx/mhRdeyMsvv5zXXnstY8eOzbhx4zJ58uTMmDEj1dXV6dKlS5Zaaql069Ytyy67bPr3759+/fpltdVWy2abbZbVV1+93JcBAAAAAAAAADQD6woAAAAAAAAAoHVrNY0iSqVSkzdmaIrxSqVSk41VTo8++mhuueWWDB06NK+88kqd11PXtrnX/2nLLbdcPv/5z2fPPffMvvvum169ejV5zQAAAAAAAABAy7CuAAAAAAAAAAAqR1W5C5irKIqUSqUmeyVpsnEq1cSJE3PBBRekf//+2W677TJkyJAMHz48s2fPTlEUC7zmmve66zquKIqMHz8+f//733PMMcdkxRVXzJ577pkHHnigHJcJAAAAAAAAACwB6woAAAAAAAAAoDK1mkYRTa3Smzw0xowZM3L++edn9dVXz+mnn5533nlnvkUbTdVkY+6YM2fOzN13352dd945W2yxRf7xj3+U8/IBAAAAAAAAgIWwrgAAAAAAAAAAKluraRQxdyFBfb9polyvSvPss89mo402yo9+9KNMnjw5RVHUuWCjKdS1uOPZZ5/N7rvvngMPPDBjx45tsrkAAAAAAAAAgMazrgAAAAAAAAAAKl/HchcwV1EU6dChQz772c9m1VVXTc+ePdOlS5dUVbVsL4uiKFJdXZ1p06Zl3LhxGT58eKZOndqiNSypSy+9NKeeempmzZpVu5CjPkvaBKO+MT/d6OOWW27JY489lttvvz0DBw5corkAAAAAAAAAgKZjXQEAAAAAAAAAtA2tplHE97///Zx++unp2bNnuUuZz6xZszJkyJCcdtppmT17drnLqdf3vve9XHzxxfP9po9kwYUbnTt3Tr9+/bLCCitk+eWXz3LLLZcuXbrUvjp06JCamprMnj0706dPz4wZMzJ16tRMnjw5kyZNyvvvv59x48blgw8+WKCGT887ZsyYbLfddrn99tuz0047Nf8nAQAAAAAAAACok3UFAAAAAAAAANB2tIpGEfvvv39+/vOfl7uMOnXs2DEnnXRS3n///Zx//vnlLqdOZ599di666KIkcxZVzF3E0aFDh2y22WbZfvvt8/nPfz6f/exns9Zaa6WqqqrRc86YMSOjRo3Ka6+9ln//+98ZNmxYHn/88YwbN662jiT55JNPcsABB+Txxx/P+uuv3+h5AQAAAAAAAIDFY10BAAAAAAAAALQtraJRxAknnFDuEhbpO9/5Ti644IJyl7GAu+66K+ecc07tQo6iKPL5z38+Rx11VPbff/8ss8wyzTJvly5dMmDAgAwYMCB77LFH7fZhw4bl1ltvzf/93/9l/PjxKZVKmTx5cgYPHpwXXnghnTp1apZ6AAAAAAAAAIAFWVcAAAAAAAAAAG1Pq2gUsfHGG5e7hEVaYYUVstJKK5W7jPl88sknOfbYY2t/08e6666bIUOGZIcddihbTZtuumk23XTT/PjHP85FF12Un/70p6murs6IESNywQUX5Iwzzqg9dvz48Xn//fcXa/yXX355vvevv/56k9QNAAAAAAAAAHX59HPpGTNmlKmSxVfJ6wqsKQAAAAAAAACgtSvnmoJSMXc1QJl06NAhNTU15SyhwTbccMPceOONWW+99cpdSpLk0ksvzYknnphSqZR99903f/zjH9OlS5dylzWfRx55JHvssUemTp2aZZZZJu+880569OiRJDnrrLNy9tlnl7lCAAAAAAAAAGi422+/PV/5ylfKXUaDVPK6AmsKAAAAAAAAAKg0LbmmoKpFZlmIfv36lbuEBlt55ZXTuXPncpdR6w9/+EOSZLPNNsuNN97Y6hZzJMmgQYPyu9/9LkkyefLkXH/99WWuCAAAAAAAAADaB+sKAAAAAAAAAKBtKnujiLfeeqvcJTTYvffem7XWWqvcZSRJpkyZkmHDhqVUKuWMM85IVVXZv5T1OvDAA7PtttsmSe66664yVwMAAAAAAAAAbZ91BQAAAAAAAADQdpWKoijKXQSL76WXXspGG22UUqmUCRMmZNllly13SQt17bXX5sgjj0zfvn3z7rvvJknGjx+f999/f7HGmTx5cp599tksvfTSWXbZZbPqqqu2yt94AgAAAAAAAEDbMGPGjLzzzju177fddttW/4w+qfx1BdYUAAAAAAAAANDalXNNQccWmYUmN2PGjNqPl1pqqTJW0jCrrbZakuSDDz6o3bb88stn+eWXX+yxvvCFLzRVWQAAAAAAAACwSJtuumm5S1hslb6uwJoCAAAAAAAAACpBudYUVJVlVhpt3sUQI0aMKGMlDfPee+8lSXr06FHmSgAAAAAAAACg7bOuAAAAAAAAAADaLo0iKlS/fv2y3HLLJUmuuOKKMlezaLfcckuSZM011yxzJQAAAAAAAADQ9llXAAAAAAAAAABtl0YRFWyPPfZIURS56qqr8ve//73c5dTr9ttvz+23355SqZTtt9++3OUAAAAAAAAAQLtgXQEAAAAAAAAAtE0aRVSwk046KaVSKbNnz87gwYNz2WWXlbukBVx//fX52te+Vvv+iCOOKGM1AAAAAAAAANB+WFcAAAAAAAAAAG2TRhEVbMMNN6xdIDFjxox85zvfyQ477JCHHnqovIUlefTRR7PLLrvk61//eqZPn55SqZSDDjooAwYMKHdpAAAAAAAAANAuWFcAAAAAAAAAAG1TqSiKotxFsOQmTZqUzTffPG+99VaKokipVEqSbLDBBtl3332z5557ZpNNNqnd3pyeeuqp/PWvf81f//rXvP7660lSW9NKK62U559/Psstt1yz1wEAAAAAAAAAzGFdAQAAAAAAAAC0PRpFtAGvvvpqttpqq0yaNCnJnEUUSWoXcXTr1i0bbrhhPve5z6V///5ZZZVV5nsttdRSDZ5r9uzZGTNmTN5999289dZbGTZsWJ577rk8//zz+eijjxaYvyiK9OzZMw888EA233zzJrxqAAAAAAAAAKAhrCsAAAAAAAAAgLZFo4g24tlnn81ee+2VcePG1W6b90u7sN/80b179yy11FJZaqml0q1bt9o/k2T69Om1r6lTp+b999/P7NmzFxijrrmKokjv3r1z1113Zcstt2z0NQIAAAAAAAAAS8a6AgAAAAAAAABoOzSKaEPefvvt7L333nnhhRcWWMCxuF/meRdlLM7x8843cODA3HTTTenfv/9izQ0AAAAAAAAAND3rCgAAAAAAAACgbagqdwE0nX79+uWZZ57JT3/603Tp0mWB38bRkNdcRVEs1vnznrfUUkvlggsuyOOPP24xBwAAAAAAAAC0EtYVAAAAAAAAAEDbUCoW91dCUBFGjx6dn//857nuuusyY8aMBX4zR/K/3+pR177FVRRFll566Rx33HE56aSTsuKKKzZ6TAAAAAAAAACgeVhXAAAAAAAAAACVS6OINm7MmDG56qqrcuONN2bEiBG12xu7iGPeb5v1118/hx56aI477rgsvfTSjRoXAAAAAAAAAGg51hUAAAAAAAAAQOXRKKIdefHFF3PvvffmiSeeyJNPPpkPPvhgicZZccUVs9FGG2W33XbLXnvtldVWW61pCwUAAAAAAAAAWpx1BQAAAAAAAABQGTSKaMfee++9vPXWWxk1alTefffdTJ48OdOmTcu0adNSFEV69OiRnj17pmfPnunVq1cGDBiQ9ddfP7169Sp36QAAAAAAAABAM7OuAAAAAAAAAABaJ40iAAAAAAAAAAAAAAAAAAAAACpEVbkLAKD1ee2113LSSSdl2WWXTalUKnc5i+WRRx7J4MGD06lTp2y33XblLgcoM3kGtCUyDWgLZBnQVsgzoJLJMACgKbinANoCWQa0JTINaCvkGdAWyDKg0skxqBwdy10AAK3D7Nmzc9ddd2XIkCG57777UhRFuUtqsI8//jh//OMfc9lll+Wll14qdzl56KGHsvzyy2e99dYrdynQLsmzpiPPoPxkGtAWyLLGq6mpyYQJEzJp0qRMmjQpnTp1yrLLLpsVVlghSy21VIPGqK6uztNPP52VV145q6++ejNXDG2TPGs8eQblI8MAgKbgnqLpeA4H5SPLmo4sg/KTaUBbIc8az3M4KD9Z1niyDMpLjkFl0igCoJ378MMP83//93+5/PLL89Zbb5W7nMXy2muv5be//W2uueaafPTRR+UuJ0ny/vvvZ9ddd80mm2ySJ598stzlQLsiz5qWPIPyas+Z9uyzz2b69OlNUkuHDh3SqVOndOrUKUsvvXR69eqVZZZZpuI620Klas9Z1ljTp0/PXXfdlaFDh+a5557Liy++WGc2VlVVZY011sgmm2ySXXfdNXvssUeWX375Osf829/+lgMOOCAnnnhifvWrXzXzFUDbIs+WnDyD8mvPGfbCCy9k6tSpja6jqqoqHTt2TKdOndK9e/f06NEjn/nMZ9KlS5dGjw0AlaI931M0B8/hoDxkWdOSZVBe7TnTrCmAtqU951ljeQ4HrYcsW3KyDFqH9pxj1hXQJhQATaR///5Fkga/1lxzzaKmpqYstc6ePbsYMGDAYtXbv3//stTaXMaMGVMceeSRRbdu3RZ57a3Nc889V+yyyy5FqVRaaN3bbrtti9d23nnn1c4/bNiwFp+fpiHPKos8ax7yrO2QaZVFpi3+9+zivrp27VoMGDCg2GeffYrzzjuveOaZZ4rZs2e3zCeJJSbLKossW3LDhg0rDj300KJnz55LlHFVVVXF7rvvXtx9993zZVt1dXWx6aabFkmKE088sVlqp2HkWWWRZ0tOnrVNMqyyyLCi2HPPPYs111yzWG655RY51pK8evbsWXz2s58tdt999+KUU04prrvuumLkyJEt80kCqGDuKSqLe4rm4Tlc5ZNllUWWNQ9Z1nbItMoi06wpoH7yrLLIsyXnOVzbJssqiyxbcrKs7ZJjlUWOWVdA21AVgCbyxhtvZNKkSXnxxRfzq1/9KiuvvPIij7/11ltbqLr5/e1vf8urr7660GO+8pWv5L777suECRMye/bsjBo1qmWKayGdOnXKyJEj8/3vfz9DhgzJ1ltvXe6SGqxjx47p0KFDLrnkklx++eVZd911y11SkqSmpiZXXHFF7fvLL7+8jNXQGPKsssizpifP2haZVllk2pzvwZkzZ2bChAl58MEHc9BBBzVpndOnT8+rr76av/71r/nRj36UgQMHZtVVV80ZZ5yR8ePHN+lcNB1ZVllk2eJ76aWXss8++2TTTTfN9ddfnylTptTuGzhwYM4999zcc889GTVqVD766KNUV1dn3Lhxefnll/PnP/853/rWt7Laaqtl9uzZufvuu7P77rtn3XXXzUUXXZQbb7wxu+++e4YNG9Yi18LCybPKIs8Wnzxr22RYZZFhc74PXn/99YwfPz5jx47Neeedl86dOzdZnVOmTMkrr7ySu+++OxdffHEOP/zwrLPOOllllVXyzW9+M48//niTzQXQlrinqCzuKZqe53BtgyyrLLKs6cmytkWmVRaZZk0B9ZNnlUWeLT7P4doHWVZZZNnik2VtnxyrLHLMugLaiHJ3qgDarg8//LDYbLPNFtoVaeDAgWWp7Ytf/OJC6zrppJPKUlc5TZ06tVhuueUqouvXp40YMaJFuxfW55Zbbplv/u7duxeTJk1q0RpoHvKsssizxpNnbZtMqywybY6f//zn9X5ffOYznylOOOGE4ve//33x7LPPFqNGjSo+/PDDYubMmcVHH31UvP3228Vzzz1XXH311cVxxx1XrLLKKvWO1bVr1+Kss84qZs6c2fSfEJqULKsssqx+M2fOLM4666yiY8eO841fVVVVHHroocWIESMaPFZNTU1x2223FVtsscVCvwd1y29d5FllkWf1k2ftkwyrLDJsjptvvrne74uOHTsWm2yySXH00UcXV155ZfH4448Xr776ajFhwoRi1qxZxZQpU4p33nmnePjhh4shQ4YUBx54YLHssssu9Htt8803L+6///6m/6QAtCHuKSqLe4rG8xyubZJllUWWNZ4sa9tkWmWRaXNYU0Bd5FllkWf18xyufZNllUWW1U+WtV9yrLLIsTmsK6DStP7/QoGKNmzYsIX+RZakGDp0aIvW9NRTTy20nk6dOhWTJ09u0Zpai0MOOaQib+aKoijWXHPNZvuhtKG22267BWr49a9/3aI10HzkWWWRZ40jz9o+mVZZZNqchwS9evVqkn/AmzVrVnHHHXcUm2yyyUL/wW3cuHGLXSctS5ZVFlm2oNGjR9f5EGydddYphg0btsTj1tTUFBdddFHRrVu3Oj/nHoK2PvKsssizBcmz9k2GVRYZNkd9i/2XZLzp06cXt9xySzFw4MCFft/ttttuxdixY5eoXoD2wD1FZXFP0Tiew7VdsqyyyLLGkWVtn0yrLDLNmgLqJ88qizxbkOdwFIUsqzSybEGyDDlWWeTYHNYVUEmqAtCMNtlkk6yyyioLPebCCy9soWrm+MUvfrHQ/euvv3569uzZQtW0Lquvvnq5S1hi/fr1K+v8//nPf/LQQw8tsP3yyy9v+WJoFvKsssizJSfP2geZVllkWtKxY8dsueWWTTJWhw4dstdee+Wpp57Kj3/845RKpQWOefbZZ7Pttttm3LhxTTInzUOWVRZZNr+XX345W2+9dZ577rn5tu+222559tlns8kmmyzx2FVVVTnllFMydOjQLLPMMo0tlRYgzyqLPJufPEOGVRYZNsdmm23WZGN16dIl++23X55++uncfPPN6du3b53H3XPPPdlkk03yyCOPNNncAG2Je4rK4p5iyXkO17bJssoiy5acLGsfZFplkWnWFFA/eVZZ5Nn8PIdjLllWWWTZ/GQZiRyrNHJsDusKqCQaRQDNbsCAAQvdf++99+all15qkVrefPPN/PWvf13oMauuumqL1NIaLbvssuUuYYktvfTSZZ1/yJAhdW4fMWJEHnzwwRauhuYizyqHPFty8qz9kGmVQ6bN0b9//yYbK0k6deqUs88+O5deemmd+0eMGJFDDz00RVE06bw0LVlWOWTZ/7zwwgvZZptt8u677863fdCgQbntttua7AHT5z//+dx///1lv7+kYeRZ5ZBn/yPPmEuGVQ4ZNseiFiEtqf333z//+c9/suuuu9a5f8yYMfnSl76UO++8s1nmB6h07ikqh3uKJec5XNsnyyqHLFtysqz9kGmVQ6bNYU0B9ZFnlUOe/Y/ncHyaLKscsux/ZBnzkmOVQ47NYV0BlUSjCKDZ9enTp/bjujrrJi3X+euSSy5JTU3NQmvp0aNHi9TSGnXt2rXcJSyxzp07l23ujz76KH/84x/r3f/b3/62BauhOcmzyiHPlow8a19kWuWQaXM01z/iH3/88TnxxBPr3Hfffffld7/7XbPMS9OQZZVDls0xbty47LXXXvnwww/n2963b9/cfvvtTf552nzzzXPZZZc16Zg0D3lWOeTZHPKMecmwyiHD5ujevXuTjfVpvXr1yl133ZWjjz66zv2zZs3KAQcc4H+eAqiDe4rK4Z5iyXgO1z7Issohy5aMLGtfZFrlkGlzWFNAfeRZ5ZBnc3gOR11kWeWQZXPIMj5NjlUOOTaHdQVUEo0igGbXpUuX2o932223Oo/5y1/+knfeeadZ6/jwww9zzTXXJJnzF/+OO+5Y53HlfJhWbp06dSp3CUusnF+3a665Jh9//HG9+2+//faMGTOmBSuiucizyiHPlow8a19kWuWQaXN069atycb6tJ/+9KdZeeWV69z3s5/9LDNnzmy2uWkcWVY5ZFkyc+bM7LvvvnV+P1511VXp1atXk8zzaYcccki++tWvNsvYNB15VjnkmTxjQTKscsiwOZp7YUtVVVWuvPLKHHnkkXXunz59evbee++MHj26WesAqDTuKSqHe4ol4zlc+yDLKocsWzKyrH2RaZVDps1hTQH1kWeVQ555Dkf9ZFnlkGWyjLrJscohx+awroBKolEE0Ozm7a517LHH1tm1d9asWfnlL3/ZrHVcfvnltQ+qDjrooPTt27dZ56tEHTt2LHcJS6yqqjx/pRVFscjOg7NmzcpVV13VQhXRnORZ5ZBni0+etT8yrXLItDnq69rbFHr06JHDDz+8zn2jR4/Oo48+2mxz0ziyrHLIsjkdz5944okFtu+555758pe/3CRz1Ofiiy+e72EbrY88qxzyTJ6xIBlWOWTYHM358+W8c1xxxRXZdttt69w/efLkHHbYYZk9e3az1wJQKdxTVA73FIvPc7j2Q5ZVDlm2+GRZ+yPTKodMm8OaAuojzyqHPPMcjvrJssohy2QZdZNjlUOOzWFdAZVEowigRS299NI55phj6tx39dVXZ+LEic0y74wZM3LppZfWvj/11FObZZ5K1xI3Mc2lXA9B77333rz++utJknXXXTf77bdfncf97ne/S01NTUuWRjOTZ62bPFt88qx9k2mtm0xrGV/5ylfq3ffAAw+0YCUsKVnWurX3LHvjjTfy05/+tM59Z555ZqPHX5S+ffvm6KOPbvZ5aBryrHWTZ/KMhZNhrVt7z7CW1qlTp1x//fVZZpll6tz/yCOP5De/+U0LVwVQGdxTtG7uKRaf53Dtkyxr3WTZ4pNl7ZtMa91kWsuwpqBtkGetW3vPM8/haChZ1rrJMlnGosmx1q2951hLs66AplB53/lAxTvxxBPTqVOnBbZPnTo1v/3tb5tlzuuvvz7jxo1Lkuy2227ZYIMNmmUe2p8hQ4bUfnzCCSfkhBNOqPO4//73v7njjjtaqixaiDyjLZFnyDTau9VWW63efW+++WbLFUKjyDJaq5NPPjnTp09fYPt2222XgQMHtkgNP/zhDyu623d7I89oreQZDSHD4H9WXXXVehfDJcl5552XqVOntmBFAJXDPQVtiedw7Zcsoy2RZcg02jtrCtoOeUZr5Tkci0OW0VrJMhpKjsH/WFdAY2kUAbS4VVZZJQcddFCd+y699NI6fyhojKIo8stf/rL2/Wmnndak49N+vfHGG7n33nuTzOlod/jhh2e77bbLeuutV+fxzfXDCuUjz2gr5BmJTINevXrVu2/ChAktWAmNIctojYYPH56///3vde772te+1mJ19O3bNzvvvHOLzUfjyDNaI3lGQ8kwmN8xxxxT7/9I8MEHH8z3W2sA+B/3FLQVnsO1b7KMtkKWkcg0sKag7ZBntEaew7G4ZBmtkSxjccgxmJ91BTSGRhFAWZx66ql1bh83blyuu+66Jp3rrrvuyiuvvJIk2WyzzbL99ts36fi0X5dddllmz56dJDniiCPSo0ePJMm3vvWtOo8fOnRoRo4c2WL10TLkGW2BPGMumUZ79v7779e7r2fPni1YCY0ly2htLrroohRFscD2Tp06Zb/99mvRWg4++OAWnY/GkWe0NvKMxSHD4H86d+5c72/aTZJLLrkks2bNasGKACqHewraAs/hkGW0BbKMuWQa7Zk1BW2LPKO18RyOJSHLaG1kGYtLjsH/WFdAY2gUAZTFhhtumF133bXOfRdddFHtg6WmcNFFF9V+XN9NZHN58sknc9ppp2XbbbfNSiutlK5du6Zr165ZccUV88UvfjEnnXRS7r333tTU1DRbDSNHjszPfvaz7Lzzzll11VXTrVu3LLXUUll99dWz77775rrrrkt1dXWzzZ8kzz77bM4444xsv/32WWWVVdKtW7d069Yt/fv3z9Zbb50zzzwzTz31VLPW0NSmTZuWa665JklSKpXmuxk77LDDah+Izqsoilx++eUtViMtQ57JM3lGWyLTZFqlZ1pjDBs2rN59a665ZgtWQmPJMlnWmrJs0qRJ+dOf/lTnvs033zy9e/du0Xr23nvvbLjhhi06J0tOnskzeVY/edb6yTAZ1poyrDU4/PDD06lTpzr3vf/++xk6dGgLVwRQGdxTuKeo9HsKz+FIZJksk2W0LTJNplV6pjWGNQVtizyTZ60pzzyHY0nJMlkmy+onyyqDHJNjrSnHWgPrClhiBUAzO/zww4skRZLiwQcfrN3+wAMP1G7/9Ovmm29ukrmfffbZ2jFXW221YtasWXXWNe/r8MMPb9ScNTU1xZ/+9Kdi3XXXrff6Pv1aZZVViiFDhhQzZ85s5BX/z6uvvlrsueeeRalUWuT8a665ZnH//fcX11xzTZ37l9R9991XDBw4sMGfh+2337545plnlmiuur6e22677RLXvihXXnll7Ty77777AvuPO+64Oq9x2WWXLaZNm9ZsddG85Jk8k2fyrC2RaTKt0jLtJz/5SZ31NVVG1ve9l6S48847m2QOmp4sk2WtPctuuOGGemv67ne/u0T10DbJM3kmz6hkMkyGtfYM+7Tm/vmyPtttt129n5ujjjqqWecGqATuKdxTVNo9RUN4Dtf+yDJZJstkWVsi02RapWWaNQXUR57Js9aeZ57D0RCyTJbJMiqdHJNjrT3HPs26AiqJRhFAs6vvZq4oimLTTTet8y+uLbbYoknmPvDAA2vH/PWvf11vXU11Mzdq1Khi0KBB8403aNCg4je/+U1x3333FXfccUdxySWXFF/4whfqnHuTTTYpXn311UZedVFcdtllRefOnWvHLZVKxa677lpceeWVxT//+c/iz3/+c3HiiScWyyyzTO0xHTt2LHbZZZcmuZn75JNPiiOPPLL2/L59+xannnpqccsttxRDhw4t/vjHPxaHHHLIfDXOW8fll1++2HO29EPQDTfcsHaee+65Z4H9L730Ur03ZldffXWz1UXzkmfyTJ7Js7ZEpsm0Ssu05vwHt1GjRtV53cmcf3htyn90pWnJMlnW2rPsgAMOqPde6sYbb1zsWmi75Jk8k2dUMhkmw1p7hn1auRZ0nH/++fVmad++fZt1boBK4J7CPUWl3VM0hOdw7Y8sk2WyTJa1JTJNplVapllTQH3kmTxr7XnmORwNIctkmSyj0skxOdbac+zTrCugkmgUATS7hd3M/fnPf673L69PH7u43nrrraJDhw5FkqJXr17F1KlT662rKW7mnn322aJ3796146y00krFP//5z3qP/+c//1mstNJKC8y/7LLLFo899tgS1VAURXHKKafMN16/fv2Khx56qM5jp0yZUhx88MH1fg2W5GZu4sSJxRZbbFF7E/mDH/yg3u7wr7322nwPE+d9nXPOOYs1b0s+BH3ooYdq51h77bWL2bNn13ncNttsU+e1bbbZZs1SF81PntVNnskzKpNMq5tMa72Z1lz/4FZTU1PsuOOO9X6er7zyykaNT/OSZXWTZa0ny3r16lXvtb/44ouLVQdtmzyrmzyTZ1QGGVY3GdZ6MuzTyrWg4/7771/o12H8+PHNOj9Aa+eeom7uKVrvPcWieA7XPsmyuskyWUZlkml1k2mtN9OsKaA+8qxu8qz15JnncDSELKubLJNlVA45Vjc51npy7NOsK6CSaBQBNLuF3czNmjWr6N+/f51/ce22226Nmvc73/lO7Vinn376Qutq7M3ciy++OF8Hrc985jPFyJEjF3ne6NGji759+y5QQ48ePYphw4Ytdh1nnXXWfOOsvvrqxejRoxd53ne/+90muZmrrq4uPv/5z9eed8011yzynMmTJ893ztxXqVQq/va3vzV47pZ8CLr//vvXzvHpbnLz+stf/lLv5/Spp55qltpoXvKsfvJMnlF5ZFr9ZFrrzLTm+Ae3GTNmFIceemi9n+Nddtml3gVvtA6yrH6yrPxZNnr06IVe+6RJkxpcA22fPKufPJNntH4yrH4yrPwZVpdyLej44IMPFvp1WNgCIYD2wD1F/dxTtM57ikXxHK59kmX1k2WyjMoj0+on01pnpllTQH3kWf3kWfnzzHM4GkqW1U+WyTIqgxyrnxwrf47VxboCKolGEUCzW9jNXFEUxa9+9at6//J66aWXlmjODz/8sOjRo0eRpOjSpUsxZsyYhdbVmJu5jz76qFh77bXnG+OGG25o8PnDhg0rOnbsuEAdK6+8cjFx4sQGj3PnnXcWpVKp9vyOHTsWTz/9dIPOra6uLjbddNNG38yddtppteecfPLJDT5vxIgRRdeuXReY9zOf+UwxZcqUBo3RUg9B33333dqvV8+ePYvJkyfXe2x1dXWx4oorNtkPDZSfPFs4eSbPqCwybeFkWuvLtKb+B7dHHnlkoZ/fLbfcssHXSfnIsoWTZeXNsjvvvLPe61566aUbfA20D/Js4eSZPKN1k2ELJ8Pa/s+Xi6N79+71fh1+85vfNPv8AK2Ze4qFc0/R+u4pFsZzuPZLli2cLJNlVBaZtnAyrfVlmjUF1EeeLZw88xyOyiDLFk6WyTJaPzm2cHKs7f+MuTisK2BxVQWgzI466qj06tWrzn0XXnjhEo15xRVXZOrUqUmSQw89NCuuuOIS17co3/ve9/Laa6/Vvt9www1z0EEHNfj8TTbZJMcff/wC2//73//m5JNPbtAYU6ZMyXHHHZeiKOara+DAgQ06v1OnTjn77LMbVnA9hg4dmosuuihJ8pnPfCY/+clPGnzugAED8tWvfnWB7RMmTMjll1/eqLqa2uWXX55Zs2YlSQ4//PD07Nmz3mM7deqUo48+us59N954Yz788MNmqZHykWfyTJ7Rlsg0mVYpmfbf//43N998c5599tm88847mTx5cmbOnJmiKFJTU5Np06Zl7NixGTZsWG6++eb84Ac/yAYbbJBBgwZl2LBhdY551FFH5aGHHkqPHj1a+GpoarJMlpUzy0aOHFnvvuWXX75Z56btkWfyTJ5RyWSYDKuUny9bwsorr1zvvokTJ7ZgJQCVxz2Fe4pKuqfwHI76yDJZJstoS2SaTKuUTLOmgEWRZ/LMczjaAlkmy2QZlU6OybFK+RmzJVhXwOLSKAIoux49euSb3/xmnfv+8pe/5J133lms8aqrq3PppZcmSUqlUk455ZRG11ifl156KVdfffV8244++uiUSqXFGufss8+u8wega665Jg8++OAizz/99NPz7rvv1r7v3LlzTjrppMWqYffdd0///v0X65x5/eQnP6m9mfzqV7+apZdeerHO33LLLevcftllly1xTU2turo6v/vd75LM+d464YQTFnnOsccemw4dOiywffr06bnmmmuavEbKS57Js0Se0XbINJmWVEamvf766xk8eHAGDhyYfv36ZZlllknnzp1TVVWVjh07pnv37llppZWy2WabZfDgwbngggsyfPjwOscaNGhQHnvssVx99dXp2rVrC18JzUGWybKkfFm2sH+Q79atW7POTdsjz+RZIs+oXDJMhiWV8fNlS1jY/1j10UcftWAlAJXHPYV7iqQy7ik8h2NhZJksS2QZbYdMk2lJZWSaNQUsijyTZ4nncFQ+WSbLEllGZZNjciypjJ8xW4J1BSwujSKAVuHb3/52unTpssD2mTNn5pJLLlmssW644YaMGTMmSbLHHntk3XXXbZIa63L22WenpqZmvm1f+cpXFnucZZZZJsccc0yd+84///yFnvvaa6/lt7/97Xzb9ttvvyy33HKLVUNVVVW23XbbxTpnrmHDhuWxxx6rff/lL395scfo27dvndtHjx6d119/fYnqamo33XRTxo8fnyTZeeedM2DAgEWes/LKK2evvfaqc98VV1wxX6c22gZ5Js/kGW2JTJNp/4+9+45yqnj/OP5s79SFpSxFkN6r9C69CkiTpvBVxA4ICgqKCgooolRBOqIIKL1JRwREutJ777DAsnV+f+yPhZCb3fTkJu/XOTnHvZM78ySLn51bMtFDptmDn5+fDBw4UObMmSPVq1d3dTmwM7KMLHNVlqV1Qp6LoLAGeUaekWfQMzKMDPOW48v0pJWbd+/edWIlAKBPzCmYU+hhTsF1OKSHLCPLyDJ4EjKNTNNDptkD9xR4PvKMPOM6HDwBWUaWkWXQO3KMHPOWY8z0cF8BLMVCEQDcQo4cOaRr166abT/88IPcvn3b7L7GjBmT+t8DBgywtTSTzp49K7/99pvBtpw5c0revHmt6s/U61+zZo3J1YlFRMaNGyfJyckG26yZTImIlClTxqr9np5MlixZ0uI+wsLCTLZt3rzZ4v4c4dFqciIpByDm6tu3r+b248ePy5o1a2yuC+6FPCPPyDN4EjKNTNNDphUsWFDmz58v69atky1btqQ+Nm/eLKtWrZJFixbJd999J/369ZNatWppfqtHUlKSfPnll5I3b16pUqWKTJkyReLi4lzwauAIZBlZ5qosu3fvnsk2rQtaQHrIM/KMPIOekWFkmB6OL53h6d/lk/z9/Z1YCQDoE3MK5hR6mFNwHQ7pIcvIMrIMnoRMI9P0kGncUwBzkGfkGdfh4AnIMrKMLIPekWPkmB6OMZ2B+wpgKRaKAOA2+vXrJz4+Pkbb7927ZzRZMGXlypWpE5/nnntOatasadcanzRz5kyjFb9sWWGscOHCUrlyZc22X375RXP7nTt3ZMaMGUbbK1WqZFUNWbJksWq/P/74w+DnvHnzio+Pj0WPBg0amOz/woULVtVlT3///bfs3LlTRFIuHDRp0sTsfevXr29yZX1z/21DX8gz8swU8gx6RKaRaaa4Q6aJiERHR0uHDh2kfv36UqNGjdRHzZo1pVGjRtKmTRt54403ZPTo0bJp0ya5deuW/Pzzz1KvXj3N/nbs2CGvvvqqFClSxOjkLfSLLCPLTHFklgUEBJhs48YxWIs8I89MIc+gB2QYGWaKuxxfOkNsbKzJttDQUCdWAgD6xZyCOYUp7jCn4DoczEWWkWWmkGXQIzKNTDPFHTJNhHsKYD7yjDwzhetw0BOyjCwzhSyDXpBj5Jgp7nKM6QzcVwBLsVAEALdRtGhRadGihWbbuHHj5OHDh+n2MXr06NT/7t+/v91q0/L7778bbYuOjrapzzp16mhu37hxo+b2ZcuWGa2+Fx4eLoUKFbKpDktcunRJTp8+7dAxrl+/7tD+zfHkSvlvvPGG+Ppa9if09ddf19y+fPlyOXfunE21wf2QZ+SZKeQZ9IhMI9NMcYdMs0ZwcLC8+OKL8scff8j69eulYMGCms87c+aMtGnTRgYPHuzkCuEIZBlZZoojsyytE/IPHjxw2LjwbOQZeWYKeQY9IMPIMFP0enxpjbS+5SYqKsp5hQCAjjGnYE5hijvMKbgOB3ORZWSZKWQZ9IhMI9NMcYdMswb3FHgv8ow8M4XrcNATsowsM4Usg16QY+SYKXo9xrQG9xXAUv6uLgAAnjRgwABZsmSJ0fYrV67IzJkz5dVXXzW57z///CPr168XkZTVzF944QWH1Xnnzh35559/jLZHRETY1G+5cuU0t+/YsUMSExPF398wtrUmeZGRkZqrpznK9u3bjbZt2LDBqFZb5MiRw259WePatWvy888/i4hIWFiY9OzZ0+I+unfvLh9++KHcv3/fYHtSUpJMnjxZPvvsM7vUCvdBnpFnWsgz6BWZRqZpcXWm2UPdunVl79690rZtW1mzZo3mc7744guJjIyUd99918nVwd7IMrJMiyOzLK2+796967Bx4fnIM/JMC3kGvSDDyDAtnnB8aQ6lVJrfcpIvXz4nVgMA+sacgjmFFlfPKbgOB0uRZWSZFrIMekWmkWlaXJ1p9sA9Bd6HPCPPtHAdDnpDlpFlWsgy6Ak5Ro5p8YRjTHNwXwGswUIRANxKjRo1pEqVKvLXX38ZtY0ZM0Z69+5tcpXyJ1f8eu+99yxezdwSe/fuFaWU0fagoCCb+jU1mYuLi5Nr165Jzpw5DbZrTeYyZsxoUw2W0lrpvWTJkhIZGenUOhzphx9+kLi4OBER6datm1XvccaMGaVLly4yZcoUo7apU6fK0KFDJSAgwOZa4T7IM/LMHZFnsBaZRqZ5svDwcPn999+lVq1asmvXLs3n9O/fX2rVqiUVKlRwcnWwJ7KMLHO2vHnzmmy7ePGi5kUbwBzkGXnmbOQZ7IkMI8O82blz5yQ+Pt5ke9GiRZ1YDQDoG3MK5hTuiOtwsBRZRpa5I7IM1iLTyDRPxj0F3oU8I8+cjetwcASyjCxzNrIM9kaOkWPejPsKYA3HJR0AWGnAgAGa248dOyaLFy/WbDt79qwsWLBARFJWvbJmNXNLHDt2THN7bGysTf0WKlTI5Ipd169fN/j54cOHcvz4caPn2brymKVu3bpltO3OnTtOrcGRkpKSZNKkSak/T5w4UXx8fKx6aF0AFUlZ1W7RokXOeklwIvKMPHMn5BlsRaaRaZ4sODhYZs+ebfJiRHJysvTr18/JVcERyDKyzJlKlixpsi0xMVHOnDnjxGrgacgz8syZyDPYGxlGhnkrrW+TeSQ0NDTNvAUAGGNOwZzCnXAdDtYiy8gyd0KWwVZkGpnmybinwLuQZ+SZM3EdDo5ClpFlzkSWwRHIMXLMW3FfAazBQhEA3E7r1q3l2Wef1WwbNWqU5vaxY8dKYmKiiIi8/vrrEhIS4rD6RERu376tuf3evXs29evr62tyMnb37l2Dn69du6b5vAcPHthUg6W0JnOmatOj33//XXNlM3ubMGGCw8eA85Fn5Jk7Ic9gKzKNTPN0RYoUkZdeeslk+6ZNm+TIkSNOrAiOQJaRZc5UtGhRCQsLM9l+6NAhJ1YDT0OekWfORJ7B3sgwMsxbaX3jzSPVq1cXPz8/J1YDAPrHnII5hTvhOhysRZaRZe6ELIOtyDQyzdNxT4H3IM/IM2fiOhwchSwjy5yJLIMjkGPkmLfivgJYg4UiALgdX19fkyvr7tixQzZt2mSw7c6dOzJ16lQRSVm194033nB4jfHx8Zrbn55wWSNDhgya25+e5D29Cpg9a7CE1uRxz549Tq3Bkb777rvU/54yZYps2bLFpsfw4cM1x9m8eTMHwB6IPCPP3Al5BluRaWSaN3jllVfSbF+6dKmTKoGjkGVkmTP5+/tL7dq1TbZv3brVidXA05Bn5JkzkWewNzKMDPNWy5cvN9nWqlUrJ1YCAJ6BOQVzCnfCdThYiywjy9wJWQZbkWlkmjfgngLvQJ6RZ87EdTg4CllGljkTWQZHIMfIMW/FfQWwBgtFAHBL3bt3l2zZsmm2ffXVVwY/T548WWJiYkREpEePHib3s6fMmTNrbj916pTNfWfMmFFze9asWQ1+jo2N1XzezZs3ba7BElqTz507dzq1Bkc5dOiQbNy4UUREihUrJr1795YaNWrY9OjXr5/Jfz+smO+ZyDNj5JnzkWewFzLNGJnmWapWrSqhoaEm2//9918nVgNHIcuMkWWO07x5c5NtT1+sAixFnhkjzxyHPIO9kWHGyDDPdvjwYTl48KBmW0BAgLRt29bJFQGAZ2BOYYw5hfNxHQ62IsuMkWXOR5bBXsg0Y2SaZ+GeAu9BnhkjzxyH63BwFLLMGFnmOGQZHIEcM0aOeTbuK4C1WCgCgFsKCQkxuXrXypUrU//oJSQkyLhx40QkZbWw9957zyn1PT2xeuTo0aOSlJRkU99+fn5G2zJmzCi5c+c22GZqQnnz5k25fPmyTTVYIkuWLEbbtmzZ4rTxHen7779P/e++ffvapc+QkBDp0aOHZtvs2bPl3r17dhkH7oM8M0SeuQZ5Bnsh0wyRaZ7Hz89Pnn32WZPtzvwdwnHIMkNkmWO1b99e/P39Ndt27dolp0+fdm5B8CjkmSHyzLHIM9gbGWaIDPN8kydPNtnWtm1byZEjhxOrAQDPwZzCEHMK1+A6HGxFlhkiy1yDLIO9kGmGyDTPwz0F3oM8M0SeORbX4eAoZJkhssyxyDI4AjlmiBzzfNxXAGuxUAQAt9W3b1/NlXeVUjJq1CgREfnpp5/kwoULIiLSqlUrKVSokFNqK1y4sOb2uLg4OX78uE19379/32hb2bJljbaZmlCKiOzevdumGiwRGRlptO3EiROpq8zb6tixY5KYmGiXvixx584dmT17toiIRERESLdu3ezWd58+fcTHx8doe0xMjMyZM8du48B9kGePkWfkGfSPTHuMTHN+pjlDWFiYyTatE6/QJ7LsMbLMsVkWGRkp7du312xTSqXO05xNKeWScWF/5Nlj5Bl5Bv0hwx4jwzzz+PKRa9euydSpUzXbfH19ZdCgQU6uCAA8C3OKx5hTcB0O+kWWPUaWkWXQPzLtMTLNM8/5cE+B9yDPHiPPuA4H/SLLHiPLyDLoEzn2GDnmmceYj3BfAWzBQhEA3FbWrFmlZ8+emm0//fSTnDt3TkaPHp26bcCAAc4qTUqXLi0ZM2bUbFu/fr1NfWtN5ho1amS0LWvWrBISEqLZx+bNm22qwRJaE02RtFexssQrr7win376qV36ssT06dNTfxfdu3eXiIgIu/VdqFAhqV+/vmbbxIkT7TYO3Ad59hh5Rp5B/8i0x8g052eaM1y5csVkW65cuZxYCRyJLHuMLHN8lr3//vuaN8KKiEyaNEkePnzo8BqeNHv2bKlZs6YkJyc7dVw4Bnn2GHlGnkF/yLDHyDDPPL585JNPPjH5TbldunSRMmXKOLkiAPAszCkeY07BdTjoF1n2GFlGlkH/yLTHyDTPPOfDPQXegzx7jDzjOhz0iyx7jCwjy6BP5Nhj5JhnHmM+wn0FsAULRQBwa++9957mCrsJCQnSvn17OXDggIiIVK9eXapWreq0unx9faVmzZqabcuXL7e638TERLlx44bR9hYtWhht8/Pzk+eee06znzlz5khSUpLVdWjVZUr58uU1V2dbsGCB7Nixw6Zx9+7dK1u2bJGSJUva1I+llFIyYcIEERHx8fGRvn372n2MPn36aG7fv3+/bN261e7jwfXIsxTkGXkGz0CmpSDTnJtpznD//v3UVYW1VKlSxYnVwNHIshRkmeOzrGzZstKxY0fNtosXL8r48eMdXsMjBw8elNdee03q1Kkjvr6cGvYU5FkK8ow8gz6RYSnIMM87vnxk69atJj/8FBkZaXDTEgDAeswpUjCn4Doc9I0sS0GWkWXwDGRaCjLN8875cE+B9yHPUpBnXIeDvpFlKcgysgz6RY6lIMc87xjzEe4rgK34SwfArRUoUEBeeOEFzbYnJwr9+/d3VkmpevToobl9/fr1cvfuXav6PHHihCQkJBhse+6550xOZmrVqqW5/eLFi7JkyRKratASHx9vsi0gIEBzIp2UlCQvv/yyxMXFWT3uoEGDxM/PT2rXrm11H9ZYtWqVHDt2TERE6tevL0WLFrX7GC1btjS5ejQr5nsm8ow8I8/gScg0Ms0VmeYMy5cvN/neBAQESJMmTZxcERyJLCPLnJllX331lWTIkEGz7bPPPpMzZ844vIZbt25J27ZtJVeuXDJkyBCHjwfnIc/IM/IMekaGkWGeenwpInL58mXp3LmzyW8pmjx5smTPnt3JVQGAZ2JOwZyC63DwBGQZWUaWwZOQaWSap57z4Z4C70OekWdch4MnIMvIMrIMekeOkWOeeowpwn0FsA8WigDg9gYMGJBme+HChaVly5ZOquaxVq1aSe7cuY22x8bGypQpU6zq89ChQ0bbXn/9dZPPNzXRFRHp16+f3L9/36o6nhYbG5tme8+ePTW3//vvv9KjRw+rViD76aefZPXq1dK8eXOJioqyeH9bfP3116n/7YiV8kVE/P39TR4Q/Prrr3Lp0iWHjAvXIs/IM/IMnoRMI9OcnWmmToDZi1JKvvnmG5Pt7dq1kxw5cji0BjgfWUaWOSvLoqOjZdy4cZptt2/flk6dOqW54ratYmNjpUWLFnLixAmZOnWqBAcHO2wsuAZ5Rp6RZ9AzMowM87TjSxGRu3fvSsuWLeXcuXOa7YMHD07z9wsAsBxzCuYUXIeDJyDLyDKyDJ6ETCPTPO2cD/cUeC/yjDzjOhw8AVlGlpFl0DtyjBzztGNMEe4rgP2wUAQAh3tyxai0Vo8ypVKlSmmu+tSvXz/x9bU8zkzVYm6N/v7+MmjQIM22cePGWXXwsnz5coOfixYtKl26dDH5/DJlykj9+vU1206dOiX9+vWzuAYtt2/fTrP9xRdflOjoaM22+fPnS7du3YxWM0vLzp075dVXXxURkTfeeMOsfZRSZm1Lz759+2TdunUiIhIVFSXNmze3uA9zde3aVXN7fHy8fP/99w4bF9Yjz8xHnqUgz8gzd0ammY9MS+HKTBMRm1aTNcfEiRPlr7/+0mwLDg6Wzz//3KHjwzpkmfnIshSuzLLu3bvL//73P8227du3S+fOnR1yITQuLk46dOgg27Ztk5EjR3rsytp6R56ZjzxLQZ6RZ+6EDDMfGZbC048vr1+/Lg0aNJBdu3Zptvfu3VuGDx/u0BoAQI+YU5iPOUUKrsNxHc4dkWXmI8tSkGVkmTsj08xHpqXw9HM+3FOgX+SZ+cizFFyH4zqcOyLLzEeWpSDLyDJ3Q46ZjxxL4enHmNxXALtSAOBgrVq1UiKiREQtXrzYqj6WLVuW2seTj+zZs6vY2Fib63ry0apVK7P7SEpKUhUrVtTs59tvv7WontjYWBUZGWnQx5IlS9Ldb82aNZrjP3oMGTLErPFv3bqlqlWrptnHokWL0t3/+++/T7OOMmXKqH/++SfdfubMmaMiIiKUiKjmzZubVbtSSnXs2NFozKpVq5q9/yMtW7ZM3f9///ufxftbqkiRIprvV8aMGdWNGzccPj4sQ56ZhzxLQZ6RZ+6OTDMPmZbC1ZmmlFK9evXSfA21a9e2qr8n/fbbb8rf39/k+zR27Fibx4BjkGXmIctSuEOWxcfHq7p165p8La1bt1Z37tyxqm8td+7cSR2vU6dOdusX9keemYc8S0GekWfuhgwzDxmWwh0yrHfv3pqvwR7Hl7t27VL58uUz+T698847Kjk52eZxAMATMacwD3OKFK6eU3AdDqaQZeYhy1KQZWSZuyPTzEOmpXB1pinFPQUwjTwzD3mWwh3yjOtw0EKWmYcsS0GWkWXuiBwzDzmWwh1yjPsKoCcsFAHA4SpXrpz6h2rChAlW9ZGcnKyKFy9u9Ifv008/tUtdTz4qVapkUT979uxRQUFBRv1ERESoY8eOmd3P8OHDDfbv1auX2fu+8soraU6kunXrluZB1L59+1TJkiVN7l+nTh2VmJiY+vyrV68a9ZGcnKwaN26cZh1+fn6qcePGau7cueq///5T9+7dU/fv31eHDx9WU6ZMMfidhIeHq+PHj5v9HjRq1MhovGLFipm9v1JKbdmyxWD/WbNmWbS/NXr06GHy/erXr5/Dx4dlyDPzkGfkGXmmD2Saecg012faIw0aNNCs35YTbomJiWrEiBEqMDDQ5PvzyiuvWN0/HI8sMw9Z5j5ZppRS9+7dU/Xr1zf5WgoUKKC2bt1qdf+P/P3336pYsWJKRFTbtm1VfHy8zX3Cccgz85Bn5Bl55p7IMPOQYe6TYQ0bNtSs35bjy9u3b6t+/fopPz8/zb7Dw8PV3Llzre4fALwBcwrzMKdw/ZyC63BIC1lmHrKMLCPL9IFMMw+Z5vpMe4R7CmAKeWYe8sx98kwprsPBGFlmHrKMLCPL3Bc5Zh5yzH1yjPsKoCcsFAHAoeLj41VYWFjqH6zXXnvN6r5+/PFHgz9+oaGh6vr163ap68lHWFiYxQcG06ZN0+yrWLFi6tq1a+nuv2XLFhUSEpK6X7Vq1dT9+/fNHv/evXuqcOHCaU6kcubMqT7++GO1d+9edefOHXXz5k21efNm1atXr9SVjitVqmRy/4IFC6omTZqofPnyqaJFi2rWceXKFZUrV6406zD3sXDhQrNfv1JK5c+f36iPkJAQs3+XsbGxqmjRogb7z5s3z6IarPHWW2+ZfA/8/f3V7t27HV4DzEOekWfkWdrIM30h08g0vWTaI/fv309dGfbpR9WqVVVCQoJF/cXGxqpZs2ap8uXLp/l6+/Xrx4qsbowsI8v0lmVPio2NVZ06dUqzzpYtW6pdu3ZZ3PeZM2fUm2++mfred+nSxeKchHORZ+QZeaaNPNMHMowM01uG3b9/X2XIkEGzpueee07FxcVZ1N+///6rBg4cqDJmzGjytb7wwgvq5MmTFvULAN6GOQVzCr3MKbgOh7SQZWQZWZY2skxfyDQyTS+Z9gj3FMAU8ow801uePYnrcHiELCPLyDJtZJl+kGPkmN5yjPsKoDcsFAHAocaNG2fwRyt79uzq1q1bVvUVFxencubMmdrXG2+8YXVd3333XZoTienTp1vc55gxYzT7KlCggNqxY4fJ/ebPn28weahWrVqaK3SZcuLECZU7d26rJ0+DBw9W06dPT/M5wcHB6tVXX01zNbNDhw6pqKgomyZyI0eOtOi1b9iwwWRfkyZNSnf/xMRE9eKLLxrtW7duXYceKGpdeH36kTdvXiZ6boI8I8/IM9PIM/0h08g0PWTaI8nJyerVV19Ns7agoCBVtmxZ1bVrVzVixAg1ZcoU9csvv6jVq1er9evXq8WLF6sZM2aoIUOGqEaNGqV5ok1EVP78+dXKlSster1wPrKMLNNTlpkyZcoUkxebHj2KFCmiBg8erJYuXaouXLhgdLPZ/fv31a5du9T48eNVw4YNUy/YhISE2KVGOB55Rp6RZynIM30iw8gwPWVYUlJSut+iEhgYqCpUqKC6deumPv/8czV79my1atUqtWnTJrV27Vq1cOFCNXr0aPXyyy+rZ5991mQ/fn5+qnXr1mrLli0WvVYA8FbMKZhT6GFOwXU4pIcsI8vIMtPIMv0h08g0PWTaI9xTgLSQZ+SZnvLMFK7DgSwjy8iyFGSZfpFj5Jiecoz7CqBHLBQBwCEuX76sPv74Y+Xn52f0R6xkyZJqzZo1Vl1cGjFiROofQmsuDF25ckUNGzYs9YAgrT/YI0aMsHhVsV9//VVzxShfX1/VrFkzNWnSJLV27Vq1bNky9c0336iqVaumPsfHx0e99957Nq22d/bsWVW2bFmLJk7+/v5q7NixSillcjKXOXNm9eGHH6orV66YVceZM2dUxYoVLZ7E+fn5WTT5unnzpvrtt99Ujhw50v1dHjt2zGjFrpMnT6pJkyapMmXKmNy/WrVqaubMmero0aN2uSCanJysrl+/rtauXavq1atn1vuSIUMGNWTIELV7926LVoODfZBn5Bl5po080ycyjUzTQ6adO3dOnTp1Su3du1fNmjVLVatWzeKarXn4+/urOnXqqFmzZrGqtJsjy8gyPWSZJS5evKhefvll5evra9Zr8fX1VZkyZVJRUVEqNDRU8zmtWrVS//33n9U1wTnIM/KMPCPP9IwMI8P0kGGnTp1S//33n9qxY4eaNm2aqly5ssU1W/r6atSoob788kt15swZ83+xAODFmFMwp9DDnILrcEgPWUaWkWXayDJ9ItPIND1kGvcUwBzkGXmmhzyzBNfhvBNZRpaRZWSZ3pFj5Jgecoz7CuAJWCgCgN00bNhQlShRQuXOnVv5+Pik+4ctNDRUPfvss6pEiRJq/PjxZo1x69YtFR4ertq3b++wup58+Pj4qOjoaFW8eHHVsGFDs8a7ePGi6tmzpwoMDDR7jKZNm6o9e/aY/ZrS8vDhQ/XRRx+ZPBB6emK9bdu21H2fnszlyZNHff311yomJsbiOhISEtSoUaNUlixZzHofatSoof755x+z+7f0d/no0bNnT6WUUsOHD7d4X19fXzV37lyL34sn2WNSOGPGDJtqQPrIsxTkWQryTBt5ph9kWgoyLYW7Z5pSSuXLl88uGfN07oWEhKiMGTOqnDlzqlKlSqkGDRqo7t27q5EjR6rly5dbvToxnIMsS0GWpdBDllnj1KlT6oMPPlC5cuWyavwMGTKorl27qp07d9pUBxyLPEtBnqUgz8gzvSHDUpBhKfSQYWl9AMqah7+/v4qIiFDZsmVTRYsWVQ0aNFA9e/ZUo0aNUuvXr1e3b9+2+H0EAG/EnCIFc4oU7j6n4DocTCHLUpBlKcgybWSZfpBpKci0FO6eaUpxTwFMI89SkGcp9JBn1uA6nOcjy1KQZSnIMrJMj8ixFORYCj3kGPcVwBP4KKWUAIAdHD16VOLj463aN3v27JI9e3aznnv69GnJmDGjZM6c2eF1PSkwMFAKFy5s9vMvX74sCxculPXr18vBgwfl4sWLEhsbK2FhYRIZGSllypSR6tWrS/v27SVv3rw21/e0GzduyOzZs2XVqlWyf/9+uXbtmvj5+UmePHnkueeekxdffFGaN28uvr6+qfvMmDFDevbsKaVKlZL+/ftLp06dJCAgwKY6YmNjZeHChbJ8+XL5559/5Pz58xIfHy/ZsmWT3LlzS+3ataVNmzZSvXp1i/o9ePCgVfVkzpxZcufOLVevXpWrV69avH90dLRkypTJqrFFrK/bnjUgfeSZIfIsBXlmiDzTDzLNEJmWwl0zDTCFLDNElqXw5Cw7cOCA/PHHH7J//345cuSInD17VmJiYuT+/fsSEBAgGTNmlEyZMknhwoWlbNmyUrlyZWnQoIEEBQXZZXw4DnlmiDxLQZ6RZ3pBhhkiw1J4coYBAByDOYUh5hQp3HVOwXU4mEKWGSLLUpBlhsgy/SDTDJFpKdw104C0kGeGyLMUnpxnXIfzTGSZIbIsBVlGlukJOWaIHEvhyTkGuAMWigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAJ3/SfAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHfAQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6wUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOsFCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrBQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6wUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOsFCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrBQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6wUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOsFCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrBQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6wUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOsFCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrBQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6wUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOsFCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrBQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6wUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOsFCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrBQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6wUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOsFCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrh7+oCAMCT3Lx5U27cuCG3bt2SsLAwyZIli2TPnl38/PxcXRoAWI1sA+AJyDIAekV+AfBEZBsAT0GeAQCAjRs3Snh4uFSsWNHVpRi4fv26HDp0SE6cOCE3b96U+/fvi1JKevToIfnz53d1eQB0gHwD4AnIMgB6RX4B8ERkGwBPQJYBcEcsFAEANkhMTJQFCxbIkiVLZNOmTXLp0iWj54SFhUnVqlXl+eefl169ekmWLFnM7v/ixYty8uRJm+v08fERf39/8ff3l5CQEAkPD5eMGTNKxowZbe4bgOdxdLaJiFy9elWOHj1qr5LtolKlShIUFOTqMgDYCVkGQK84zgTgiZibAfAU5BkAAHhk5cqVMnToUNm1a5d0795dZsyY4dJ6kpKSZPPmzbJ48WJZt26d/Pfffwbt4eHh8swzz0ibNm2M9tu+fbvN4/v4+Iivr6/4+/tLUFCQhIWFSUREhGTNmpVFtACd8ZR8e2Tr1q3OKNNsefPmlbx587q6DMDjkWWORZYBjuMp+cWxJoAneUq2PcLcDPBOZJljkWWAbXyUUsrVRQCAHs2dO1c++ugjOXXqlNn7hIaGSt++fWX48OFm3VQ5Y8YM+eyzzyQ+Pl6uXLki8fHxtpRsJDAwUHLkyCH58uWTQoUKSalSpaRSpUpSsWJFu9z0OWPGDOnZs6dNfQQEBEhQUJAEBwdLtmzZJCoqSvLnzy+lSpWSihUrStWqVSUgIMDmWgGkcEa2idgnH+zt1KlTqasl5s+fX86cOWN1X76+vhIUFCRBQUESEREhUVFRkjNnTilWrJiULl1a6tSpI7lz57ZT5QCeRpblFxGyDNAjjjPTx3EmoD/MzfKLCHMzwBOQZ/lFhDwDAGDdunXy8ccfG3zgxZU3hd69e1emTJki3333nZw9ezZ1e2RkpDRr1kwaNWoklStXloIFC2ruHxMTI+XKlROllNy4cUPu3Llj1/p8fHwkS5YskjdvXilQoICUKFFCypUrJ9WqVZPs2bPbbQxbPJqfBAcHS8aMGSUqKkpy5colJUqUkDJlykidOnUkMjLSLrUC7szT8u0RWzPC3oYOHSrDhg0TEZFhw4bJJ598YlN/gYGBEhQUJCEhIZI9e3aJioqSggULSqlSpaRy5cpSsWJF8fX1tUPlgD6QZc5BlgH252n5xbEmx5qAiOdl2yPMzZibwbuQZc5BlgE2UgAAi8TGxqqePXsqEUl9BAcHq1dffVWtWLFCXbp0ScXFxalbt26pPXv2qNGjR6v8+fMbPL9MmTLq+PHjFo0bFxenli5dqooWLWrQlyMewcHBqmnTpmr69Onq3r17Nr9n8fHx6uTJk+r7779XOXLksGutGTJkUD169FD//POPzXUC3szZ2TZ9+nSHZ5mlj1OnThnVefv2bbVx40bVrl07u49XtmxZNWHCBHX//n07/zYB70WWkWWAXnGcaTmOMwH3x9yMuRngKcgz8gwAAKWU2rhxo6pVq5bm367u3bs7vZ7k5GQ1ffp0FRUVZVBLkSJF1Jw5c1RcXJxV/f7333+qa9euTpljlCpVSn300UcWn9My9X7cuHFDrVy5UtWrV8+udfr6+qrq1aurOXPmqPj4eJtrBdyNp+ebq4+nnn4MHTrUqMaHDx+qw4cPqy+++EJlyJDBruNFRkaqN998Ux09etROvyHAPZFlZBmgV56eX49wrGn84FgTnszTs83VczHmZoBzkGVkGaAnPkopJQAAsyQlJUnr1q1l2bJlqdsqV64sv/zyi+TLl8/kfgkJCfLOO+/IhAkTUrflzZtXtmzZInnz5rWohtu3b0vJkiXlwoULmu158+aVihUrSoUKFaRChQqSK1cuyZo1q0RGRkpycrLcu3dPzp07J0ePHpU///xT1q1bJ//++6/J8TJnziyDBg2SN998U0JCQiyqVcu5c+ekfPnycv36dc32kJAQKVWqlJQuXVpy5MghGTNmlJiYGDl27Jhs2bJFzp8/b7Lvrl27yujRo+22GizgLVyRbVrfjNimTRvp0qWLlCpVSqKioiQ0NFTzm5xNfativnz55PTp05rjJSYmyq1bt+TIkSOydu1a+eGHH+TSpUsGz3nymxG1DBo0SL788kuT7Xnz5pVy5cpJwYIFJVu2bKKUkitXrsjevXtl27ZtkpiYqLlf7ty5ZezYsdKuXTuTfQNIH1mWgiwD9IfjTI4zAU/E3CwFczNA/8izFOQZAMCb/fnnn/Lxxx/LH3/8YfI5zv72sMuXL8tLL71kUFNwcLAMHz5c3nnnHfH397d5jDfeeEPGjx+v2RYeHi7ly5dPPV9UuHBhyZo1q2TNmlVCQ0Pl/v37cu3aNTlx4oTs3r1bNm3aJBs2bJCEhATN/nx8fKRdu3by+eefS6FChWyuXSklXbp0kZ9++snkeAULFpRy5cpJvnz5JDIyUhITE+XixYuye/du2blzp5i6na5o0aIyceJEqVOnjs11Aq7mLfn29LcjPvvss/LWW29JtWrVJE+ePJIxY0YJDAzU/BZFU9+suGHDBs0cUErJ/fv35ezZs7J9+3aZOXOmbNmyxeA5T347opZ9+/ZJ5cqVJT4+XrM9Q4YMUqZMGSlZsqRky5ZNIiIi5Pbt23LkyBHZuHGjyfPkfn5+8uabb8rw4cMlPDzc5PiA3pBlZBmgV96SX0/jWJNjTXg2b8k25mYpmJvBU5FlZBmgS65YnQIA9Ortt982WEGqSpUqFn2j1dPfOlayZEmrVgEdMmSIyVWttL7ZKz379u1Tr7zyigoICDDZb+7cudWKFSss7lvLgAEDTI5z8uRJk/slJyerP/74Q1WvXt3k/tHR0Wr37t12qRPwFq7Itie/GTEoKEgtWrTI7PFMfativnz5zO7j1q1bqkWLFhbl5507d5Sfn5/m2N26dUtz3+vXr6thw4ap0NBQk/n15ptvqoSEBLNfAwBDZBlZBugVx5kcZwKeiLkZczPAU5Bn5BkAwHvt2LFDNWrUyOTfpycfzvz2sD/++ENlz57dYPwCBQqoAwcO2HWc48ePm3y9Wt/slZ4bN26osWPHqujoaJP9+vv7q379+tnlm1QPHTpkcpyPP/44zX3PnTun3nnnHeXv76+5v6+vrxoxYoTNNQKu4m359vTxSWxsrFX7PvnYsGGD2X1MmDBBBQYGWpSh7du3Nzl2cnKyyf0SExPVokWLVMmSJU3uX6JECXXixAmz6wfcFVlGlpFl0Ctvy6+ncazJsSY8k7dlG3Mz5mbwTGQZWUaWQc98BQBgln/++Ue+++671J9DQkLkp59+ktDQULP7GDdunGTOnDn154MHD8pXX31lcS0VKlSweJ+0lC5dWqZOnSqHDx+WRo0aaT7nwoUL0qxZM/noo48kOTnZpvGee+45k22mVhZ71FavXj3ZsmWLDB8+XPM558+flzp16sju3bttqhHwFu6QbTNmzJA2bdqY/Xx7yJQpk/z+++/StGlTs/fJkCGDFCtWTLMtrewSEcmaNasMHTpU9u3bJ4ULF9Z8znfffSc9evQwuWo0ANPIMrIM0Ct3yK9HOM7kOBOwF3fINuZmKZibAbYhz8gzAID3evjwoTRr1kyCgoJk1qxZsmvXLpkxY4ZkzZrVpXXNnDlTGjduLFevXk3dVrlyZdm1a5eULFnSrmMVLFhQMmbMaLf+smTJIm+//bacOHFChg8fLsHBwUbPSUxMlDFjxkitWrXk3LlzNo1XvHhxiYiI0GxLb34SHR0t33zzjfz5558SFRVl1J6cnCwffPCBfPjhhzbVCLiCN+dbkyZNZMaMGZr540h9+vSRWbNmWbSPtee7/fz8pE2bNrJ792557bXXNJ9z6NAhqVmzppw+fdqimgB3QpaRZWQZ9Mqb8+sRjjU51oTn8eZsY26WgrkZPAFZRpaRZdA7FooAADMNGTLE4IMrnTp1kvz581vUR3h4uHTv3t1g27hx4yQpKcmifqKjoy16vrkKFCggq1atkm+//VYCAgKM2pVS8tlnn0nXrl1t+hBPnjx5bClTfHx8ZMiQIfLJJ59otsfExEjjxo3l0qVLNo0DeANXZ1vz5s2lY8eOFo1nLz4+PjJt2jTJkiWL2fvYml/PPvusbNq0SXLlyqXZPnfuXBkyZIhNYwDeiCwjywC9cnV+PYnjTI4zAXtxdbYxNzPE3AywHnlGngEAvFdwcLCcOnVKfv/9d+natatUrFhRunfvbrCIlLONGDFCevToIQkJCanbqlatKn/88YdFf7Mt4YjzRYGBgTJkyBDZuXOnPPvss5rP+euvv6RKlSpy8uRJm8aytf5KlSrJ+vXrJTw8XLN9xIgR8sMPP9g0BuBs3ppvwcHBMmXKlHQ/vOcoHTp0kM6dO5v9fFuPrwIDA2XixInSs2dPzfaLFy9Ko0aN5P79+zaNA7gKWUaWiZBl0Cdvza+ncazJsSY8i7dmG3MzQ8zNoHdkGVkmQpZB31goAgDMcOvWLVm3bp3Btvr161vVV506dQx+vnr1qmzevNmiPsLCwqwa21xvvfWWLFu2TEJCQjTb582bJ6+//rrV/ZtaTdVSH330kVSpUkWz7fr169KrVy+7jAN4KnfItnfeeceq8ewlR44c8sorr5j9fHvkV44cOWTatGkm27/88kv566+/bB4H8BZkGVkG6JU75NeTOM5MwXEmYBt3yDbmZsaYmwGWI8/IMwAAtD6w0bJlS5fcMPnVV18ZfaNowYIFZcmSJSY/WGIPjjxfVKpUKdm5c6dUqlRJs/3ixYvSoEEDuXjxotVj2GN+Urx4cRk1apTJ9vfee09OnTpl8ziAM3ljvrVr185hiyWba/DgwWY/117nuydMmCD58uXTbDt69Ki8//77dhkHcAWyzDXIMsB23phfT+NYk2NNeB5vzDbmZsaYm0HvyDLXIMsA+2ChCAAww5YtWwxW4RIRyZo1q1V9aU0mjh07ZlEfwcHBVo1tiYYNG8rSpUs1v/FVRGTy5MkyduxYq/oOCgqyobLHfHx8ZMSIESbbV6xYIdu2bbPLWIAncnW2hYeHG90o7wpNmzY1+7n2yq/GjRtL7dq1NduSkpLko48+sss4gDcgy1KQZYD+uDq/nsZxZgqOMwHbuDrbmJsxNwPshTxLQZ4BAGAoLCxMsmfP7tQxJ0yYIAMHDjTYljlzZlm+fLlERkY6dGxHny/KnDmzrFu3TsqWLavZfurUKWnVqpUkJiZa1b+95ie9e/eWggULarbdu3dPvvjiC7uMA7iSp+dbixYt7NqfNYoXL27yBvSn2Su/goODZdiwYSbbJ0+eLGfOnLHLWIA7IMscjywDHMPT8+tpHGum4FgTns7Ts425mTbmZvA0ZJnjkWWAfbBQBACY4fz580bbrF1NVGv1rps3b1rUh7NWJKtfv76MHz/eZPsHH3wghw4dsrhfX1/7/fmpU6eOFCtWzGT7999/b7exAE/j6mwrW7as+Pn5WTWePVWoUMHsXLVnfqX1jdnr1q2TI0eO2G0swJORZSnIMkB/XJ1fT+M48zGOMwHruTrbmJsxNwPshTxLQZ4BAGAsS5YsThtr/fr18tZbbxltnzt3rhQpUsTh4zvjfFGGDBlkyZIlEhUVpdn+999/yyeffGJV3/aan/j5+cn//vc/k+2zZ8+WO3fu2GUswJU8Od8qVKhg9z6tYeqbrZ9mz+OrTp06SebMmTXbkpKSZNKkSXYbC3AHZJnjkWWAY3hyfj2NY80UHGvCG3hytjE3Y24G70GWOR5ZBtiOhSIAwAy3bt0y2rZr1y6r+oqJiTHaZupElDvo3bu3vPDCC5ptDx8+lK5du0pycrKTqzLUsmVLk21//PGHEysB9MWV2ZYtWzapW7euVWPZW0REhDRt2tRuKwyaq0mTJia/TVsk5aZ3AOkjy1KQZYD+cJzJcSbgiZibpWBuBugfeZaCPAMAwFhISIhTxjl37px07NhRkpKSDLZ37txZmjRp4pQanCVPnjwyZcoUk+0jRoyQv//+24kVGUvrXFFcXJxs3brVidUAjuGp+ValShXJkyeP3fu1Rr169SQ6OtqpYwYFBUnDhg1NtnN8BU9DljkeWQY4hqfmlytxrAm4nqdmG3Mz5mbwLmSZ45FlgO1YKAIAzJApUyajbfPnz5e4uDiL+zp27JjRtho1alhTltOMHz9ewsLCNNv27Nkjv/zyi5MrMlS5cmWTbdeuXZNz5845sRpAP1yZbc2aNZNPP/3U4nEcZdmyZZIzZ06njhkRESFFixY12f7PP/84sRpAv8iyx8gyQF84zuQ4E/BEzM0eY24G6Bt59hh5BgCAoeDgYKeM061bN7l27ZrBtixZssg333zjlPGdrWXLltK2bVvNtqSkJBkyZIiTKzJUtGhRyZAhg8l25ifwBJ6ab9u3b5fAwECH9G2pPn36SK9evZw+blrnu/fu3evyhZsBeyLLHI8sAxzDU/PL1TjWBFzLU7ONuRlzM3gXsszxyDLAdiwUAQBmKF68uNG2W7duyVdffWVxX5s2bTL4uWrVqlKoUCGra3OGHDlyyNtvv22y/dNPP3XpBKhAgQJptl+9etVJlQD64u3Z5g7Syi+yCzAPWeZ6ZBlgHW/PL44zAc/k7dnmDpibAfZBnrkeeQYAcFe+vo6/1WratGmyceNGo+2fffaZZM+e3eHju8rw4cNNvr+rV6+W7du3O7kiQ88884zJNuYn8ATkm+dK6/gqMTFRbt265cRqAMciyzwXWQZPR345DseagOuQbZ6LuRm8CVnmucgyeBIWigAAMzz33HOa33T6+eefy8GDB83u5+HDh0bfivrxxx/bXJ8zvPnmm+Lv76/Z9t9//8myZcucXNFj4eHhabYnJiY6qRJAX8g210srv8guwDxkmeuRZYB1yC+OMwFPRLa5HnMzwD7IM9cjzwAA7srPz8+h/d+4cUMGDBhgtD06OlpeeeUVh47tasWKFZOmTZuabB81apQTqzHG/ASejnzzXJzvhjchyzwXWQZPR345DseagOuQbZ6LuRm8CVnmucgyeBIWigAAM4SGhkq7du2MtsfFxUnTpk3lwoULZvXzzTduL/MxAAEAAElEQVTfyPXr11N/7tSpkzRu3NhudTpSjhw5pEWLFibb58+f78RqDN29ezfN9qioKCdVAugL2eZ6aeUX2QWYhyxzPbIMsA75xXEm4InINtdjbgbYB3nmeuQZAMBbjR49WvNbqt566y0JDAx0QUXO1bt3b5NtK1eulJiYGCdWY4j5CWAbb883V0orv3x9fSUyMtKJ1QD6Rpa5DlkG2Mbb84tjTcAzeXu2uRJzM8B+yDLXIcvgSVgoAgDM9MEHH2iuBHbu3DmpV6+eHD9+PM39//nnH/n0009Tfy5fvrxMnTrV7nU6UqtWrUy2LV26VB4+fOjEah67cuWKyTYfHx9OlAFpINtcK638ypkzpxMrAfSNLHMtsgywHvnFcSbgicg212JuBtgPeeZa5BkAwBvduHFDvv/+e6PtQUFB0rNnTxdU5HzPP/+8hISEaLY9fPhQfv/9dydX9BjzE8B65JtrpZVf2bNnd/g3YwKegixzLbIMsB75xbEm4InINtdibgbYB1nmWmQZPAkLRQCAmYoUKSIffvihZtvRo0elSpUqsmnTJs32CxcuSOvWrVM/4FKtWjVZt26dhIaGOqxeR0jrm87u3bsnW7ZscWI1j23bts1kW8WKFU2e3ANAtrnSgwcPZO/evSbba9as6bxiAJ0jy1yHLANsQ35xnAl4IrLNdZibAfZFnrkOeQYA8FYTJ06Ue/fuGW1v1qyZ13xzVUhIiNSuXdtk+8qVK51YzWPHjx+Xq1evmmxnfgKkjXxzrbTOd5NfgPnIMtciywDrkV8cawKeiGxzLeZmgH2QZa5FlsGTsFAEAFjg448/lvr162u23bhxQ55//nn58ccfDbZfv35dnn/+eTl37pyIiHTs2FHWrl0rmTNndni99hYVFSXR0dEm29O6cdORli1bZrKtadOmTqwE0CdvzzZXWbNmjcTHx2u2hYSESN26dZ1cEaBvZJlrkGWA7bw9vzjOBDyTt2ebqzA3A+yPPHMN8gwA4I2UUjJ9+nTNto4dO6b+d3JysmzYsEGGDBkitWrVkvz580toaKhkypRJSpQoIV27dpWlS5dKQkKCs0q3u4oVK5psc8dzRfnz55fixYs7sRpAX8g314qLi5O1a9eabOd8N2Aessy1yDLAeuTXYxxrAp6DbHMt5maAfZBlrkWWwdP4u7oAANATf39/WbRokdSuXVvzpFBCQoK88sorcvjwYRk5cqRcvXpVnn/+efnvv/8kKChIRo8eLW+88YbzC7ejsmXLyvnz5zXbXHGibNWqVbJv3z7NtuDgYHn55ZedXBGgP2Sba4wcOdJkW8+ePfmWasBCZJlrkGWA7cgvjjMBT0S2uQZzM8D+yDPXIM8AAN5o8+bNcvLkSaPtQUFB0rRpU4mJiZGpU6fK999/r/m82NhYuXPnjvz7778yZ84cKVKkiIwfP97kolfurGzZsibbjhw5Ig8fPpTg4GCn1RMfHy9ff/21yfbXX3/dabUAekS+udb06dNNfkt19uzZpV27dk6uCNAnssy1yDLAeuTXYxxrAp6DbHMt5maAfZBlrkWWwdP4uroAANCbDBkyyNq1a6VcuXImnzNq1Chp2bKl1KxZUw4ePCgVK1aU3bt3e8QNoXnz5jXZdvjwYSdWInLnzh158803Tba/+eabadYL4DFvzzZnGz9+vOzYsUOzLTw8XD7++GMnVwR4BrLMucgywH68Pb84zgQ8k7dnm7MxNwMchzxzLvIMAOCtFi9erLm9Vq1asnTpUilatKi89957cvLkSfHz85NcuXJJjhw5TPZ35MgRadCggS7/dqZ17iUpKUmOHTvmxGpEBg8eLOfOndNsy5MnT5rnkgCQb6509uxZGTJkiMn2oUOHSnh4uBMrAvSLLHMdsgywDfn1GMeagOcg21yHuRlgP2SZ65Bl8EQsFAEAVoiMjJT169dLlSpVTD5n+fLlcvz4caldu7b89ddfUqJECSdW6DjR0dEm227duuW0Oh48eCAdOnSQ48ePa7aXLVuWCS5gIW/ONmdatWqVvPfeeybbJ06cKFFRUU6sCPAsZJlzkGWA/XlzfnGcCXgub842Z2JuBjgeeeYc5BkAwJv98ccfmtu3bdsmnTp1ksuXL0v79u1lxYoVEhMTIxcuXJBLly7JzZs3ZcqUKZIvXz7N/YcPH667D5ekda5IxLnni6ZNmyajR4/WbAsICJCZM2c69RtnAT0i31zj+vXr0rp1a7lx44Zme+PGjeXVV191clWAfpFlrkGWAbYjvx7jWBPwHGSbazA3A+yLLHMNsgyeioUiAMBKmTJlkvXr10ubNm3SfN6mTZukb9++kpCQ4KTKHCsiIsJk2507d5xSw7Fjx6Ru3bqyevVqzfY8efLIsmXLWMELsIK3ZpszJCUlybfffistWrSQ+Ph4zed8+umn8tJLLzm5MsDzkGWOQ5YBjuWt+cVxJuDZvDXbnIG5GeBc5JnjkGcAAG939epVOXjwoGbbgwcPpGnTpnLgwAH55ZdfpEmTJhISEpLanjlzZundu7fs379fmjRpotnH999/L1OnTnVI7Y6Q1rkiEeecL3r48KF8+OGH0qtXL812Hx8f+eGHH6Ru3boOrwXQM/LNNXbv3i3VqlWTPXv2aLaXKVNGfvnlF/Hz83NyZYA+kWWuQZYBtiO/DHGsCXgGss01mJsB9kWWuQZZBk/GQhEAYIOQkBD59ddf5ZVXXknzeZMnT5a6devK1atXnVSZ4zw5wXza3bt3be5/6NChMnHiRFm/fr2cPn1aHjx4IImJiXL58mVZs2aN/O9//5OSJUvKzp07NfevX7++7Ny5U3Lnzm1zLYC38sZss9W2bdtk2LBhsmDBAtm3b59cv35dEhMT5d69e3L48GEZN26clC1bVt555x1JTEw02j80NFSmT58uH330kQuqBzwTWWY5sgxwD96YXxxnAp7PG7PNVszNAPdEnlmOPAMAIH379u3T3B4QECC///67LF++XIoXL55mHxkyZJDFixdL5cqVNdvfeustOXLkiM21OkNa54pEbD9ftGTJEvniiy/kt99+k0OHDsmtW7ckKSlJ7ty5I/v375cRI0ZIsWLFZMSIEZr7R0ZGyvLly6V79+421QF4A/LN/t5++22ZOnWqbNmyRc6dOycPHz6UhIQEuXDhgvz222/SsWNHqVSpkhw7dkxz/44dO8qWLVvS/aAkgMfIMvsjywDnIL8McawJeAayzf6YmwHOR5bZH1kGb+fv6gIAQO82bdoky5YtE39/f6lYsaL89ddfms/btm2bVK1aVVauXCmFCxd2cpX2k5ycbLLN39/2PyuzZs2SWbNmWbzfM888I/369ZM+ffqIry/rIAG28rZss9Xx48flk08+sXg/Pz8/adu2rXzyySdStGhRB1QGeDeyzDJkGeA+vC2/OM4EvIO3ZZutmJsB7os8swx5BgBA+g4fPqy5PV++fNKyZUuz+wkKCpLZs2dL6dKlJS4uzqAtNjZWPvvsM5k9e7ZNtTpDWueKRGw/X7Rnzx6T3xiWluDgYHnppZdk2LBhLCgKmIl8s79x48ZZtV/JkiXlgw8+kM6dO9u5IsDzkWX2R5YBzkF+GeJYE/AMZJv9MTcDnI8ssz+yDN6OO5wBwAajR4+W559/Xm7duiULFy6Ubdu2ycCBA00+/+TJk1K1alWTN47qQWxsrMm20NBQm/sfO3as9O/fXxo0aJDmCS8fHx8pUaKEvPrqq7Jo0SI5duyY9O3blw/vAHbgjdlmq3r16snXX38tXbp0kbJly6aZh5kyZZImTZrI559/LidOnJCff/6Zm90BByDLLEeWAe7BG/OL40zA83ljttmKuRngnsgzy5FnAACkz9Q3WOXPn9/ivgoXLiw9evTQbJs/f76cOXPG4j6dLa1zRSK2ny/q0KGDjBgxQtq3by8lSpSQwMBAk8/Nnj27tG7dWr7++ms5e/as/PDDD3xwB7AA+WZ/M2fOlLfeektq164tUVFRJp/n5+cn5cuXl7feekvWrl0rBw4c4IZ3wEpkmf2RZYBzkF+GONYEPAPZZn/MzQDnI8vsjyyDt7P9K/kAwAslJSXJG2+8IZMmTRIfHx+ZOXNm6qpdI0eOlOLFi0vv3r0lPj7eaN+bN29Ko0aNZNWqVVK1alVnl26z27dvm2xLazJlrlatWhlMbuPi4uTixYty69YtiYuLk4iICMmcObNkzZpVgoODbR4PwGPenG22ypMnj7z77rsG265fvy5XrlyRe/fuiZ+fn2TOnDn14ePj46JKAc9HllmPLANcy5vzi+NMwHN5c7bZirkZ4F7IM+uRZwAApO/GjRua2639kEj//v3lhx9+MPq21MTERFm8eLG88847VvXrLGmdKxKx/XxR0aJFZdCgQak/K6Xk6tWrcvXqVXnw4IEEBASkzk0yZcpk01iAtyPf7K9bt27SrVu31J8fPHggFy9elDt37khCQoJkyJAh9Xx3Wh9OBGA+ssz+yDLAOcgvQxxrAp6BbLM/5maA85Fl9keWwduxUAQAWCgpKUk6duwov/76q4iIvP3229KlSxeD53Tr1k3y5csnrVu31jyxdPfuXWnUqJFs27ZNSpUq5Yyy7ebcuXMm2/Lly2f38YKCguSZZ56RZ555xu59A3jM27PNESIjIyUyMtLVZQBehSyzP7IMcA5vzy+OMwHP5O3Z5gjMzQDXIM/sjzwDAMBQTEyM5vYcOXJY1d+zzz4rtWvXlg0bNhi1bdy40e1vCk3rXJGI/c8X+fj4SFRUlF0WLAVgiHxzvNDQUHn22WddXQbg0cgyxyPLAMcgvwxxrAl4BrLN8ZibAY5HljkeWQZv4+vqAgBAT5RS0r1799QbQgsUKCAjR47UfG7t2rVly5YtkitXLs32mJgYadGihdy6dcth9TrCiRMnTLYVLVrUiZUAsBeyDYAnIMsA6BX5xXEm4InINgCegjwDAADO8ODBA83tWbNmtbrPFi1aaG7fsWOH1X06S1rnijJnzsyHbAAdId8AeAKyDIBekV+GONYEPAPZBsATkGUA7I2FIgDAAl988YXMnTs39efPP/9cgoKCTD6/ZMmSsmXLFsmfP79m+5kzZ2TAgAH2LtOh9uzZY7KtcuXKTqwEgL2QbQA8AVkGQK/IL44zAU9EtgHwFOQZAABwhoCAAM3tGTJksLrPRo0aaW6/du2aJCcnW92vM/zzzz8m2ypVquTESgDYinwD4AnIMgB6RX4Z4lgT8AxkGwBPQJYBsDcWigAAM+3YsUM+/vjj1J9z584t7dq1S3e/AgUKyIYNGyRv3rya7dOmTZPdu3fbrU5HOnz4sNy+fVuzzcfHR2rVquXcggDYjGwD4AnIMgB6RX5xnAl4IrINgKcgzwAAgLOEhYVpbg8MDLS6z8KFC2vun5SUZPJcjLv466+/TLbVrl3biZUAsBX5BsATkGUA9Ir8MsSxJuAZyDYAnoAsA2BvLBQBAGZ68803DVbReuGFF8Tf39+sffPnzy9r1qyRyMhIzfbRo0fbpUZHW758ucm2ChUqSO7cuZ1YDQB7INsAeAKyDIBekV8cZwKeiGwD4CnIMwAA4CxRUVGa2+Pi4qzu09/fX4oUKaLZFh8fb3W/jnbt2jXZtWuXyfZWrVo5sRoAtiLfAHgCsgyAXpFfj3GsCXgOsg2AJyDLANgbC0UAgBk2btxodIKofv36FvVRpEgRWbhwoeaNpIsXL5bY2FibanSGBQsWmGzr1KmTEysBYA9kGwBPQJYB0CvyKwXHmYBnIdsAeAryDAAAOFPBggU1t9+8edOmfk3dbJo1a1ab+nWkhQsXGizW9aRSpUpJiRIlnFwRAFuQbwA8AVkGQK/Ir8c41gQ8B9kGwBOQZQDsjYUiAMAMc+fONdpWsmRJi/upVauWDBs2zGh7XFyc/Pnnn9aU5jT79++XHTt2aLaFhIRIz549nVwRAFuRbQA8AVkGQK/IL44zAU9EtgHwFOQZAABwJlPzjFOnTtnUb0REhNG2DBkySEBAgE39OtKUKVNMtvXt29eJlQCwB/INgCcgywDoFfn1GMeagOcg2wB4ArIMgL2xUAQAmGHLli1G23LkyGFVXwMGDJB8+fIZbT9+/LhV/TnL559/brKtT58+kjlzZidWA8AeyDYAnoAsA6BX5BfHmYAnItsAeAryDAAAOFOVKlXE19f4Fq6DBw/a1G9YWJjRNmsWv3KWlStXyp49ezTbcufOLd26dXNyRQBsRb4B8ARkGQC9Ir9ScKwJeBayDYAnIMsA2BsLRQCAGc6fP2+0LTg42Kq+AgMDpUePHkbbb968aVV/zrBr1y5ZsGCBZlumTJlk8ODBTq4IgD14e7YB8AxkGQC98vb84jgT8Ezenm0APAd5BgAAnClDhgzy3HPPGW3fu3evxMfHW93vvXv3jLbVrFnT6v4cKSkpST744AOT7Z9++qmEhIQ4sSIA9kC+AfAEZBkAvSK/ONYEPBHZBsATkGUA7I2FIgDADEopo223b9+2ur9atWoZbcuUKZPV/TlSfHy8vPzyy5rvgYjImDFjJEuWLE6uCoA9eHO2AfAcZBkAvfLm/OI4E/Bc3pxtADwLeQYAAJytQ4cORtsePnwoW7dutbpPrflLvXr1rO7Pkb788kvZt2+fZlvt2rWlZ8+eTq4IgL14e74B8AxkGQC98vb84lgT8Ezenm0APANZBsCeWCgCAMyQI0cOo22XL1+2ur/cuXMbbcuZM6fV/TnSG2+8IQcPHtRsa9mypbz88stOrgiAvXhztgHwHGQZAL3y5vziOBPwXN6cbQA8C3kGAACcrXPnzprfYrps2TKr+zx8+LDBz/nz55cGDRpY3Z+jbNq0SYYNG6bZlilTJvnxxx/Fx8fHuUUBsBtvzjcAnoMsA6BX3pxfHGsCnsubsw2A5yDLANgTC0UAgBkqV65stG379u1W9/fw4UODn319faVatWpm75+cnGz12JYYMWKE/PDDD5ptxYsXl9mzZ1vVr6lvjU2vDYB9uVu26YGpjCK7ANchyyxHlgHuwd3yi+NMAPbgbtmmB8zNAPdEnlmOPAMAwDbZsmXT/CbTefPmSWJiosX9nT9/3mihqz59+oivr/m3ijnjfNHBgwflhRdekISEBKM2Pz8/mT9/vhQoUMCqvpmfAO7BHfPN3XG+G3A/ZJnlyDLAPbhjfnGsCcBW7pht7o65GeB+yDLLkWWAaZ7zfzoAOFCrVq2Mti1dutTq/o4cOWLwc/Xq1SV79uxm7x8XF2f12Ob69NNP5cMPP9RsK1CggKxYsUIyZMhgVd/x8fFWtQGwL3fLNnOZykBn5IepMcguwHXIMsuRZYB7cLf84jgTgD24W7aZi7kZgKeRZ5YjzwAA3kLrBk17fchl8ODBEhERYbDtypUrsmDBAov7WrhwocHPuXPnlj59+ljUh6PPF+3evVvq1q0rN2/eNGrz9fWVadOmSaNGjazun/kJYBlvyjdzpJWBjs4RzncD1iPLDJFlgH54U35xrAl4D2/KNnMwNwP0iSwzRJYB7omFIgDADO3atTNaOXTZsmVy7Ngxq/r75ZdfDH4eMGCARfvfunXLqnHNERMTIx07dpShQ4dqthcvXlw2b94s+fLls3qMBw8emGy7d++e1f0CsIy7ZZu57t+/b9F2ezKVX2QX4DpkmeXIMsA9uFt+cZwJwB7cLdvMxdwMwNPIM8uRZwAAb6H1baT2ugExV65cMnz4cKPtw4YN0xzXlKSkJJk8ebLBtrFjxxrdcJoeR54vmjlzptSsWVOuX79u1BYUFCTz5s2T7t272zQG8xPAMt6Ub+ZI6zjK0cdYnO8GrEeWGSLLAP3wpvziWBPwHt6UbeZgbgboE1lmiCwD3BMLRQCAGfz9/WXUqFEG25KTk6VXr16SlJRkUV9//fWXLFq0KPXnhg0bSosWLSzq48yZMxY93xxKKVm4cKEUL15cfv75Z83ndO3aVXbu3Cm5c+e2aawrV66YbDt37pxNfQMwn7tlm7kuXbqkuf3u3bsOP7g0lV9kF+A6ZJnlyDLAPbhbfnGcCcAe3C3bzMXcDMDTyDPLkWcAAG8RExNjtO3u3bt26/+tt96Sxo0bG2w7evSofPLJJ2b3MWrUKPnvv/9Sf37hhRekXbt2FtWRlJQk58+ft2gfcxw/flyaN28uPXr0kNjYWKP2ggULyp9//ikdOnSweSzmJ4BlvCXfzGXq+EpE5OLFiw4Z8xHOdwPWI8sMkWWAfnhLfnGsCXgXb8k2czE3A/SJLDNElgHuiYUiAMBML7zwgrz++usG2zZv3ix9+vSR5ORks/o4deqUtG3bVpRSIiLyzDPPyKxZsyyu5Y8//jDZdufOHYv6unPnjkybNk3KlSsn7dq10zwBV7BgQVm0aJHMmjVLwsLCLK73aXv27DHZtnv3bpv7B2A+d8o2c/3zzz8m2/bu3euwcRMSEuTQoUOabf/991+aKxQCcCyyzHxkGeBe3Cm/OM4EYC/ulG3mYm4GQAt5Zj7yDADgTbRudLxw4YLd+vfx8ZE5c+ZIoUKFDLaPHDlSFi9enO7+K1askKFDh6b+XLx4cZkxY4bFdWzfvl3zwzUiKTfGPprfmEMpJRs3bpSXXnpJihYtKsuXLzd6TlBQkLz//vuyZ88eKV++vMX1Pu3SpUsmbxrlXBGgzVvyzVyuOr4S4Xw3YAuyzBBZBuiHt+QXx5qAd/GWbDMXczNAn8gyQ2QZ4KYUAMBsCQkJqmvXrkpEDB5NmjRRJ0+eNLlfcnKyWrBggcqaNWvqPjlz5lRHjhyxuIa1a9eqgIAAoxqefOTPn1+1atVKDRw4UE2aNEktWbJErV+/Xm3YsEEtW7ZMTZkyRQ0YMEDVqFFDBQYGmuynaNGiavz48SouLs6Wt83AzZs31TPPPGNyzDx58qg7d+7YbTwA6XOHbDPXrl27lK+vr8kM6d69u8PG/uabb9LM3q+//tphYwNIH1lmHrIMcD/ukF8cZwKwN3fINnMxNwOQFvLMPOQZAMBbrFy5UvNvna+vr9q3b59dxzp79qzKly+fwThBQUFqxowZms9PTk5WEyZMUEFBQanPL1KkiLp06ZLFY9++fVuVLVs2zb/vGTJkULVr11avvfaaGjNmjPr555/V2rVr1aZNm9SqVavUvHnz1PDhw1W7du1UtmzZTPYTERGh+vbtm+bcyhpvv/12mvUvWrTIruMBeuct+Wauhw8fqkqVKpnMkKxZs6rr1687ZOxTp06pTJkymRy7YsWKdj2/DngSsswQWQboh7fkF8eagHfxlmwzF3MzQJ/IMkNkGeC+WCgCACyUnJysBg4caHTDZVBQkGrdurWaNGmSWr58uVq3bp36+eef1cCBA1WxYsUMnlu3bl11+fLldMe6efOm+u+//9S+ffvUsmXLVO/evZWfn1+aJ5lsfeTLl0+98cYbasOGDXZ935KSktS6detUyZIl062hVKlSat26dSoxMdGuNQAwzZnZZo179+6pH3/80eDmelOPbt262fWm+8uXL6sPP/ww3fz19fVVgwcPdth7ACB9ZJlpZBng3jjOtA7HmYB7Y25mGnMzQF/IM9PIMwCAN4iJiVGHDx9W48aNUxERESb/3mXPnl1NnTpVHT16VN2/f98uY1+4cEE999xzRmM999xzauzYsWr16tVqxYoVasyYMUYftmnWrJm6detWumMkJSWp//77T/37779qy5Yt6ssvv1S5c+d26Lmi0NBQ1apVK/Xjjz+qu3fv2uW9euTUqVOqd+/e6dYQHBysvv76a7PeI8BTeXq+WSM5OVnt2LFD1apVK90cKVq0qFq+fLmKj4+3y9hxcXFq4cKFKm/evOmOXatWLbVjxw6VnJxsl7EBPSPLjJFlgD54en5xrJn+ewR4Ik/PNmswNwP0hywzRpYB7s9HKaUEAGCxffv2ycCBA2X16tVm71OsWDEZOHCgvPTSS+Ln55fu88eOHSvvvvuuLWUa8PX1laCgIAkJCZGIiAjJnTu3REdHS8GCBaV8+fJSoUIFeeaZZ+w23u+//y6DBw+WhIQEuXTpksTExFi0f3h4uOTKlUsCAgLk9ddfl9dff91utQHQ5oxsM9eQIUPkt99+k/v378vFixclPj7eov2zZcsmkZGR4uvrK2vWrJFcuXKZvW+jRo3kwoULcvv2bbl06ZIkJyebva+Pj4/kzp1bMmbMKCIiBw8etKhuALYjy1KQZYD+cJyZPo4zAf1hbpaCuRmgf+RZCvIMAOAtZs2aJd27d7epj40bN0rt2rVt6iMuLk5GjhwpX3/9tdy9ezfd5z/77LPyySefSOfOnc3q//bt25I5c2abanxaYGCghISESGhoqGTPnl2io6MlX758Urp0aalQoYKULl1aAgMD7TZeyZIlRSklN2/elMuXL1u0r5+fn0RHR0t4eLjkzp3borkeoFfekm/m2rVrl/Ts2VMSExPlypUrcvv2bYv2DwkJkVy5cklwcLDF55wnTJggEyZMkIcPH8rFixclNjbWorEzZcokUVFR4u/vL59//rm0atXKov0BPSPLDJFlgH54S35xrMmxJryLt2SbuZibAfpElhkiywB9YaEIALDR8ePHZeXKlbJmzRo5ffq0XLt2TW7evClhYWGSNWtWyZMnj9SqVUvq1asntWrVEh8fH1eX7DS3b9+W8+fP26Wv7NmzS/bs2e3SF4D0uUO2XbhwQW7dumWXvooUKSIBAQFmP//o0aMW32BvSsmSJe3SDwDLkWVkGaBX7pBf7orjTEC/3CHbmJsBsAfyjDwDAHgHe5yDeOaZZyQsLMwu9dy8eVMWLFggK1eulAMHDsjVq1clLi5OMmTIIAULFpRKlSpJy5YtpUGDBuLr62uXMfXCXotPBQYGSuHChe3SF+DOyDdD9+/fl1OnTtmlL0vPOV+9elWuXr1ql7Gjo6MlU6ZMdukL0AOyzBBZBugH+aUfHGsC5iPbDDE3A/SJLDNElgH6wkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOuFdy/oBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoGAtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6AQLRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgEC0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoBAtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6AQLRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgEC0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoBAtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6AQLRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgEC0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoBAtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6AQLRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgEC0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoBAtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6AQLRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgEC0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoBAtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6AQLRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgEC0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoBAtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6AQLRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgEC0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoBAtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6AQLRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgEC0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoBAtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6AQLRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgEC0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoBAtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6AQLRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgEC0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoBAtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6AQLRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgEC0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoBAtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6AQLRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOgEC0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADoBAtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6AQLRQAAAMCljh8/LiNHjnR1GSZduXJFxo4dK/Hx8a4uxestWbJEKlasKMHBwZI7d24ZMGCAPHz40NVl4f9t3bpVunTpIkFBQeLj4yOnT592dUmAXSilZPXq1dKqVSvx8/MTHx8fV5fkNY4fPy79+vWTLFmyiI+Pj8yYMcPVJenGgwcPZNq0aVKxYkXx8fGROnXquLokl5o2bZoUL15cgoKCpECBAjJy5EhJTk52dVmarly5Ip999pnkzZtXfHx8ZNiwYa4uCbDYrVu3ZOzYsVK0aFHx8fGRHj162KVfb8m2EydOyPvvvy+RkZH8/QMAAAAAAHAxd7ifITExUX799VepW7eu+Pj4SP78+dN8/vTp02X//v3OKQ4A3MydO3fk22+/tfs1CqQtOTlZli9fLs2aNeO+CitwbeixW7duyauvvirZs2eXkJAQqVmzpmzdutXVZZn0559/yksvvSTBwcHcLwfd2r9/v7z22msSEREhPj4+snHjRrv06w3ZppSSlStXSsuWLfn7BwAAXMrf1QUAAADAO125ckU++OADmTVrlpQrV04GDRrk6pI0xcfHy7vvvivffvutfP7559K5c2dXl+SVZs2aJd27d0/9+eLFizJ69GjZu3evrF69Wnx9WQPPFWJiYmTOnDkyceJEOXDggKvLAezq1q1bMn36dJk4caIcP37c1eV4jaSkJFm2bJlMmDBB1q5dK0opV5ekK0eOHJGJEyfKzJkz5fbt264uxy0MHz5cPv7449SfT506JR988IEcO3ZMpk2b5sLKDG3ZskXGjx8vixYtkoSEBFeXA1hl165dMnHiRJk/f77Exsbard/Dhw+nZtudO3fs1q87efT3b+LEibJmzRr+/gEAAAAAALiYO9zPcPHiRZkyZYr88MMPcvHiRbP327Ztm/Tq1Uteeukl+fzzzyU6OtqBVQKAe9i7d69MmDBB5s6dKw8ePHB1OV7j+vXrMm3aNJk8ebKcOnXK1eXoSlJSkixfvlwmTpwoq1ev5tqQiNy/f19q165tcA/a1q1bpV69erJq1SqpV6+eC6t77MGDBzJ37lwZP3687Nu3z9XlAFaJi4uTBQsWyMSJE+XPP/+0W7/ect37+vXr8uOPP8rkyZPl5MmTri4HAACAhSIAAADgXEopGT9+vAwZMkTu3LkjLVu2lPHjx7u6LJPy5Mkjv/76q/Tq1Uu6dOki06dPl8mTJ0uBAgVcXZpDnDhxQpYvXy7bt2+Xw4cPy7lz5yQmJkaUUhIRESGRkZFSqFAhKV68uFSvXl1q1qwpWbJkMdnfmjVrpFGjRvLTTz9Jx44draopLi5O3n33Xc22devWyaJFi6Rdu3ZW9Q3rHDhwQCZMmCBz5syRe/fuubocwK52794t48ePt/uHXJG2K1euyNSpU2Xy5Mly7tw5V5ejK4mJifL777/LxIkT5Y8//nB1OW7l4sWLMnz4cM22H3/8Ufr06SMVK1Z0clWP3bt3T+bMmSPjx4+XgwcPuqwOwBYPHjyQ+fPny8SJE+Xvv/+2W78JCQny22+/ycSJE2XDhg1269fdXL58WaZOnSpTpkzh7x8AAAAAAIAbcIf7GTZs2CATJkyQ3377TRITEy3e/6uvvpLr16/LrFmzZPHixfLll1/Ka6+9xrfbAvA48fHxsmDBAhk/frxs377d1eV4le3bt8uECRNkwYIFEhcX5+pydOXRvRFTpkyRs2fPuroct2Lqi4oSEhLkrbfecvk19Udf3DFjxgyPXdwenu/kyZMyefJk+fHHH+X69et269dbrnv/+eefMmHCBPn111/5+wcAANwKC0UAAADAaS5duiTdu3eXtWvXSmhoqMydO1c6d+7s6rLS1bZtW6lQoYK0bNlS1q1bJ6VKlZKvvvpK+vbt6+rS7Gbx4sUyZswY2bZtm8nn3Lx5U27evClHjx6V5cuXy6hRo8TX11eqV68u7du3l3bt2knOnDkN9hk3bpzNtR04cEBu3rxpsn3Tpk0sFOEEcXFx8uuvv8rEiRPT/HcC6NHDhw/ll19+kfHjx8vOnTtdXY5X2bJli0yYMEEWLVok8fHxri5HV6z9JjFv8ueff0pCQoLJ9k2bNrlkoYh///1XJkyYILNnz5a7d+86fXzAHo4cOSKTJk2SGTNmyO3bt+3W77lz5+SHH36QqVOnyqVLl+zWr7vZuHFj6s3+aeUUAAAAAAAAnMeV9zPcvXtXZs2aJRMnTpR///3Xpr6yZMkiv/32m4wePVoGDhwor7/+usybN0/mzZsnefLksVPF9tejRw+ZOXOmq8sw2549e6Rs2bKuLgPwSmfOnJHJkyfL1KlT5dq1a64ux2s8ePBA5s6dKxMnTpQ9e/a4uhzd2bx5s0ycOFEWLlzItSETNm7caLLt0KFDcuPGDcmaNavzChKRpKQkWbJkiYwfP17Wr18vSimnjg/YQ1JSkixfvlwmTpwoq1evtuu/Y2+47v3oS2AmTpwo+/fvd3U5AAAAmlgoAgAAAE6xefNmadeunVy7dk3y5s0rv//+u64umufPn1+2bdsmHTt2lBUrVsgbb7wh27Ztkx9++EHCwsJcXZ7Vjh49Ki+//LLmB//9/f2lWLFikj17dgkLC5Pbt2/LqVOnDFb8TU5Oli1btsiWLVvk3XfflVq1akn9+vUlLCxMli9fLuvWrbO5Rl9fX5vaYbtLly5JmTJluMAOj7R+/Xp58cUX5caNG64uxavcv39fqlatqvltEEjfkCFD5Msvv7Tqm8S8iTvOIdq0aSO//fab08cF7GnIkCHy+eef273fyZMnS9++fSUpKcnufbuTmjVrytatW11dBgAAAAAAAJ7gyvsZ5s6dK6+99prcu3fPrv32799fihYtKh06dJCtW7dKuXLlZN68edKwYUO7jgMAzvT222/L999/L8nJya4uxassXbpUunbtKnfu3HF1KboTExMj1apVk4MHD7q6FLeX3vV7Hx8fJ1WS4tChQ9K4cWM5f/68U8cF7CkuLk5KlCghJ06csHvf3nDde8+ePVK7dm2JiYlxdSkAAABp4hNVAAAAcLiZM2fK888/L9euXZMCBQrIn3/+qatFIh6JiIiQ3377TV544QUREfnpp5+kSpUqcuHCBRdXZp2FCxdKuXLljBaJqFChgvz8889y48YN2b9/v6xbt05+//132bRpk5w9e1auXLki06ZNk3r16hnsl5SUJBs2bJAhQ4bIu+++a5dFIkRESpUqJdmyZTPZ/nQdsL+cOXNKr169ZObMmXLw4EHZtWuXNGnSxNVlAXZRqFAhqV69ukyZMkU2bdoks2fPlnz58rm6LI8XFhYmVapUkU8++UTWrFkja9eulRdffNHVZelGyZIlpUePHvLzzz/L5s2b5euvv5bQ0FBXl+V2atSoIUFBQSbb69at68RqUpQpU0YGDhwoS5YskQ0bNsirr77q9BoAWzVv3lwGDhwoGzdulKNHj8r06dPtkkENGzaU119/XdasWSNHjx6VhQsXSvbs2e1QsXvp2bOnjBkzRnbt2iX//vuvDBw40NUlAQAAAAAAeDVX389QsGBBad68ucycOTP128azZMlil76bN28uK1askPDwcLlx44Y0adJEvvnmG7v0DQCuULRoUenbt68sWrRINm3aJIMHD3b6h8e9UfHixaVevXoyZcoU2bp1q8ydO1cKFCjg6rJ0ISIiQp577jkZPny4rFy5UtatWycdOnRwdVluqX79+ibbypYta7f5kbkKFCggZcuWle+++07Wr18vv/76q5QqVcqpNQC2CgoKktdee00mTZoke/bskf3790v37t3t0rc3XPcuU6aMdO/eXX755Rf577//ZMuWLVK5cmVXlwUAAGDERymlXF0EAAAAPNfYsWPl3XffFRGR6Oho2bJli+TPn9+1RdkoMTFRWrRoIatWrRIRkXz58snatWulUKFCLq7MfNOmTZPevXvLk4cDgYGBMnbsWOnTp4/Z/fz999/ywQcfpLsoxE8//SQdO3a0ut758+dL586d5enDl8aNG8uKFSu46OsC9+/fl9y5c5v8toBTp07p/v91eK+//vpLqlatarKdUymOkZSUJOXLl5f9+/drtk+fPl169Ojh3KJ0ZMyYMdK/f3/Nttq1a8vGjRudW5Cb+OqrrzQvRr/66qsyadIkF1RkrHHjxrJ69WrNtqFDh8qwYcOcWxBghc8++0w++ugjzbbu3bvLjBkzrOp3zpw50rVrV802T8q2Bg0ayB9//KHZxt8/AAAAAAAAx3HX+xnmz58vnTp10mzLly+fnD592qL+NmzYII0aNZKEhAQRERk8eLB89tlntpZpVz169JCZM2cabPP19ZW2bdtK69atpUSJEhIVFSWZMmWSgIAA8fPzM7ufR9J775KTk+X+/fty4cIFOXDggKxYsUJ+/vlniY2NNXrunj17dPkFKYAneu2112Ty5MmabbZco0Da/v77b6lUqZLJdu6rMC05OVnKly8v+/bt02z31mtDsbGxUqNGDfnnn38MtgcGBsratWulVq1aLqrssXPnzkmBAgUkMTFRs5375aAHSUlJUrx4cTl69Khm+4YNG6ROnTpW9e0N173Pnj0r+fPnN/l3jr9/AADAFXxdXQAAAAA815M3VQQFBcmSJUs84kS4v7+/LFiwQEqXLi0iImfOnJFatWpZfDOGqyxZskT+97//GZyQDAoKklWrVlm0SISISMWKFWXt2rUyY8YMCQsLs3epqTp27CjLly+XSpUqSVBQkOTMmVPef/99+e2331gkwkXCwsLSXMkd0LMqVarw7Rcu4OfnJ+3bt3d1GbrFt45oe//992XmzJlSokQJCQgIkPz588vIkSNlwoQJri4tVefOnV1dAmCzVq1aOaTfli1besV831HvHwAAAAAAAExz5/sZWrduLaGhoXbrr27dujJ16tTUnz///HMZNGiQ3fp3hLx588qff/4pv/zyi3Tu3FnKlCkjOXLkkODgYJOLRNjK19dXIiIipGjRotK+fXuZPn26nDp1Stq0aeOQ8QDYB9faXKNixYpSsGBBV5ehS76+vtKuXTtXl+F2QkJCZP369dKnTx/Jli2bBAcHS82aNWX9+vVusUiEiEiePHmkZs2ari4DsImfn580b97cIX17w3XvvHnzSrly5VxdBgAAgAEWigAAAIBDzJs3T957773Un7/55huPOjkWHh4u8+fPl5CQEBERuXz5sjRp0kRu3brl4srSdvbsWenataskJycbbJ82bZrUrVvX6n67d+8uW7ZskRw5cthaoklNmjSRnTt3ysOHD+XixYvy5ZdfSlBQkMPGQ/q44AtPVrJkSVeX4JV4360XHR0tGTJkcHUZbqlbt25y8OBBiY+Pl1OnTsnAgQPF19d9TouWKlXK1SUANnPUvDBDhgwSGRnpkL7dCfNqAAAAAAAA53L3+xmCg4Pl2WeftWuf3bp1k+7du6f+/OWXX8rEiRPtOoa95MyZUzZv3izPPfecq0uRqKgoWbhwobz++uuuLgWACVxrcx2u71uvRIkSri7BLWXMmFEmTJggV69eldjYWNm8ebNUr17d1WUZIHPgCRx1fdpbrnt7y+sEAAD64T53RAMAAMBjbNmyRV5++WVRSolIygf8+/Tp4+Kq7K9YsWIyatSo1J8PHz4srVu3lri4OBdWlbY33nhD7t69a7CtYcOG0qVLF5v7LleunKxatYoPqXqRzJkzu7oEwGGyZs3q6hK8Eu+7bXj/9InfGzxBaGioBAYGOqRvb5hzesNrBAAAAAAAcBd6uZ/BEeeOv/vuO3nmmWdSf37zzTdl2bJldh/HVrNnz5Z8+fK5uoxUPj4+Mm7cOL5BHHBTmTJlcqtF4r0J1zmtx3unX/zu4AkcdX3aW657e8vrBAAA+sFZEQAAANjV5cuXpX379qmLJQQGBsrYsWNdW5QD9e3bV5o0aZL68+bNm+XNN990YUWm7dixQ5YuXWq03Z71lilTRqZOnWq3/uDeQkNDXV0C4DDh4eGuLsErhYWFuboEXePfrT7xe4OncNTc0BvmnN7wGgEAAAAAANyBnu5ncMS544iICJk7d27qB6qTkpKkY8eOcvToUbuPZa0WLVpI/fr1XV2GET8/Pxk/frz4+Pi4uhQAT/Hx8eE6s4vwvluPa8T6xe8OnoBr+7bxltcJAAD0g4UiAAAAYDfJycnSpUsXuXLlSuq2N998UwoXLuzCqhzv66+/Fj8/v9Sff/jhB/ntt99cV5AJkydPNtrm6+srzz//vF3Had++vbRp08aufcI9OepbowF3EBQU5OoSvBLvu214//SJ3xs8haPmht4w5/SG1wgAAAAAAOBqerufwVHnjqtWrSqdOnVK/fn+/fvSpUsXSUhIcMh4lnrttddcXYJJpUqVkho1ari6DAAauN7mGrzv1uO90y9+d/AEXNu3jbe8TgAAoB8sFAEAAAC7GTNmjKxfvz7156CgIOnfv78LK3KOokWLSvfu3Q229erVSy5evOiiiowppWTp0qVG27Nly+aQixeffvop36ThBQICAlxdAuAw/Pt2DS6k2Yb3T5/IG3gKR/1b9ob/R7zhNQIAAAAAALia3u5ncOQ5o08//dSg/7///ls+/vhjh41nruDgYGnQoIGry0hT06ZNXV0CAA2cZ3cNrk9bj/dOv8gbeAKu7dvGW14nAADQDxaKAAAAgF2cOHFChg4darCtS5cukiNHDhdV5FzDhg0zWHDhxo0b8sorr7iwIkPHjh2T69evG22Pi4tzyHglS5aURo0aOaRvuA9fXw4p4bn8/PxcXYJX4n23De+fPvF7g6dw1NzQG+ac3vAaAQAAAAAAXEmP9zM48txxgQIFpHfv3gbbvvrqK9m+fbvDxjRHuXLl3P6Ds5UqVXJ1CQA0cL3NNXjfrcd7p1/87uAJuLZvG295nQAAQD+YnQAAAMAuXnvtNYmNjTXY9vbbb7uoGufLkyePdOjQwWDbqlWrZNmyZS6qyNCxY8c0t9++fVvOnDnjkDG7dOnikH7hPjjhDU/Gv2/X8PHxcXUJusb7p0/kDTwFN5NYzxteIwAAAAAAgCvp8X4GR58zeu+99wyuKyQnJ8vbb78tSimHjpuWggULumxscxUvXtzVJQDQwHl21+D6tPV47/SLvIEn4Nq+bbzldQIAAP1gdgIAAACbLV26VNatW2ewrUSJElK6dGkXVeQa//vf/4y29e/fXxISElxQjaE7d+6YbJszZ45DxmzVqhUraAPQLS7Kuwbvu214//SJ3xsAAAAAAAAAOI5e72dw9LnjggULSv369Q227dq1S2bPnu3QcU0ZNGiQDBs2zCVjWyJnzpyyceNGefbZZ11dCoAncL3NNXjfrcd7p1/87gAAAAC4GxaKAAAAgE2SkpJk4MCBRts7duzogmpcq1q1apI7d26DbUeOHJEJEya4qKLH0lrBdsyYMXLhwgW7jxkRESHly5e3e78AAAAAAAAAAAAAAKSH+xnS1r59e6NtH374oTx48MDptRQtWlQKFizo9HGtUbt2bQkPD3d1GQAAAAAAAADAQhEAAACwzdy5c+W///4z2q51Q4Gn8/HxkVatWhltHzlypMTHx7ugoseyZs1qsu3WrVvy4osvSmxsrN3HrVmzpt37BAAAAAAAAAAAAAAgPdzPkLbWrVsbfSv2hQsXZOrUqS6qCAAAAAAAAABgCRaKAAAAgNWUUvLVV18ZbY+OjpYiRYq4oCLXe/755422Xb58WebOneuCah4rUaJEmu1//vmnNGzYUG7evGnXcUuVKmXX/gAAAAAAAAAAAAAASA/3M6Qve/bsUrp0aaPtY8eOlaSkJBdUBAAAAAAAAACwBAtFAAAAwGorVqyQQ4cOGW2vW7euU+tITk6WDRs2yIcffigNGjSQ/PnzS0REhAQEBEhkZKQULlxYWrVqJV999ZUcPHjQobXUrl1bfH2Np9lff/21Q8dNT65cuaRgwYJpPmfr1q1SqVIl2bNnj93GTW+BCksppWTdunXStm1bCQgIMPp2E2ucOHFC+vXrJ1myZBEfHx/ZuHFjms8/fPiwDBw4UCpVqiSZM2eWwMBAyZEjhzRq1EgmTJggMTExNtdkTs1TpkyRjh07Srly5SRPnjwSHBwsISEhkj17dilWrJi0adNGPvroI9m0aZMkJiY6vCZnuHz5skydOlW6du0qFSpUkMjISAkKCpLw8HApUKCAVK1aVd566y1ZtWqVPHz40NXlWiU2NlamTp0qZcuWFR8fH+nRo0eaz793755MmjRJmjdvLrly5ZLAwEDJlCmTVKhQQfr16yf//vuvU+q+cuWKTJo0SXr06CFlypSRqKgoCQwMlNDQUImKipLKlStL9+7d5ccff5SLFy86paYnnTx5Ur799ltp166dFCtWTDJnzpz6N6JEiRLSo0cP+fXXXyUuLs7ptT148EAWLlwoffv2lRo1akiuXLkkNDRUgoKCJDo6WipUqCBdu3aVefPmyY0bN5xen57s3btX+vfvLxUrVpSMGTNKYGCg5MyZU5o0aSKTJk2SBw8euLpEt5SUlCS///67vPTSS1KwYEEJDQ2VkJAQyZcvnzRv3ly+++47uX79ut3HPXLkiAwaNEhy5colPj4+MmPGDM3nHT16VPr06SMFChSQoKAgyZEjh3Ts2FH27dtn0XiJiYmyePFiadiwofj6+kr+/PltfxEa4uLiZOXKlfL2229L7dq1U/+fDgkJkfz580vt2rXliy++kMOHDztkfEf6888/5cUXXxR/f3+pU6dOus/t06ePlCxZUjJmzCgBAQGSPXt2qVmzpgwZMsShc/IbN27I7Nmz5a233pJq1apJgQIFJEuWLOLv7y9hYWESFRUlFSpUkI4dO8q3337rkN9FTEyMTJ06VapXry4+Pj4m36/Y2Fj55ptv5LnnnpOIiAgJDw+XqlWryvTp00UpZdGY9+7dkwULFkj//v2lTp068uyzz0pkZKQEBARIaGioZMuWTUqXLi3t2rWTkSNH2nXO72l27twpw4cPl2bNmkmhQoUkQ4YMqfOG4sWLS6NGjZxybAkAAAAAAADbuMv9DCIiBw8elJEjR0qrVq2kUKFCqedNo6KipEyZMtKnTx9ZsWKFSxZn0Ho/Tp06JYsXL3Z6LdC306dPyzfffCOdOnWS4sWLS7Zs2SQgIEDCwsIkZ86cUr16dfnf//4nP/30k92/xMRV9Hi/iUjKefBhw4ZJ8+bNpWDBgpI5c2bx9/eXDBkySP78+eX555+X/v37y+rVq51+DT0pKUk2btwo77//vjRo0EDy5Mkj4eHhEhQUJHny5JGqVavKkCFDZPfu3U6t65FTp07J999/Ly+++KKULl1asmTJIoGBgZIhQwYpVKiQ1KxZUwYNGuRR9+o4QkJCgvzyyy/SsWNHKVCggAQHB0t4eLgULlxYevbsKZs2bXJ1iW7r+vXrMnr0aGnQoIFERUVJQECAZMyYUUqXLi29evWSZcuWSXJysl3HTEpKkuXLl0vbtm0lMDDQ5P16Sin59ddfpUmTJhIZGSnBwcFSrFgx+fjjj+XevXsWjXn16lUZOXKkPPPMM+Lj4yPDhg2zwysxdunSJfnhhx+kc+fOUrp0acmaNasEBgZK5syZpWjRovLiiy/KrFmz5O7duw4Z31EePnwoU6dOlVKlSqV5P4ZIyjXrH3/8Udq0aSN58uSRoKAgCQ0NlQIFCkibNm1k8uTJcufOHYfVunfvXvnmm29SfwfR0dESHh4u/v7+kjFjRsmbN6/UrVtXXn/9dVmwYIHcvn3b7jU4+/4VEZFjx47JhAkTpEePHlKuXDnJmzevZMiQIfXvce7cuaVGjRrSq1cvmT17tly5csXGV+mZuO8OAADg/ykAAADASs2bN1ciYvT48ccfnTJ+TEyMGjFihIqOjtasw9Sjbt26asOGDQ6rq0SJEprjrlmzxmFjmmPQoEFmvT+BgYHqyy+/VImJiS6t90k3b95UX3/9tSpcuLBRvdZITk5WK1asUE2bNlW+vr4G/Zn6t3HixAn1wgsvpPv+5ciRQ/3+++82vFrTtmzZoho2bGg0ZmhoqMqSJYvJmjJnzqz69eunzpw5Y9d6pk+fbnLMU6dO2W2cnTt3qpYtWyo/Pz+z/z/PkiWLGj16tHr48KHd6nCkEydOqH79+qnMmTMbvI7u3btrPv/hw4fqyy+/VBkzZkzzffD19VVvvPGGio+Pd0jdmzZtUo0bN7bod+Pn56eaN2+uNm3a5JCanrRx40bN/2dMPfLly6fmzZunlFJq6NChJp9nD+fOnVN9+/ZVERERZtcXEBCgXn/9dXX58mW71OCOTp06ZfL1T58+XXOfY8eOqcaNG6f7/kVHR5v9t/j06dPKz8/Ppscnn3xi9uuuV6+e2f0WLFjQZD+1a9fWfO21a9fWfP6KFStUoUKF0n3vgoOD1bvvvqtu375t9mvScvfuXfXDDz+oatWqpfv7TUpKUp988onJfAkMDFQLFy5Md8wLFy6oTz75ROXOndvo/3d7unv3rho6dKjKnj27Wf8/+/r6qm7duqkLFy4opZTJ5w0dOtSudVoqPj5ezZkzR1WqVMmsf1MHDhxQNWvWNOs9aNKkiTpy5Ijdaj1w4IDq0qWLCgoKMjtXHz2qV6+uli1bZtP4ycnJauPGjapbt24qNDQ03fdr69atKm/evCZr6tChg0pKSkp33NOnT6vXXnvNor8njx6lSpVSs2bNsul1Pylfvnya45iaz5jL0myzRnx8vJoyZYrm8UZaj+eee05t3LjR5vGt+fsHAAAAAACAtLn6fgallPrtt99UlSpVzD7fVLJkSbV69WqllFLdu3fXfI69z28vWLBAc5xq1arZdRxnMfW+2eO9GzRokCpSpIhVj0WLFtm1v7T6fdKiRYvM7qtevXpWvS+///67ql69ukXnVgMDA1WnTp3Uvn37rBrTlfR6v0lsbKz69ttvVcGCBS36XWXNmlX1799fXblyxSF1PRIXF6e++eYblT9/frNra9GihTp8+LBSynHXKB5Zs2aNqlOnjvLx8TG7vujoaDVt2jS3uv/K3qy5r2LevHlpXiN79GjevLnZ/+4eXVe25XH69GmzxrL0XgJT9w1Yem3owYMH6qOPPlLBwcHpvnfPPPOM+vnnn816PWk5fPiwGjhwoMqZM2e6v99z586pWrVqmaypePHi6urVq+mOuXnzZtWpUycVGBhosL+9r5vv3btXtWvXzuz7nSIjI9V3332nkpKSnHa/nDUuXLigPvzwQxUZGZnuv6nk5GQ1bdo0lS1btnRff1hYmBo6dKhd78ObPXu2qlixokV/k0REhYSEqN69e9t8H6Qr7l9RSqlly5apunXrWvy6/f39VYcOHdTBgwdtet2PbNiwweRYttxb7azr3q6+787R9xUCAABYilkIAAAArHLx4kWTJz4PHTrk8PF/+eUXlSNHDqOxCxcurOrVq6datGihKlasaHTR4NHDx8dHvfHGGyo2NtbutXXr1k1zzG7dutl9LEucP3/e5Puh9ahcubLav3+/S2veuXOn6tGjhwoJCbHLidXbt2+rb775Js0PxWqd6J48ebLRB/7Sevj6+tr1xPadO3dU+/btDcYIDQ1VQ4cOVcePH099XkxMjPrpp59U6dKlLb6Y8OgRFBSk+vTpY1Zdjr7wdfPmTdWzZ0+j97Z06dKqSZMmqlGjRulePM6XL5/6+++/ba7FEZKTk9XKlStVs2bNjG4gefTQumnh0KFDFv+OGzZsqBISEuxW+6lTp9Tzzz9vNE5ISIiqUqWKatGihapSpYpmTj/5aNOmjUMWPbh165bq1KmT5pg5c+ZUtWrVUs2bN1clS5bUvJHj1VdfVYMHD3bIBZ3ExET11VdfGeVagQIFVP369VPrMvVvQiTlAqynfmjU0guGs2bNsiif/f39zbohIi4uTs2fP1916NBBBQQEmN1/s2bN1K+//qr+/vtvi26WOnHihNq6dasaO3asyYUG8ubNq0aOHKm2b99ush9zP0wdHx+v3nzzTYv/RuTLly/N8bU8+vB89+7dVVhYmFm/34SEBNWhQ4d06wkPD1eXLl3SHPePP/5Qbdu2Vf7+/iZfi70sXrxY8+aYgIAAVbZsWdWsWTNVt25dlSlTJqPnREVFqV27dpl8ja5aKOLatWvqs88+U7ly5TLr35RSSs2cOdPiRRpCQ0PVnDlzbKo1MTFRffbZZ5rz3IwZM6ratWurli1bqpo1a6a7wFLPnj0t/nt59uxZNXz48DRvrHz6/fr111/Nypbvv/8+zbEnT56seeNDaGioql69umrZsqWqXbt2uguYNG7cWMXExFj61hvR60IRf/75pypWrJhB35kyZVLVqlVTLVu2VDVq1FDh4eFpvocvvviiun//vtU1sFAEAAAAAACAfbn6foZz585pXkt7dH66bt26qlmzZiavW3/66adOWyji5MmTJs9NnTx50q5jOYMjF4ro1auXRefAHz38/PxSF6s3t1ZzH+mdP0zrmv7Tj7QWK9eyd+9ezQ94RkREqJo1a6oWLVqoSpUqqaxZs5oc09fXV/Xq1UvdvXvXorFdQa/3myiVco+V1jWfnDlzqueff141bdpUlSpVKs06IyIi1JgxY1RycrJda1Mq5UtTtN5XX19fVaJECdWkSRP1/PPPa17vCA8PVytWrHDYNYrz588bLTwUGBioKlSooJo3b64aNGigoqKi0vydli5dWp04ccI+b5abseSDsvfv31cvvviiRRlXpEgRk9eDn3TmzBk1evRoVa5cObP7Dg8PV4MHD1arV69W+/fvN/sLWOLj49WePXvUqlWrVO/evU3236hRIzV79mx17tw5zX4suTZ09OhRVbJkSYv/RrRr187ifL17966aOnWq5ofnTf1+//vvP6MvbjBVj6kxx48fn+ZrtNd189jYWPXWW29pzhOzZs2qqlWrplq0aKHKly+vea9By5Yt1ffff2+yTlctFLFjxw7VuXNnk9egn/43df/+fdW2bVuL/02VLl3a7EVVTDlz5oxq0KCBZv8FCxZUjRs3Vk2bNlVly5ZN896piIgItXjxYovGdtX9K0opdePGDZP3skVHR6uGDRuq5s2bq0qVKqV5j29gYKCaMGGCle/+Y3pdKMJd7rtjoQgAAOBumIUAAADAKqNGjdI8yRUSEuLQldAfPnyoXnnlFYMxg4OD1UcffaR5EvrGjRtqwIABJld0r1Onjl0+FPWkcePGaY6VIUMGu66qbI0PPvjAopP7/v7+ql+/fk69KH///n01depUVaFCBbNqNMeBAwfUq6++muYJfq0T3QkJCUb/3sx9BAYGqn/++cfm9+PQoUNG32ycL18+dfToUZP7xMfHW32TikjKh1bN4ciFIvbv36+eeeaZ1P6yZMmiRo0apbm6/D///KPatWtnspbQ0FCzV+12htu3b6uxY8emeQPJo8fTNy0sXbrUrH/HWo/+/fvbpf65c+eqDBkyGPRdqFAhNWPGDM0PSG7dutXkhS4RUdmzZ7fpAtPTDhw4YPBv59GjQYMGauPGjUY3rpw5c0b169fP6CJbWjfBWOvmzZuqYcOGBhnbp08fzf+fz58/rwYOHJjmt0EMGjTIITfiuJIlFww//vhjq/5fCA0NVf/++6/ZNR05csTkjUVp/f9qreXLlxv1XblyZXXz5s109zXnw9SxsbGqSZMmVv+NCAkJUUuWLEm3FnM+PG/q92vJjZGTJk1K3e/mzZvqm2++UUWKFEl3P3vcSJucnKzef/99o74jIiLUqFGj1LVr1wyen5CQoBYvXqzKli1rdt44e6GI/fv3q1deeSXdb6J5+gP63377rdX/pnx8fNJdEMGUhIQEo8W0RFIWiPjxxx+NFn149DtI699ljx490h334cOHav78+aphw4Zp3mCg9X6tXr3a5AImTz+qVKlisoZ33nnH6PlBQUFq1KhR6sGDBwbPTU5OVuvXr0/z5rj69eurpKQky34BT9HjQhFjx441+H1UrlxZrVixwuhmwLi4ODVv3rw052/ly5dX58+ft6oOFooAAAAAAACwL1fdz6CUUhs3btT8ZuYXX3xRc4H7f//9V7388stG5xpNnTu290IRSimTH+T/4osv7D6WozlyoYikpCS1fft21atXL7PO85YvX15t3rxZxcXFafaXnJysYmJi1L59+9SAAQPMOt9csmRJNWPGDHX06FGzF6+9f/++OnDggOrTp4/J92X+/PkW3TszZswYo+urFSpUUIsWLTI6v5qUlKRWrlypGjVqZPJ1FShQwOVfZGKKnu83efDggeratatR/23btlV//fWX0fPv3bunpk+frooWLWqytueff17dunXL5toe+fbbb43+fwoMDFQffvihOnv2rMFzk5OT1bp164yuG/j5+Zn8UK0t1yg2bNigIiMjU/uKjo5WU6ZMUXfu3DF67qZNm1T9+vVNvm+RkZFqy5YtVtfirsz9oOyVK1dUpUqVrPr/oV69ehZdw5o4caLJ+wSffKxfv94u74HWtcrPP/883f3MvTa0e/fuNBfcSe9Rrlw5zXutnmTuh+e1fr/nzp0z+eUDTz/8/PzUvXv3Uvfdt2+feu2119JdsF3EPtfNz507p8qXL2/Ud/ny5dXy5cuNri1fuXJFDR8+3OgeqbSu7ztzoYiEhAT1888/q6pVq6b7/j35b+rBgweqevXqVv+bypkzp8EXW1ni33//1fwSjmrVqqk9e/YYPf/69etq8ODBJhfA8PPzU+vWrUt3XFfcv/KkixcvGn1xgYioYsWKqY0bNxo9PyYmRo0ZM0bzSyMePWbMmGH2+65FjwtFuNN9dywUAQAA3A2zEAAAAFjF1MniSpUqOWzMmJgYVadOHYPxChQokOYH5h8ZNmyYyRNzdevWtevNIOvWrTM5lqWrGNtbbGysKl26tMUn+HPkyKF+/PFHmz88lp4lS5Zoftt2Wo+03L592+jfTHqPRye6Hz58qJo2bWrxe/Xko1q1aja9H6dOnVI5cuQw6DM0NNSsf/NJSUmqVatWVtXt6oUiduzYYfCN37Vr1073oqVSSk2bNs3khSFfX1+1evVqq2uyl88//9yihR6evGlh+vTpJr/5yJyHv7+/zd+Q9N133xldUH/55ZdVbGxsuvsuXrxYZc6cWbO2oKAgtWjRIptqUypl0ZCnL5D7+vqa9QHkpxcnsTZ3TLl27ZoqVapUah958uTRvBnwaTt37jTKgScfgwcPtqoed2XuBcP33nvPpnxu2LChRXUdOnQo3ZsTtC7eWmP37t0G/WbLls2sb0lRKv0PUyckJKjGjRvb9N49+n82rYvtDx48UEFBQRb1+ej3+9VXX1m038iRI5VSSk2aNMnoGwPSetjjZlCtm/sqVqxodNPa0xISEtSgQYPMqtNZC0WsWbNG1atXz+z378kP6P/8889m3WyV1sPHx8eqeXKXLl2M+goLC9O8ieRJ169fT3NOvHTp0jT317qp0pz369ixYwZznPQeRYsW1Rx/8ODBRs/19fVVq1atSrPuBw8epHmT4nfffZfm/unR20IRTy6i5+vrq0aMGJHuPvfu3VMtW7ZM83dmzUKELBQBAAAAAABgX664n0EppVatWmV0rjokJMSsRe03btxo1gdBHbFQRI0aNTTHKlOmjN3HcjRHLhTxpL/++ivd873pnat+2k8//ZRmf9myZTNrYfG0PP0N8TVq1ND80HtaBgwYYFTbkCFDzLqfZPLkySY/sJcpUya1bds2a1+a3en9fhOte6xCQ0PNuh7z4MED9frrr5usrXTp0ury5cs21aeUUp988olR388884w6ePBguvt+++23Zi2uYu01iiVLlhgsPtG+fXuDD7ib8umnn5q8bhYaGqr27dtnVT3uypwPyl6+fFnzA9KWPObNm2dRXVr/tp585M+f327vwZtvvmnQ90svvWTWfuZcGzpw4IDF99FpPcqVK5dm1k+bNs3iPpVKybq0FqrXejzKjrSuWWo9bL1ufvr0ac17gj788EOjBSKedubMGc0FJrQezlgo4uHDh2rkyJEqT548Zr9/j/5NJSUlqRYtWtj8b6pAgQIWLxp0/vx5FRUVZdRX3bp1TS6q9ciKFStM3jMXHR2d5n1rrrh/5UkxMTGaCzCVKFEi3ffw77//Nlqo5NEjLCzM7HuJtOhtoQh3u++OhSIAAIC7YRYCAAAAi129etXkxbZXXnnFIWM+fPhQ1axZ02Cs3Llzq3Pnzpm1f1xcnOaJ5kePTz/91G61nj9/3uQ4nTt3tts41jpx4oTKnj27VSf5y5Yt69AP2x85ckQ1bNhQff3112rRokXq22+/1VxF2pITq3Xq1FFdu3ZVo0ePVl988YUqUKBAmv1t2LBBxcfHq2bNmqVuy5o1q3rvvffU+vXr1fXr11V8fLw6f/68mjlzpipcuHC6/Vnj9u3bmhcJzFl1/pGLFy+avFhg6hEYGGjWN2kr5ZiFIg4fPmxwkbNhw4ZG3ziSlqVLl5qsKWvWrOr06dNW1WUv3377rapTp44aNmyY+vbbb1Xr1q3T/H08umlh9uzZqbnr6+urWrZsqebNm6dOnTqlHj58qG7evKk2bdqkOnToYFZ/1pg6dapRf506dbJoZe3t27ebXFk/MDDQpm9sOH36tFG2+fj4qLlz55rdx7lz59K8OGTtBZ0HDx6oChUqpO4fHR2tLly4YPb+Z86cMXljoI+Pj1qyZInFNbkrcy4Y9uvXL3Vbjhw51JAhQ9T27dvV3bt31b1799T+/fvV4MGD0705z5wLhk/68ccf0+xv8+bNdnkPlixZYtCvOR9cfiS9D1O/+uqrFv1NSOuRJUuWNDP1559/Vnv37lUxMTHq+vXr6rPPPkuzv+nTp6tdu3apgIAA5e/vr8aNG6du376tfv311zRvcNi6datSSqn169er1q1bq++//14tXrxYjRgxIs2/gbbeDPr+++8b9Vm5cmV1+/Zts/v46KOP0n2fnbVQxFtvvaWioqJUq1atVIcOHVTevHnTrOvRv6kjR46Y9Q0v5jwyZsxo0d/pOXPmaPZj7rx+9+7dJo9pKleunOa+u3btUqtXr1ZXr15VDx48UOvWrVPR0dFpvl8JCQmp35TUrFkzdebMGfXvv/+muehAr169jMbevHmzZt0vv/yyWa/7/PnzJn9nOXPmtGlhOD0tFPHll18a9GXJN64kJSWpF1980eTvrV27dhbXw0IRAAAAAAAA9uOK+xmUSvkg19PXwUJCQiy6/rVv3750F513xEIRvXr1MjmeOV9i4E6ctVCEUinXQtL6Xd29e9eu9bdq1crmmhs1apTaX+7cuc36woYnDRkyxKiuQYMGWdTHokWLTH7YM1OmTGYtEuAser3fJCEhQdWtW9egLx+f/2PvrqOjuN4+gH83joQABYIECQQNFry401KkuLtDsQJtKVLgR4EWpwUa3CkFihQIBFrcimuBBAgQJEpCXO/7Byf7JmRn1mYl4fs5Z0/ZuTv3Prs7md3ufea5KnHkyBG9+pk4caJkbF5eXgYVTk6zatWqTH2WKVNG5zwwITTnMCgxR3H27NkMRSJ0nYNJ8+uvv0rG4+Hhodd8orXTdqFscHBwhtynhg0binXr1gk/Pz+RkJAg3rx5I06cOKH1wvXKlSvrFVdqaqrk/BLw/iJ3pXTu3Fndr52dnc7HsLa5oTdv3kjOvRly69Kli2Qsr1+/Fr///rt49uyZiI+PF3fv3tVaKEcIISZMmCAAiHLlyomLFy+KoKAg8e2330qe48uWLasec9KkSWLcuHFiy5YtYvfu3aJXr16y4xkzb/727VtRvnz5TH3qk4sRGRkpPD09tb7O5igUkZSUJAoUKCC8vLxE7969Rdu2bbUWQkibb9SWt6HP7csvv9Qr7latWmXqw8bGRufXLO1403RbtWqV7L7mzl9JT+p7tq45RsuWLZMc75tvvtGpD02yUqEIa8y7Y6EIIiIisjb8FkJEREREetuxY4fkj1zz5s0zyZi9e/fONJaPj49efQwcOFAy7jx58hg0SS/F2dlZ4zhFixZVbAxj3Lp1SxQoUMDgH/pbtmwprl+/bpZYT506JRuLvl6+fCn5/qT90J22SrSDg4OYOXOm7OR2VFRUhh+iP7z17NnToOc9bty4TH3Z29uLoKAgvfqZN2+exrgKFiwoQkJCDIotjdKFImJiYjJMzLm7u+u9eokQQgwaNEgyrtatW+vdn6l16dJFMt4BAwaIo0ePCjs7OwFANG/eXNy7d0+2v/nz50v25+joaNBrevXq1UyTim5ubgb1tW/fPsn4XFxcDDp24uLiNK4MP3HiRL37Onr0qNZzoL769u2r3tfOzs6g8+fmzZsl4/nkk08U/QyzJG0ThmnnNDs7OzFr1iwRHx8v2df9+/dlCyONHz9e7/jSJ899ePv555+NeOb/L/3ktqOjowgNDdV5X7mLqT8sdNGiRQuxadMm8fjxY5GQkCCCg4PF5cuXxbfffqtTwRQAomnTpno9t27dukn2tWbNGlG5cmWhUqnErl27MuwXHh6eIcEm7TZs2DDZ8TZt2iQ5njHJoJq+C7u4uIjnz5/r1U9qamqmlbs+vJmrUERUVFSGAgHJycmiZ8+eknGlFT5Iv0KMu7u7mD17trh27ZoICwsT7969E7dv3xZz587VeTWTL774Qqd4U1NTRalSpTT2oc8KbVJ/MyqVSu/vSYcPH5Z9vdLOXx07dsy0Ks2qVasyrTJYsmRJ8erVq0zjNG7cWOMYuqwAlkYu0VjfIjrpZZVCEb6+vhkuFJg0aZLefYSGhoqCBQtKvo76rmzFQhFERERERERERMqxRD5DSEiIKFasWKbxli9frndf3t7esr+jmqJQxKJFi2R/v89KzFkoQgghGjRoIDmeIQUPnjx5InmBbYcOHYyON32haG9vb732/euvv4RKpcoQk5eXl9aV2DVZunSp7Puk7yrl5pJV8k0mT56cqa+xY8fq3U9qaqro1KmTZHyGFi85c+aMOgci7WZvb2/QHIW2i8v1naN49epVhjnmevXq6bW4SZrmzZtLxjR8+HC9+7NWchfKpj++S5cuLXx9fWX7kvssAvSbAxTi/UJKUguZqFQqvfOvNElOTs6Qf6dPMXG5uaH169dnKPaSO3duMXr0aHH8+HEREhIiEhISxJMnT8TBgwdF586dM/09Sd30KZweFhYmnJycJPs6f/68UKlUokyZMuL169cZ9j1z5kym+WEnJydx4sQJ2TE/LHCT/mbovHlqaqr47LPPMvXXuXNnvfu6c+eOsLe3l32NzVEoQgiRqeDM48ePZRdR27hxo7h06ZL6WFGpVKJly5Zi27Zt4uHDhyI2Nla8fv1aHD9+XAwaNEjnY2r37t06xfvPP/9o3L9atWo6P+cnT55IxtGuXTt9Xj4hhHnyVx4/fpzpuxPwvjCWrmJiYiTPZfoW0UkvKxWKsMa8OxaKICIiImvDbyFEREREpLfRo0dL/si1c+dOxcfTdDF6v3799O5n4cKFsj9c79mzR7GY01809+HN399fsXGM4e/vr7Fatq43lUol+vXrp/dFkYbQlFRjzA+rPXr0kOwvrXq1u7u7zj8q37t3T+OP+gBEvnz59F6Z+f79+xonXOrXr6/3c339+rVkIom+qx58SOlCER+uRvHHH38YFFdISIjsxNylS5cM6tdUfHx8JGOtW7euyJMnj7CzsxOLFi3Suc+6detK9qnPhaRCCBEfHy88PDwy9fPbb7/p+Uz/n1yCVv369fX+m9FUNb5ixYoiLi7OoPjkJp/1Pe8cOHAgw76jR482KCYh5D9bFixYYHC/1kRuwrBFixYCeF/o5uzZszr1d/DgQcn+3N3d9Y7vwYMHkhPitWvX1ru/D6WkpGRI0Ovdu7de+0tdTO3u7q5egaxy5criwoULsv1ERUWJIUOG6PR94MNJcTnbt2+X7KdKlSoCgPj+++8l9z9+/LgYNmyY6NOnj04XYUdHR0t+HhiaDPrs2TPh4uKSqb/Nmzcb1N/p06dlX19zFYrQ5NWrV5Lfb5o0aaL+bm1jYyNmz54tmwgaFRUlhg0bptMxpS1BSAj5QmL6fAdZvHixZD+nT5/WuR8h3ieCfVjsIe1WpkwZkTNnTlG+fHnJhNDnz5+L6dOni+7du4sffvhBY5GYgIAAyXj1SdbYu3evZD+GHstCZI1CEVFRURnOs66urgaveLZ8+XLJ17FSpUoiNTVV575YKIKIiIiIiIiISDnmzmcQQmi8kLp58+Z6/UaUJjU1VZQpU0byOZii2MGH81npb3379lV8PFMyd6GIQ4cOSY63dOlSg/ps27atxv4++eQTgy5YT3P79m11X8WKFRMJCQk67xsSEiLy5cuXKaajR48aFEtqaqrsavWGFkgwB2vPNzlx4kSmfnLnzq1Xcfr0goODZRei0TdvIDIyUuN8wuzZsw2K7+nTpxmKQxs7R5H+fK5SqcTly5cNiuvWrVuSMTk4OJgl18oc5C6UbdmypQAgPv/8c52Lv2i6+NqYY2T69OmS/a1cuVLv/j50/PjxDH1qK4aRntzcUNrcOfD+4vOwsDDZvq5fvy4qVaok2V/arWDBgnrNi6Wd06RizJEjh7h165bGfaOjo8WKFStEz549xdixY3UqnrRmzRrJ8QydN1+2bFmmvgoVKiSCg4MN6k9u8SLAfIUiNFmwYIFkXOvWrRPVqlVTfwfQlnNz/fp1UbFiRa3HlLu7u04Fo6QWeNN3vjf938aHcejLHPkrs2bN0ti/vt9J27dvr7Efe3t7kZycrFdfabJKoQhrzbtjoQgiIiKyNjYgIiIiItLT+fPnJdvc3d0VHSssLAwTJ07MtP2bb77Ru6+yZcvKtj958kTvPqUUK1ZMsu3s2bOKjWOMMmXK4MqVK+jdu7dB+wshsHXrVpQvXx4//PADYmNjFY7w/1WqVEnR/mrUqCHZdvz4cdSqVQuXL1+Gl5eXTv1VqlQJTZo00dj29u1bBAQE6BXfqlWrkJycnGm7XNxSChcujFatWmls2759O0JDQ/Xu0xT8/f2xYsUK9f3SpUujW7duBvVVoEAB1KpVS7J9wYIFBvVrKnLv6+XLl5GcnIz9+/dj0qRJOvc5atQoybbr16/rFd/SpUvh7++fYVu+fPkwcOBAvfpJ76effkKuXLk0tl24cAFr1qzRua/Lly9j+fLlmbbPmzcPTk5OBsU3cuRIg/b7UHJyMr7++usM2wz5/Erz2WefSbYtWbIEiYmJBvedFfz9998oUaIEzp8/j4YNG+q0T7t27eDp6amx7enTp4iIiNArhvLly6N///4a265cuYJr167p1d+Hjh49iufPn6vvK3UsPn36FDExMejduzf+/fdffPrpp7KPz507N9atW4fffvtNa99z586FEEKnOOS+H925cwdVq1bF7NmzJR/TsmVLrFmzBtu2bUOvXr20jpcrVy6UKlVKp9h0NWrUKERGRmbYVq1aNcnjQpvGjRsr/j1HKUWKFJF8z169eoVZs2bBwcEBu3fvxsyZM2FnZyfZV+7cubFmzRp8++23Wsf98ccftT7m/v37Wh+jiypVqki2BQYG6tWXra0tXF1dNbY9fvwY8fHx2LRpE3Lnzq3xMcWLF8f//vc/7Nq1C7NmzcInn3yS6THW+LyzmkWLFmU4z44ePVryPdFG7nP5/v37OHjwoEH9EhERERERERGRccyZzwAAu3fvxr59+zJtX7x4MVQqld79qVQqDB8+XInQdJYV8husVdu2bVG6dGmNbbt37zaoz0GDBmncHhYWhr/++sugPgFg79696n8PHDgQDg4OOu87ffp0vH37NsO2SpUqoU2bNgbFolKpsGLFCtjYaE5j//3333H06FGD+jY1a843SUlJwfjx4zNt79+/v8Z5B10ULFgQs2bNkmz/9ttvERQUpHN/U6dOxbNnzzJsK1SoEL777juD4itVqpTBx+GHTp06leF83rRpU9SpU8egvqpWrYoiRYpobEtMTMSSJUsM6jcrOXHiBPr164eDBw8ib968Ou0jdxzcuHFD7xi++eYbybFXr16td38fSp/b4uHhgZYtWxrdJ/B+7tzJyQm///471qxZg/z588s+3svLC1evXkXz5s1lHxcSEgJvb2+d49A2vz979mxUrVpVY3uuXLkwduxY7Ny5EytWrJDM20hPl8fo49mzZ5g6dWqm7VOnTkXBggUN6lOpHA5TkMuVW7lyJW7duoUqVargypUrWnNuvLy8cPr0aVSuXFn2cU+fPsWOHTu0xmbqeW5D5rjNkb9i6uedlJSk12dwVsO8OyIiIiLdsVAEEREREeklMTERd+/elWx3c3NTdLwff/wx00WcjRo10vojtCb169eHra2tZLuSscv9kHzhwgXFxjGWs7Mztm/fjh07dqBAgQIG9REXF4c5c+agYsWKGRILlFSoUCGz9VejRg2cOHFC7wkhqWIMAPDo0SOd+xFCYP/+/RrbihcvrldMaaQuCE5ISNCYtGQJ8+bNQ0pKivq+oUUi0pQrV06y7dixY0hISDCqfyUVKFBAMknM0dERBw8exBdffKFXn0odj6GhoZg3b16m7Z06dYKjo6NeMaXn6uqKsWPHSrbrWnxGCIGxY8dmuki9WLFiaN++vcHxderUCc7Ozgbvn2bHjh14/Pix+n7dunVRsmRJg/uTO66Dg4Nx6dIlg/vOCooVK4aTJ09qLfyUnkqlkv37MaRI1DfffCOZtPbzzz/r3V966ZMyKlWqhEaNGhnVX3pTpkzB9u3bkSNHDp33GTFiBJYuXSr7mDt37uDcuXM69aft78rb21u22IAhlPwOcfjwYRw5ciTTdmOTQfr162fU/qYk9X3Iz88PycnJOHjwIDp37qxzfwsWLJCdfAeAkydPZipQ9CG5zwh9jnG588mHCa+6kDvGhw8fjnr16undZ3pKPe/SpUtL/n+RIc87q3j37h2WLVuWYVv37t0N7q9MmTKSnwcAcODAAYP7JiIiIiIiIiIiw5g7nyEuLk5jsfe6deuievXqBvdraHFiQ8nlNzx79gyvXr0yYzRZi0qlkiywf+HCBa2/d2vSoUMHyfyNtWvX6t0f8H5edfPmzQDexzx48GCd971//z7WrVuXaXvPnj0NiiVNlSpVZH+j/eabb3QuVm5O1pxvsm7dOty7dy/TdmPfq+HDh0vmq0RGRmLu3Lk69XP79m2NF6kPGjRIr8IlH1LqnDlnzpwM942ZQwDk5/c/hjmEPn36YNOmTXrN/9auXVvybyx97oWunJ2dMWbMGI1td+/ehY+Pj959pgkKCsqQ3zV8+HCDCkRp4uLighMnTqBHjx4675MjRw4cPHgQ9evXl32cPgUy5OY+K1eurHHxL2MonR84efJkxMXFZdiWI0cODBgwwOA+69Spg/LlyxsbmknIffbcuHEDNWrUwKlTpySL2Gjq78CBA8iZM6fs43RZDEhqnlufOW5Aen4/KSkJMTExevVljvwVUz9vIHvP7zPvjoiIiEh3LBRBRERERHp59OhRhou5P2RosQFNIiMjNU5yd+nSxaD+ChYsiHHjxmlsK1GiBNq1a2dQv5rIJZg8fPhQsXGU0qtXL9y/fx+9e/c2uI/nz5+ja9euaNeuneIrEefJk0fR/uRWDV64cCFcXFz07rNmzZqSbfpUbvb395d8/Qx9HeRWtLh48aJBfSopMjISv//+e4Ztxl4cLTf5FRcXZ1U/7NvY2EhOqnXv3h0tWrTQu8+iRYuicOHCGtv0OR5Xr16NqKioTNsNielDo0aNkrxINTg4GOvXr9fax8GDB3HlypVM24cMGSJbGEgbe3t7yVUP9PHbb79luG/K4xp4f3F1djZ79mzJFZnkyE3SG5LYWL58eckL4/fs2aNXslZ6L1++xOHDh9X3R4wYYVA/mtStW9fgIhYTJkzQWqxGlxUiAMgWmOnWrZvRF9FrouR3iBkzZmTalitXLvTp08eofuVW9rA0qc8ne3t77N2716AVmry9vWW/iwHI9L3gQ1KJELlz54arq6vOsch959OlYNGHpI7x3Llzy642oiu5BBAPDw+d+7G1tUWuXLk0thnyvLOK33//HZGRker7BQoUQIUKFQzuz9bWVnYFp+z+uUxEREREREREZI3Mmc8AvL8w7sWLF5m2G/sbf+HChWWLNyjN1dUV9vb2ku3WmONgTQYMGCBZVHbLli169+fg4CA59+Dr66vxmNPm5MmTCAgIAAA0bdpUrzm3xYsXa/y7UmLOWG5xgTt37uDQoUNGj6E0a803EUJg0aJFmbbnzJlTcnERXdnb28sWTl+7di1CQkK09vPDDz9oPJaGDx9uVHxKzLU9evQo0+/6ppzff/r0KZ49e2ZU/9Zu8+bNsgW3pUjN7xtatGj8+PGSF2X/+OOPBvUJABs3bkRSUhKA9+dtqaJBhliwYAEaNGig9365cuXC9u3bJecBgfcFNy5fvqxTf3Lz+z/99JPii0AoObd/8+ZN7NmzJ9P2bt26IV++fEb1ba3z+3IFHapUqQJfX1/ZuU1NSpcujf/973+yjzl//rzW7yZS89z6zHEDys7vmyN/xRqfd1bCvDsiIiIi3bFQBBERERHp5cGDB5JtuXPnNmqF+Q/t3LkT0dHRmbYb8yPs4sWLsXLlSlStWhVOTk5wdXVFly5dcPLkSUVWj08jl2BiyIoR5lCwYEFs374d//zzDypWrGhwP4cPH0blypWxfft2xWLTt4qyNnLHqSGTlABkqxWHh4fr3I9ckQ1DL3yXq4Zs6AXNStq3b1+mCu6VKlUyqk8nJyfZ9nPnzhnVv9KkjklDj0dA+pjU9XhMSkqSXEmgTp06BseVpkSJErLJQ7pUnF+wYIHG7XIrruiqWrVqRu3/9OnTTIVYPrbjWmmGngPlVkPQ5/yc3tSpUzVuT01Nxfz58w3qc926derEqJw5cyq6Wpi2Y0eb1atXyya9+fr66tSP3EpAbdu21TsuXSj1HeLYsWO4ceNGpu316tUz+juksecbU5L6u6tfv77WAiJSSpQoge+//172MceOHZNt/+yzz1CmTJlM24cNG6ZXLHJJUmmJXfqQOsZr1qypyAo4VatW1Zj80KlTJ3zyySd69SX13A153lnFh0VtjP1cBuTPrwEBAXj58qXRYxARERERERERke7Mmc+QkpKi8aJswDrmqvShUqlkLxy01hwHa1GiRAk0b95cY9vWrVshhNC7z0GDBmncnpqaig0bNujd38aNG9X/Hjx4sM77hYaGaiwYbmdnJ7tgha7q168vm8+gy5yxuVlrvsnhw4c1/q16eXkpcjH3gAEDoFKpNLYlJCRoLYry4MEDHDhwINP2MmXKGLRYwId9aCtSrs2Hx7mdnZ3ssakLzu8rO7//9u1bg86nBQsWxNChQzW2nT9/HqdPn9a7TyFEhsWvunTpovUCZH0YM79fqlQpzJ07V/Yx1jq/r2R+4E8//aRxe1b7jqYPub+5r7/+Wu/55DQTJkzQmkuq7ZgaM2ZMpm02NjYYMmSIXrEoOb9vjuN7xIgRGj+DLZ3XkBUw746IiIhIPywUQURERER6katmrvTqG3/++WembQ4ODvDy8jK4T5VKhdGjR+PWrVuIi4vDmzdvsGfPHqMnHT8kV8X31atXVl3Jt1mzZrh16xYWLVpk0EoHABAZGYm+ffviq6++kl2xRVdKJuwA8j/0G0pu9eqEhASd+5FbDeLdu3d6xZRG7n18+/atQX0q6ciRI5m2lS5dGiqVyuCbtklPQ1caMBVzHpO6Ho++vr54/fp1pu22trZwd3c3KrY0nTp1kmy7e/eubDLfnTt3cOnSJY3xKZGUZOwkvo+PT6ZtgwcPNuq4btmypeyY1nZcWwu51SCioqIM6rNGjRpo3bq1xrbt27fj+fPnevWXkpKCdevWqe/36NEDefPmNSg2UyhevDj69u0r2f7kyRON54sPGVP8xlBKfYeQSkSsXbu20X0rmTSkNKmEP2MNGTJEdnW6q1evIjk5WbLdwcEBf/75p3qFLWdnZ4waNUrr57+mfqQYklBhjmN8+/btaN68OVQqFXLkyIEePXpkSETTldRzz66JJO/evcP58+czbDtz5oxRn8sqlUq2yBvAz2YiIiIiIiIiInMzZz7DkSNHNP4+VLhwYbi5uRndv7l/O5abU/bz8zNjJFmTVPGFgIAAgy5Czpcvn+Rvzhs2bEBqaqrOfUVFRanzb1xcXNClSxed9921axfi4+MzbXdzczO6UHkauTnjY8eOGZwnYSrWmm+yefNmjdulVjPXV7FixWQXlNi9e7fs/mvXrtV4kb8Sc20qlcrgC6DTfJi3kpycDAcHB6PmELZt2yY7JucQNJOa309NTTU4327y5MmSc5Pz5s3Tu7/jx4/jyZMn6vsjR440KC5TGTlypGy+ga4XQ5t7fl+puf2wsDCNeadA9p7fN9Xcvo2NjdbCBh9e0P+hFi1aYMWKFerCZO7u7ti1axeqV6+uVyxKzu+b4/guX748duzYgWLFigF4//8Jv/76Kzp06KBXP0rnNWQFzLsjIiIi0g8LRRARERGRXt68eSPZJle5Vl+JiYkaJ8sLFixokklXpWm7uPPp06fmCcRA9vb2mDRpEvz9/TFy5EiDq7yvXLkS3bt3N7pYhKHjm6s/QL6qeWJios79yF00GRkZqVdMaeSSekw1SaSPM2fOmH3MsLAws48px5zHpK7H4/79+zVuL1q0qGLxapuAOXr0qGSbppVrgPfVw3PmzGlUXErgcW095L6fGFO4aerUqRq3JyUl4eeff9arrw+TSa0tkQSA1pUcbt++rbUPSxSKUOJ8FRUVhUOHDmlsUyKR5GNUqFAhtG/fXrI9Pj5etlgQAFStWhVXr15FdHQ0IiMjsWrVKr3O/9HR0di0aZNkuyErEpnjGC9evDj+/vtvxMTEIDo6Gr///rteyY+JiYnYs2ePZLEwQ553VnDhwgXZ4iOmws9mIiIiIiIiIiLzMlc+AyA9V5VVfzeWy3Gw9vwGa9CpUyfJ11Dut2gpS5culSwG8fz5c51XgwfeF3tImxPr3bu3Xiu2S80ZFy9eXOc+tJGbM05KSsI///yj2FhKsMZ8k4SEBMm5dXO9V1euXEF4eLjGNiEEdu7cqbHNGs6ZsbGxuHbtmtnH5RyCZqaY3y9RogR69+6tsc3X1xdXr17Vqz9vb2/1vytVqoTGjRsbFJepODk5oU+fPpLtusztA+af31fq/Lpnzx6N5848efKgXLlyiozxsenXr59szu7Nmze19jF27FiEhIQgJiYGT548QdeuXfWKwc/PD8eOHZNs13ee21zHd7du3RAYGIjo6Gi8fv0aY8aM0Wv/ly9fYt++fZLt2XV+n3l3RERERPqxs3QARERERJS1yCVWKFXVGQBu3bql8Qd7a1pdW462OA294N/cChQogNWrV+Orr77CpEmTZH9sl/Lnn39ixIgRGVZK15fSP8yb4od+udUy9FnNQ26lCEMTcOSeb9GiRQ3qUylBQUEICgrKtF2fVUwMUblyZZP2ry9zHpO6Ho8frpiRRsnzsIeHBwoVKoTg4GCN7f/++6/kvlIXbZcuXVqR2Ix169atTNsaN25s0pUF5ArNfMzkvp/oU8jnQ02bNkW9evVw6dKlTG3r16/H9OnTUbhwYZ36Sp9IUqNGDdnVeCylVq1aKFOmDB4/fqyxXWp7epYoTqTE+dXX11fyWLGWc05W1L17d8mVXID333t0+bzWN7n73LlzWLduHfbs2YOYmBi99tXGnMe4Pom8wPvknPXr12PHjh2SiZrZmabP5RIlSpg8AdXZ2dmk/RMRERERERERUUbmymdITk6WvCg7q/5uLDcHmFXyGyzJyckJvXr1wurVqzO17d27FytXrtT59+yIiAit+RVr167FZ599plN/GzduVP9bW2Hw9GJjYzUu8AIoO2dcr1492NraSi5A8u+//+LLL79UbDxjWWO+yZkzZxAdHa2xTcn3qkGDBpJtqampuHr1Klq3bp2p7fr163j9+rXG/azhnHnnzp1Mr3OOHDnQtm1bk45rDc/dGplqfv/bb7/Fli1bNF5U/eOPP8peiJ3e69evcfDgQfX9ESNGGByTKfXs2RMrV67U2PbmzRvExsZqLcJv7vl9pc6vUvlE7u7uVrGgUlZUoEABNG/eXPL7r645jTY2Nnot/hATE4M//vgD69evx/nz53XeTxfmPhb0yWtITEzEgQMHsH79ehw/flyv3NPsgnl3RERERPphoQgiIiIi0ovUxCIA2arB+rp3757G7VmlUITcJC4g/zpaI09PTxw9ehRHjhzBpEmTtK7w/KH169ejUaNGGDBggEHjK/3DvCVWNNdV9erVYWNjo/EHfkNXMJBL3ClTpoxBfSpF6ljauHHjR3VhnbUdk2/evMGrV680tul7Yao2VatWxYkTJzS23b9/X+P2sLAw3L17V2Obi4uLYrEZKiUlBf7+/pm2T548Ge3bt7dARB83Ozvpn7+kEs50NXXqVHTs2DHT9vj4eCxZsgQ///yz1j6eP38OHx8f9X1rTSQB3q/oI1UQQuqcYWlKfIeQSoIErOOck1XVqlVLtl3JY+rt27fYvHkzvL29M3z3yJEjB+Li4hQbx9rExsZi586d+O233zKshJR2XkxOTrZUaGan6TtnrVq1sGfPHgtEQ0REREREREREpmKufIbbt28jIiJCY1tW/d1YLschq+U3WMqgQYM0FoqIjo7G3r170b9/f536Wb16tfo1lyq6/9dffyE4OBiFChWS7evRo0e4cOECgPfzsjVr1tQpBuD9cZ6UlKSxTck549y5c8Pd3V3j/CogPWdsKdY2tw/I55Io+V5VrVpVtv3+/fsaC0VY+1ybpjmEHDlycA7BQkw1v1+xYkV8+eWXGgtCHDhwAPfu3YOnp6fWfjZs2KCeY8uZM6fO53Zzq1GjhmwRnlevXsHDw8PMUclTYm5fCIGzZ89qbLOG801WVqtWLclCEeHh4YiPj9eaM6urmzdvwtvbG9u3b0dUVJR6e3af3/f398eaNWuwceNGhIaGqrdn9+f9IebdEREREenP+n6tIiIiIiKrFh8fL9mmZGLF8+fP9R7fmmirLptVEynatm2L27dvY+nSpXpPnnz99dcICwszUWTZR+7cuSVXYXj48CHevn2rd59SKzMAsPiP5y9fvtS4XSqxytSaNm0KlUql2G3WrFkWeR7G0lSVO43ShVsqVKgg2fbixQuN2+USXayhoFBQUJDGi28tdVx/7OSStTStFqKP9u3bSyaLrF69GuHh4Vr7WLdunbo4kLOzM3r37m1UTKYklzyYnVcTS3+B/Yes4ZyTVZUpU0b29Uuf8GGoe/fuYdiwYXBzc8PEiRPViX6enp745ZdfrLbAibECAgIwadIkFCtWDEOHDlUfw6VKlcK8efPw4sULFCtWzMJRmpem75z8XCYiIiIiIiIiyn7Mlc+QHX83lstxyKr5DeZWu3ZtyXmjzZs369RHQkICVqxYAeD9Ba07d+7U+LikpCRs2rRJa38bN25U/3vIkCE6xZDG2ueMAwICFJ3bV6lUCAgIUPR5mYu53qtixYrJLvgh9V5Z+zlT0xxCdp77tHamnN+fOnWqZL/z5s3Tun9qairWrl2rvt+jRw+rOIY1yZkzp+y5Nbse435+fpLPzVrfq6xCW7EpY78vpqSkYPfu3WjUqBG8vLzw22+/ISoqCnZ2dujcuTOOHTuGlStXGjWGtTp27Bjatm2LcuXKYeHChQgNDYVKpUKrVq2wZ88eHDhwwNIhmhXz7oiIiIj0x0IRRERERKSXxMREyba0ixyVkL4ibnpZ5cc+bYUiYmNjzRSJ8uzt7TFhwgQ8evQI/fr103m/8PBwnVZWp/crjWiSmpqK33//Xe/+bty4oXF7gQIF0LJlS737U1JISIjG7Vnlbz27CgwMlGxTOhGsePHikm3v3r3TuN3Pz09yH7nEFHPhcZ11GJtIolKp8N1332lsi46OVifySUlOTsb69evV9/v27YvcuXMbFZMplS9fXrItO69eYO3nnKysevXqkm3GFIg7d+4c2rZti8qVK2PdunWIjY2FnZ0dunfvjjNnzuDu3bv46quvsl0y0O3bt9GrVy94eHhgyZIliIiIgEqlwmeffYZDhw7h8ePHmDp1KgoXLmzpUM1O02czP5eJiIiIiIiIiLIfc+UzZMffjeVyHLJyfoO5DR48WOP2kydPSi6Ykt62bdvw5s0bAMDIkSPRvHlzVKlSReNj088xaZKSkoItW7YAABwdHdG3b1+t46dn7XPG9P/M+V65ublJtmWn+f2UlBRFipqTsoyd369duzZatGihsW3Xrl14/Pix7P7Hjh3Ds2fP1PdHjhxpVDym9jHO71v7+SYr8/Lykm03dH4/Pj4eq1atgoeHB7p3745z584BAFxdXTFz5kw8e/YMe/fuRevWrRUvVGVJKSkp2L59O6pUqYLPPvsMPj4+EELAxcUFEydOxKNHj+Dr64suXbpozUXObph3R0RERKQ/FoogIiIiIr3IrbKRlJSk2DhSkxFZ5cc+bT/O2tramikS0ylUqBC2bNmC48ePy04Ep7dmzZpsO9GkpH79+sHDw0Njm7ZkD02OHz+ucfvcuXMVXTnHEFJJRVLFYsg85M61SidDuLq6SralpKRonOiXWokEeL/KjqXxuP649OzZE6VKldLY9ssvv8gmXx06dAivXr1S37f2RBIXFxfJtuzw3UaTuLg42b9dazjnZGUFChSQbDMk2eHq1ato1aoVGjVqBB8fHwBAjhw5MGHCBDx58gS7du1Co0aNDI7XWvn5+aFbt26oXr06fv/9d6SkpMDOzg4DBw7EvXv34OPjgy+++EJ2BabsTtNnMz+XiYiIiIiIiIiyH3PlM1j7XJUh5H6Tza5zAKbQt29fja+lEAJbt26V3VcIgcWLFwN4fyyPGzcOADB06FCNj3/06BHOnDkj2Z+vr696Hqpjx47Inz+/Ts8hjbXMGWtaUZoysvb3ytrPmZzf/7hMnTpV4/aUlBT89NNPsvt6e3ur/12jRg3UqVNH0diU9jHO71v7+SYrk5vbB/Sf309JSYG3tzc8PDwwZswYBAQEAADKli2L9evX4/nz55g9ezaKFi1qaMhWa/fu3ahUqRL69u2Lu3fvAgCKFCmCJUuWIDAwEEuWLJHMHf0Y8HOZiIiISH8fb2YoERERERkkV65ckm1KJlZIVQAPCwtDWFiYYuOYirbVSJycnMwUiem1bNkS169fR8OGDbU+NiIiQrJoAf0/Ozs7rF27VuPFfNeuXVOv+qGL0NBQ/Pnnn5m216tXD8OGDTMqTiVInTeuXbtm5kgoPbkq70onkuTLl0+yzdnZWWM1+MjISMl95NrMhcf1x8XOzg5TpkzR2BYeHo7Vq1dL7ps+keTTTz9F1apVFY9PSXKJJHLfEbMybatUWcM5JyuTO6Zy5Mihcz+RkZEYPnw46tSpgxMnTqi3d+/eHY8ePcLSpUtlVyPLqhISEjBt2jR4enpiz5496v+HatmyJW7fvo2NGzeiYsWKFo7SOmj6bH7+/DmTSYiIiIiIiIiIshlz5TNY+1yVIeRyHLJTfoOpFSpUCF988YXGNm3z/IcOHcJ///0HAOjVq5f6wsi+ffvC0dFR4z5r166V7G/jxo3qfw8ZMkR2bE2sZc44T548io6VHVn7e2Xt50zO739cWrRogdq1a2ts27x5M16+fKmx7eXLlzh06JD6/ogRI0wSn5I+xvl9az/fZGW5cuWCnZ2dZLs+8/tXrlyBl5cXRo4cqf6by5MnD5YuXYr79+9j8ODBFl/8yhT8/PzQpEkTdR4DADg6OmL69Onw9/fHxIkTkTt3bgtHaXn8XCYiIiLSHwtFEBEREZFe5H6IVDKxQi7RICv84KetArU+P4wrxcPDAx06dDBJ3wULFoSvry+aNWum9bF///23SWLIbpo2bYpFixZpbJs0aZJsBfT0xowZg7i4uAzbPDw8cODAAatYVVoqoeXy5ctmjoTSk0vuePv2LaKjoxUbS+oYAIC8efNq3C53jrWGiV0e1x+fwYMHS66es2TJEo3JWQEBAfD19VXfzwqJJHLJInLnjaxM23c6azjnZGVyyUkFCxbUqY+zZ8/C09MTa9euVRdKyJs3L/bu3Ytdu3bBzc1NkVitzb179+Dl5YV58+ap/z/M0dERq1atwvHjx1kg4gP8bCYiIiIiIiIi+jiYK5/B2ueqDCH3nCyR35CVDRo0SOP2R48e4eLFi5L7LVy4UP3vSZMmqf+dP39+dOrUSeM+e/fuRURERKbt4eHhOHjwIACgRIkSaNmypS6hZyA396NrvoKuDJkzpv8n9149f/5c0bE4v0/ZwdSpUzVuT0xMzHAuTm/9+vVISUkB8H7Rk969e5ssPqVwfj8jazjfZHVSBYEcHR3h7Oysdf/U1FTMmDEDn376Ke7cuaPe3rBhQ9y5cwcTJkyQLUaRla1atQpVq1bFmTNn1NsqVaqEq1ev4n//+x9y5sxpweisCz+XiYiIiPRn+auCiIiIiChLkUusUPLCYbmJ3qtXryo2jqkkJibKtut64ZvSTPna5ciRA3v37kWpUqVkH3f37l2TxZDdTJw4EcuXL880ARIaGormzZvjyZMnkvumpqZi/Pjx+OOPPzJsL1++PHx9fVGoUCGTxKwvqUnJS5cumTkSSq9AgQKy7ffv31dsLLkK8OXKldO4XS75JCQkxOiYjCV1XIeGhuLx48dmjobMwcnJCRMmTNDY9ubNG6xfvz7T9rVr16pX58qXLx969OhhyhAVERsbK9mm7fM/q5I73wDWcc7JyuSSi4sXL651/7Vr16JFixYZVvYpWrQozp8/j86dOysSozU6dOgQ6tWrp15ZDnifkObr64tRo0ZZMDLrxe+cREREREREREQfB3PlM1j7XJUh5HIcLJXfkFW1bdtWssD4pk2bNG6/fPkyzp49CwD47LPPUKVKlQztQ4cO1bhfXFwctm3blmn7jh071BfLDhw40KBFJOTmjENDQxEcHKx3n1IMmTOm/yf3Xik5tw98XPP7nEPIvr788kvJoutr167NdFympKRg3bp16vt9+vSR/c5hLaTm9+3t7VGsWDEzR2Me1n6+yeqk5vfd3NygUqlk942NjUX79u0xd+5cddEVAOjWrRv+/vtvlChRQtFYrUVKSgqGDh2KMWPGZFhkpnHjxrh48SIqV65sweisE/PuiIiIiPTHQhFEREREpBe5SYK3b98qNk7RokUl2w4cOKDYOOnFxcUp1pe2QhGFCxdWbCx9vH79OsOFdErLly8fVq5cKfuYoKAgk42fHY0bNw6nT5/ONCng7++PKlWqYMaMGXjw4IH6YuPIyEj88ccfqFmzJlasWJFhnwEDBuDatWtwd3c3W/zaFClSROP2wMBAi1SBPnXqFIQQit1mzZpl9uegBG2FRO7du6fYWHKrN1WtWlXjdrkq9Ldu3TI6JmNJHdcAsGfPHjNGQuY0evRouLi4aGxbuHAhkpOT1feTk5OxYcMG9f0BAwbAycnJ5DEa6927d5JtZcuWNWMk5qNt1YubN2+aJ5Bsyphjas2aNRg+fHiGzxEHBwf89ddfqFSpkmIxWpvDhw+jc+fOmZLad+zYgcaNG1soKusn9dm8d+9eM0dCRERERERERESmZK58BrnfjrPq78ZyOQ6Wym/Iquzs7NCvXz+NbX/88UeGiwTTpF/BfvLkyZnamzdvLjnPn/7i5TQbN24EAKhUKgwaNEinuD9k7XPGpUqVUnRuXwiRZQujy71Xfn5+sq+vvpSe37eGc6bUHMKlS5dMmmNFlqNSqfDtt99qbIuNjcXSpUszbPPx8cGLFy/U90eOHGnS+JQiNRdbunRpgwoIZQVy55uAgABERkaaMZrsR+qY0ja3Hx8fj/bt2+PIkSMZttevXx/btm2TLUKUlQkhMHDgwEyLy3h4eODAgQPIkyePhSKzbsy7IyIiItJf9vw/PCIiIiIyGQ8PD8m2d+/eQQihyDilS5eWbPv333/h7++vyDhpEhMTUaFCBezevVuR/uSSTGxsbCRXjzCHv//+26T9t23bFjVr1pRsT1u1gnRXv359nD17FiVLlsywPTY2FnPnzkXFihXh6OiI3LlzI2/evOjRo4d6Ml2lUqFDhw44e/YsNm3aJFlx2VI+fE7prV692iRj7tixA8+fPzdJ39lFjRo1ZCeFlUzW0JQIlaZevXoat7u5uUnuEx4ejqdPnxodlzE++eQTydUjvL291YVdlHTu3DmcOXNG8X5Jd3ny5MHo0aM1tj179izDak4HDhzAmzdv1PezeiKJg4MDqlevbt5gzCRnzpzIly+fZPu1a9fMGE32I5WI4+bmJvt9+eLFixr/3iZMmIAaNWooFp+1efz4MXr16pUpCbN79+5o166dhaLKGqS+c/733384deqU4uMlJydj2bJlGYoEERERERERERGR6Zkrn0Fururu3btaF5awRnI5DnILfZBmUsUZIiIiMi2O8vjxY+zbtw8A4OXlhRYtWmTaT6VSYfDgwRr7vHXrFq5cuaK+f/v2bVy/fh0A0KJFC4OLH9SqVUu23dJzxvT/5N6r5ORk3L17V7GxpN4rFxcXVKxYUWOb3DnTGubapOYQkpOTsXbtWpOMuWbNGoSFhZmkb9JN7969UaJECY1tq1atyjCP6e3trf53vXr1UK1aNZPHpwSp+f26deuaORLzkTvfCCHUn4+kv9TU1EyLGaTR9p3h66+/xj///JNhm0qlwpo1a7JtkQjgfSGw9LlCaVasWIG8efOaP6Asgnl3RERERPpjoQgiIiIi0otcYkVqaqrsqsD6kKoynyZt9QOlbN68Gc+fP1dsdQC5ybzSpUvDzs5OkXEM4evra/Ix+vTpI9mmbWVuyuzFixdo0qQJnj17hnLlymH//v348ccf0bFjR1SsWBGFChWCSqWCjY0NSpYsiZo1a2Lw4MHYuHEjAgICcODAATRs2NDST0MjT09P2NraamzbtWuX4hPjcXFxGDt2LKZOnapov9lNnjx5ZCe2fXx8FBtLKunM3t4erVu31timrRJ9+kQoU9AlibBKlSoatz99+hRHjx5VOiT8+OOP6NWrl+L9kn4mTJiAHDlyaGxbsGCBerIyfSJJ06ZNUb58ebPEZ6zAwECN22vXrg0nJyczR2M+cuccazjfZGVSnwENGjSQ3CclJQWDBg1CSkpKpraxY8cqFps1GjFiBKKiojJtHzdunAWiyVrk/v9y1apVio+3d+9eTJw4ESdPnlS8byIiIiIiIiIikmaufAa5342TkpIUvYD+Q6b63VhuXrZcuXImGTM7q1SpkuSFuJs3b85wf8mSJeo5pEmTJkn2OWjQIMm59XXr1qn/nT6fRqq4hC48PT3xySefSLabY87Y1dVV68WnBDRu3Fi23RzvVevWrSVzoeTOmTdu3DBp0WVdzplycwhr167NVMDbWC9fvsSYMWOwZMkSRfsl/djb22Py5Mka2yIjI/Hrr78CeJ+zlf5vKKssAgFIz+83atTIzJGYT1bIJ8qqIiIiJJ+f3Pz+uXPnNC4W1aJFC3h6eioWn7V58uQJpk+fnml72bJl8fnnn1sgoqyFeXdERERE+mGhCCIiIiLSi7Yf01+/fq3IOEWLFpUt2vDLL78gJCREkbHi4+Px448/In/+/KhZs6YifYaGhkq2SVXQN5fDhw8jISHBpGPIreigVDGOj8V///2H+vXr4/bt2yhbtizOnDmDjh074vvvv8f+/ftx//59BAUFITExEe/evUNAQACuXr2K9evXY+DAgZLV761Fjhw5JH/Yj4+Px5QpUxQdb8uWLQgPD0f9+vUV7Tc7atq0qWSbn58fHj16pMg4r1690ri9cePGcHFx0dim7Vz9+++/Gx2XHF0qk8utwDBlyhRFz8MPHjzAsWPHeFxbgUKFCkkm3D18+BB79uzB48ePceLECfX2rJRIIpXY2qlTJ/MGYmZy55z//vsPt2/fNtnYplgJQQmaijQY4v79+xq3t23bVnKfgwcP4uHDh5m2e3h4yK4Qk9XduHEDf//9d6btTk5O2XrVH6XIvUZ79uzB6dOnFR1v+fLlsLW15XtDRERERERERGRm5spnsORclal+N7bmHIesatCgQRq3+/r64s2bNwDev+5phR1KlCiBHj16SPZXrFgxfPbZZxrbdu7ciZiYGCQlJWH79u0AgHz58hk1h6NSqWQLEJw+fVpyZXF9Sc0Zt2vXDiqVSpExsrMqVaogf/78ku2HDh1SbCyp96pDhw6S+8idM6OionDkyBGj45KiyzmzbNmykq/fq1evMH/+fEVj+vXXX5GcnMz5fSswdOhQFCxYUGPbsmXLEBsbi3Xr1qnnRvPlyyd7nrYmqampuHPnTqbttra2sn+vWV358uWRO3duyXZryCeyBCXm96Xm9nPmzCmbY7Zw4UKN2+X2yQ6WL1+usdBQkyZNLBBN1sO8OyIiIiL9sFAEEREREekld+7csqtFvHz5UrGxpCa4gfcThT/++KMi4yxatAjPnj1DixYtYGOjzFdkuSIWlStXVmQMQ0VERODgwYMmHaNAgQKSbV5eXiYdOzv577//0KRJEwQGBsLe3h779++Hq6urpcNSnNzf+saNGxVLWoiNjcWcOXMAcNJFF/369ZNtV+o88vTpU43bhw4dKrlPoUKFZKvKHzp0SLFiQprosqKJ3HF9//59TJs2TbF4vv32WwgheFxbicmTJ0uuljNv3jysWbNGvcpCoUKF0LlzZ3OGZ5Rbt25l2mZjY4Pu3btbIBrzad68uWz7hg0bTDa2KVdQMkZiYqLRfURERODx48eZtjs5OaFdu3aS+/31118atxcqVMjomNKzttVepJ53/vz5Jc85hrC2562UatWqoUiRIhrbhBAYNGiQYgnN+/btw8WLF1G9enXkyZNHkT6JiIiIiIiIiEg35spnqFGjBvLmzSvZvm3bNsVXoE9jit+Nk5KSEBkZqbHN1tYWFSpUUHzMj0HPnj2RI0eOTNtTUlKwbds2AMDKlSsRFxcHABg/frzW33uHDBmicXtUVBR27dqFw4cPq+dJ+/TpAycnJ2OeguyccWJiomIrOhsyZ0z/T6VSoW/fvpLtly9fRnBwsNHjpKam4vnz55m258uXD126dJHcz9rn2lQqFVq3bi3ZPnfuXNy4cUOReF6+fIkVK1bAzs4ODRo0UKRPMlyOHDkwfvx4jW2hoaFYuXIl1q9fr942YMAAo8+r5vL48WONc1/NmzdXfF7VmtjY2Mjmzty4cUNygQwlZOf5/WvXrmnc/sUXX0j+XSQlJeHYsWMa2z7W+f3s/ryVwrw7IiIiIv2wUAQRERER6a1Ro0aSbYGBgYqNo+2iw1WrVhk9EXfr1i3MnTsXgPSEuiECAgIk2z799FPFxjHUsmXLTNq/3AXabdq0MenY2cXr16/RqlUr9WvZq1cvVKpUycJRmUa3bt1k24cNG4YXL14YPc7s2bPx6tUreHl5WbxgS1bg5eUlWyn7t99+U6QS/u3btzNtc3V1lU0kAYAvv/xSsi0pKQne3t7GhiZJl6rkzZo1ky2as3TpUkUSp3x8fHDw4EE4ODhkmZUrsrtSpUqhV69eGttu3bqV4TN48ODBsLe3N1NkxomKitL4vatr164oXry4BSIynzZt2mhM5EyzdetWyQRaYym5CoKSYmJijO7jypUrGrd36dJFdtWru3fvatyu1EX+aZRYVUVJH+vzVlLXrl0l254+fYqRI0canUgTHR2NKVOmAAD69+9vVF9ERERERERERGQYc+Qz2NnZ4YsvvpBsDwkJwa5duxQZ60Om+N342bNnkr+NVatWDTlz5lR8zI+Bi4uLZMHwzZs3Iy4uDitXrlQ/dtiwYVr7bN++veTiEuvWrcPGjRvV9wcPHmxA1Bl16NABJUqUkGxPi99YmuaMvby8UK9ePUX6/xiMGTMGKpVKY1tqaipWr15t9BiPHj1CfHx8pu0DBw6UnUurWbMm3NzcJNsPHz4sWSzEWLqeM+XyVpKSktC3b19F5gO//vprxMbGon379rIFh8h8xowZA2dnZ41t06dPz1BkauTIkeYKy2inT5/WuH3ixIlmjsT85PKJAODXX3812djZeX7/33//1bh9+PDhkvv4+flJvibZeZ47JiZG8nMtOz9vJTHvjoiIiEg/LBRBRERERHqTS6zQVDneUE2bNoWHh4dke1JSEnr06IGwsDCD+g8KCkK3bt2QkJCAcuXKyVaH15dUoQiVSiV74bW5XLhwAYcPHzZZ//fv39e4vUKFCqhTp47Jxs1OBgwYkGGy0RoTIJSqSF2jRg3UqFFDsv3Nmzdo1aqVUSv8+Pj4YOHChQCAESNGGNzPx2bcuHGSbY8fP8aff/5pVP8xMTEaLzz/+uuvtV48P2jQIMlEFwCYN2+expXqlRAbG6v1MQ4ODrIXiKampqJr166Sk/O6CAwMVI/RuXNnFCxY0OC+SFnffvut5PGZtlKDjY2N7IS5tdm7d696Ras0KpUKU6dOVaR/a568dnZ2lk0OCw8PV18YrjRdzjeWEBoaanQfO3fuzLRNpVJh0qRJsvu9fftW4/ZHjx4pmnij5Gp/ShzfUs/73bt3ePbsmdH9pzHmeZtqtRKl+tWWZL19+3aMHz/eqPGGDRuGx48fI0eOHHoVisiuK70QEREREREREVmCufIZtC1EMXnyZMnf9Yxhit+N5RbCyGor3ssVuleiCL6+pIo13L17F2PHjlUvHDF8+HDJC5XTs7Ozw4ABAzS2Xbx4UZ0H4uXlBS8vLwOj/n+2trYYPXq0ZPupU6dw9epVo8bw8/NDUFBQpu3fffedUf1+bMqVKye7cMvKlSszzfXp6+zZs5m2OTo6YsKECbL7qVQq2cIlycnJJrsAX9dzZvv27VG4cGHJ9vv37+OLL77Au3fvDI7F29sbf/zxBwDmrViTvHnzYtSoURrb0ub2gfd5jOXLlzdXWEbbtm1bpm01atTA559/rkj/1jy/36NHD+TOnVuyfcOGDTh//rxJxs6u8/sxMTH466+/Mm2vXr06WrRoIbmf3HdhTUWijGFN8/sRERGSbdbyvK19bt/a8+44v09ERETWhoUiiIiIiEhvcokVDx8+VGwcXS4+9PPzQ5s2bRAcHKxX3w8ePEDTpk3h5+cHAJgwYYLsBcf6kqoIXLlyZXzyySeKjWOM4cOHG1xkQ5vdu3dr3P7tt98a1J/cD6uG/OgqlwBiih9x9e3T19cXx48fz7Dtr7/+srofmNNPiH5I30mI6dOny7Y/fPgQ9evXNyjJxNfXF926dYMQAsWLF0e/fv307sPUpI5JSx+P3bt3l03++vnnn42K5ejRo5mOo+LFi8sWqEhTpkwZdOnSRbI9Li4Ow4YNM8lrqOtKIZMmTYKTk5Nke0xMDD777DNs3bpV7xiePXuGZs2aITQ0FLa2tjqfX0NDQzFp0iSUKVMGjo6OKFasGPr37487d+7oHYMpmPs8Z6rxPD090aFDB9nHtG7dGu7u7iYZ3xQ0JZIMHz4c1atX17kPuc9fJVaw0ETqPdb3vZ88ebLsd8V169bh5MmTevWpCyVWJjKF4OBgo2KLiopSJ8Kl16VLF62Jq1Ir18XHx+PAgQN6xSF37pNKljQkyViJ41tuxT59VyZ8/vy5ZCKjIc87jdR3Q2OTcpTqt0qVKlrPzb/88gt69eql90ouqampGDlyJH7//XcAwKhRo/RaCUzJ79VERERERERERB87c+UzNGvWDLVq1ZJsDwoKwtdff63YeGkSEhIUX61aKr8BeH9hbFYi99pYYpXvZs2aoVSpUhrb1q9fDwCwt7fH+PHjde5TrkhJ2oWN2gqZ6GPcuHEoU6aMZPtPP/1kVP8HDx7MtK127dqyRbwtyZrzTRYtWiS5IENISAg2bNhgVCya3quxY8eiRIkSWvcdPXo0cuXKJdnu6+uLzZs3GxWfJrrOZ9nb2+Obb76Rfcz58+fRqFEj+Pv76x3Hli1bMGbMGABArVq1dF7M6Ny5c2jfvj0++eQT5MyZE1WqVMH//vc/k82t6iu7zO9PnDgRjo6Oso8xVTETU3j+/DnOnDmTYZtKpcIvv/yiVz/mnt9XKj/Q2dlZ9v0SQmDo0KGIj4/XKz5dWOv8/qNHj4za/48//kBUVFSm7XPnzpXNo5Cb4z506JDehTXu3r0r2abvPLcpj2+5533+/Hm9F8tSOq8BMN38tJL9WmPeXRrO7xMREZG1YaEIIiIiItJb6dKlUalSJY1t9+/fV3Ss/v37a70A8dq1a6hZsyaOHDmitb+EhAT88ssvqFWrFh48eADgfbVsJVf0jo6OxuvXrzW2tW/fXrFxjPXq1St06NBB74ugtDl79ix8fX0zba9Vq5bBF+jLJWwkJyfr3Z/cKgmG9KeNvj/+btq0KdM2Hx8fNGrUCOvXr8etW7cQHByMmJgYJCcnW6yAhNxKCZomh+R06tRJNmkLeD+R2aBBA3z//fc6rdIQFxeH6dOno127duoJnMWLF8tOxliK1DFp6eNRpVJhzZo1kskkV65cwZYtWwyOZe3atZm2LVy4UHaSJ725c+fCwcFBsv3kyZMGJeAJIWQ/z3Rdub1o0aKYPHmy7GPi4+PRv39/dO3aFU+ePNEptm3btqF27drqBJQRI0bodLG+n58fvLy8sGTJEjx58gSJiYl49eoVtm7dipo1a2LlypU6PS9Tkjs+Lf33oC9txa6y0iox//zzD/7+++8M24oXL4758+fr1Y/cROmLFy8Mik0bqe8Q+h5PVapUkf0eI4RAjx49DEoMu3fvnmSbrucbcxNCaFwxRFcrV67MlFzh7OyMxYsXa91XbhWHGTNm6JS0kZycjB9//FE2iVvTKh+PHz/GrFmzJPeROsaVOL7lnvfChQsl///jQ2vXrkXlypUlV2/R9LxDQ0MxceJErX1LfT/T93uhKftdsGCB7HcH4H3hjWrVqmH//v069fngwQM0b94c3t7eAIDChQvLHieaKPm9moiIiIiIiIjoY2fOfAZtF8hv2rQJy5cv17vfxMRE9aIXmij927HUxYOOjo46X8xsLeTyHyxxYbVKpcKAAQNkH9OrVy8UK1ZM5z7LlSsnO7fu5OSE3r1769yfNjly5MBvv/0m2b5nzx6DV3NOTU1VF8xIY2tri2XLlim62IuSrDnfxNPTU7bYwaxZsxAeHm5QHC9evMDRo0czbCtSpAi+//57nfZ3dXXFpEmTZB8zatQoXLx4Ue/YXr58Kbl6uz7ny1GjRsHDw0P2Mbdv30aNGjWwePFinYrPvH37FiNHjsTAgQORkpIClUqFlStX6nR8//rrr2jSpAkOHTqE8PBwxMXF4e7du5g5cyaqVKmiaPEjQ2WX+f3ChQtj0KBBku2FChVCp06dTDK2KUyfPj1TLtno0aNRv359vfox9/y+kvmB3333HfLnzy/Z/uDBA/Tt21ddYEkfWXF+/8SJE7KfX3KSkpKwZMmSTNs7dOiAL774QnZfuTnu0NBQzJs3T6cYnj9/jtatW8vmE2j6HPD29sa5c+c0Pt6Ux3fevHklc+2SkpJ0LkoQHh6OPn36yC64pOl5Hzp0SOtiE6aan1ayX2vLu0uP8/tERERkbVgogoiIiIgM0qNHD43bHz58qOhF63Z2dli3bp3Wi3kCAwPxxRdfoH79+li9ejXu3LmD6OhoJCUl4fXr1zh9+jS+//57eHh4YNy4ceoEAFtbW6xduxa2traKxXz79m3J10DbCrbmduHCBbRs2RKvXr1SpL/w8HAMGzYs0/ZcuXJh06ZNBr/OUhO6gGGVuOUmvk2RHKJvjFKJOOfPn8fQoUNRvXp1uLq6Infu3LC3t4eNjQ1UKhVUKhVsbW1hZ2cHBwcH5MyZEy4uLihUqBBKlSqFypUro0mTJujbty+WLVsmW21aF4GBgZJt+la+Bt6vmCK3ggTwfpJm/vz5cHNzw8iRI3Hw4EE8f/5cvXLOq1ev4OPjg6+//hpubm748ccf1RPFbdu2tcpVR1JTUyWPEWs4HitVqoTp06dLtk+cOBHPnz/XO46TJ0/i2LFjGbYNHDhQ8vNFk/Lly8vGBgDLli3D+PHjdVoJHXi/ys7AgQOxe/duycccPnxY5xinT5+OypUra33c3r17Ua5cOXTq1AlbtmzBf//9py4GExISggsXLmD+/PkoX748+vXrh5CQEABAsWLFMHfuXJ2eV5cuXST/bpOSkvDVV19lSsQyN7nj09BJa0PHM1bdunXRrFkzjW3FihWzquJRchITE9Wr26RxcHDA7t27kS9fPr36kvs8//fffw0Jz+AxDXnvFy9ejEKFCkm2h4SEoEmTJrh9+7bOfV6+fBmNGzeWbP/333/Vf+/WZv78+QYleD1+/Bhz5szJtH3RokU6rThVu3ZtybZHjx6hW7dusiuP7N+/H9WqVcP06dNlkz8+XI3k3r17aNy4sexnntTxFhoaKrsiny7knndoaCjat2+P0NBQycecPn0a9evXx/Dhw2UTE+7fv5/hM/Ply5do0qQJbt26JRvf27dvJV93Q74X6rK/If1WrFgRP/zwg9bHPXnyBJ06dYKnpyfmzZuHixcvIjw8HCkpKXj37h0ePnyIzZs3o3379vD09MyQBL18+XI4OzvrFZfS36uJiIiIiIiIiD525spnaN68OQYPHiz7mAkTJmDRokU69xkTE4P27dvjwoULko/RZ65KF1K//zVr1gy5c+dWdCxTkyuqGxMTY5GVvgcOHCh7Ubi2C+A0GTp0qGRbp06d9J7D0aZly5ayF1EPHjzYoNc2bV40vRkzZuh9MbM5WXu+yfTp01GxYkWNbaGhoQYXs58xY0aGeSEbGxts375dr2Pt+++/lyzkA7yfD27Tpg3++ecfnfv08/NDgwYNJF+n169f48aNGzr15eTkhA0bNmjNbYqKisLkyZNRvHhxTJo0Cb6+vnj16hUSExMRFxeH58+fY//+/Rg+fDiKFy8Ob29v9WfPqFGjUKdOHa2x/Pvvvxg3bpxknsPTp0/RuHFjxfK9DJWd5venTJki+d4PGjRIa+6itThz5gy2bt2aYVudOnU0Xuivjbnn95XMD/zkk0+wbNky2cfs3bsXPXv2RHx8vM79Tps2TfZ7ndLf0ZQSFRWFpUuXGrTvwoULM82dFyhQAKtXr9a6r5ubGwoXLizZPn/+fNk8pXfv3mHmzJnw9PTE8ePHZcf6MMYlS5Zg5MiRkudRUx7fKpUKNWvWlGzfvn277MIDCQkJWLJkCcqXL48dO3bIjvXh8961axc6d+6stZiRqeanle7XWvLuPsT5fSIiIrI6goiIiIjIAA8fPhQANN4ePnyo+Hi//fab5HjG3JYuXap4rKtWrdI4lru7u0hNTVV8PF2VKVNG8nVwdXUVe/bsMar/sLAwUbdu3Ux929rain379hnVd9u2bSVjv3nzpt79zZ49W7I/b29vg+OU6rN9+/Z69dOrVy+THO+abrVq1RK+vr4GPd9atWpJ9vvdd98Z1OeePXuESqVS/HmWLl1ahIeHGxSTqT179kwy7k8//dTgfgcMGCDZb1hYmF59paSkiPbt20v2V61aNfH27Vud+wsICBBubm6ZjsXo6Gg9n6UQycnJok2bNlqPgWbNmgl/f3/Zvu7evavxPPbhzcnJSZw+fVq9371798SJEyck+/Xz8xP58+dX/Lh2dHQUly9f1ul1+ueff3TqM2fOnCIgIEC3F98E9u/fLxnbzJkzDerz6dOnkn3qe37Wl6+vr8Zxf/jhB5OM16RJE43jOTg4iM2bNxvU59ChQzP0ZWNjI37//XeD+lqwYIHke2FjY2OS75CVKlWSHDMiIkLv/k6ePCns7Oy0/h2tWrVKpKSkSPaTlJQk5s+fL5ycnLT+XXbt2lXExMQIIYSIiYkRe/bsMSh2Q0gdU2m30aNH69VfTEyM+PTTTzP1M3DgQJ37OHXqlNbXrGzZsmLbtm0iODhYxMTEiLt374pFixaJqlWrqh9jZ2cnFi1aJOzt7SX72blzp4iNjRW7du0SefPmFTY2NuLIkSMa43rx4oXssTF9+nS9XqsPPXnyROt3pCJFiojVq1eLwMBAERcXJx4+fChWr14t6tevn+FxkyZNEu7u7pL9LFy4UMTGxorjx4+rP69/++032fgOHTok+3kVGRlp0PO+e/eu7HN+8OCB3n2mpqaKjh076vS5qO9t4sSJBj3PyZMnS/ZZr149g/okIiIiIiIiIvqYmTOfISYmRlSrVk3rb0fdunUTb968ke3r3Llzonz58lr7KlCggLh37556vytXroiLFy8a/BwKFSqkcZyNGzca3KclJCUliRw5csi+dsa8TsZo3ry5xnhat25tUH+xsbHCxcVFY59y85bGiIuLk80RaN26tUhISNC5v+vXr4s8efJk6OOLL76QnV+xBtaebyKEEI8ePRJ58+aV7FPfucr169dn6mPBggV6xyWEEPfv3xfOzs6yf6d2dnZi9uzZWo+ndevWSf4dpL81bNhQnSORkJAgfHx8xLNnzyT7XbJkiUnmEOrVq6fz30j//v116rNt27a6v/gm8OWXX0rG9uTJE4P6/OGHHyT73Lt3r8LPIKPevXtnGlOlUhn8XOTI5TFUrFjRoDFfvnwpSpQokaEvDw8P8erVK737Sk1NFRUrVpSMsVGjRnr3qc2///4rOd6XX35pUJ8f5jtoulWvXl1cv35dtp/nz5+Lzz//XGtfKpUqQz7F06dPxcGDBw2KXV9yxxTwPm/k7NmzevV54cKFTDkNtra2en3XGDhwoNbXrUePHuLChQsiJiZGBAcHi5MnT4pRo0aJfPnyqR9TunRp2TnVcuXKiadPn4rg4GAxatQo9TapeWpT56/MmjVL6/Nu1aqVOHHihHj37p0IDw8XFy9eFFOmTBFFihRRP6ZgwYKy3z0KFCggbt26JSIiIsSsWbOESqUSBQsWFC9evJCNr2vXrpJ99uzZ0+DnbYp5b2vIu0svOTlZuLq6SvarLbeCiIiIyBRYKIKIiIiIDFajRg2NP3Rt27bNJOPNmDFD0R/6vv/+e5PEOWLECI3jzZ492yTj6UquUETarWXLluLkyZN69+3r65vpom8Awt7eXuzYscOouBMTE2V/6F21apXefbZo0UKyv2HDhhkU54ULFyT7dHV11SuZ4d69e1oTWJS+jR49WiQnJ+sc48GDB2X7y507t9aL8qWsXLlS0WIRzs7O4vbt2wbFYg5bt26VjT0uLk7vPlNTU2WTyA4dOqR3n9HR0aJp06aSfVarVk2nieoHDx5kOh/VrFnTqEIeERERombNmlqPBQcHBzFw4EBx+PBhERQUJBITE8WLFy/EkSNHRM+ePYWDg4MAIPLnzy/atWsn25dKpRIlS5ZUT0pWqFBBNsZLly5lSnQy9qZPcp5UESNNt/Hjxxv8Xhjr22+/lYyrc+fOBvW5a9cuyT4LFy5s8iJOHx6btra2IjAw0CRjabuof8aMGXqd66dNm5Zhfzs7O4MLTjx+/Fgy0TT9uSA4ONig/jUJCgoStra2kuNJXfCvzZYtW4SNjY3Wv6UKFSqIpUuXijt37ojY2FgRFRUlbt++LX766SdRrlw59ePkCvuk3XLnzi1KlSqlLkRgaLEOfWk7pgCIkSNHivj4eK19hYaGavwcadOmjU77pyf1/yG63ooWLSrOnDkjhBCiQIECOu83b948jfGkpKSIHj16yO5rb28vjh49qtfz/FDnzp2Net4uLi7izz//FELIF/z68DZ8+HDZuJKSkkSdOnVk+xg1apRJnnO7du0MShqOiYkRzZo1M+r1/PDWsmVLvc6xaQIDA7Umxe7atUvvfomIiIiIiIiIPnbmzGd48eKFKFWqlNbfkHLlyiW++uor8ffff4uwsDCRmJgonj59Kvbs2SPatWunniMtVaqUaNy4sWxfNjY2wt3dXf3b0meffWZQ7K9fv9bYv7Ozs0FF3i3Jx8dH63tgaGFyY23btk1jPIYu6iCEECNHjszUX6lSpUw69/XmzRtRuXJlyde3efPmIiQkRGs/Fy9ezPT7/Oeff673fIElWHu+Sfo+5eanJ06cKJKSkrT2s2bNmkzzYnPmzDHkaaqdOHFCp2LqxYsXF3PnzhXXrl0T0dHRIjY2Vvz3339i5cqVwsvLS/241q1bi8KFC8v25eTkJEqXLq3OCdBW6EJu3tqQW7FixcTLly91fo20zbukv924ccOo98NQKSkpomjRopJxGXpxvNzF+N98843CzyKj27dvZ8pXatOmjUnG0nZRf6FChfS6qD8sLExUqVIlQx9lypSRLYoi59dff9V67Cm9QMaiRYskxypSpIhB83AJCQmyC1Sl3WxsbETnzp3F3r17xcuXL0ViYqJ4/fq1+Oeff8TQoUNFrly51OeS7t276/Q3n5YfkSdPHpGYmKjoa6WJtmMKeJ93oGvO2MmTJzN9jqhUKrFhwwa94rp165bR59AOHTqIt2/fyi5e8OEtb968GQqrpWeO/JWgoCCj8z8//fRT8eLFC62LK6S/OTg4aM3/vX79umwuja2trbhw4YLez9mU896WzrtLb8WKFbL9urm56b2IFxEREZGxWCiCiIiIiAy2bt06jT90jR071mRjzp8/3+gLyG1sbIyetJTj6emp8cdTQydelKJLoYi0W+XKlcXMmTPFuXPnxLt37zT2999//wlvb29Ru3ZtjX0ULFhQ/PPPP0bHPXfuXNlYixcvLt6+fatzf9evX5e9uNPBwUHcvHlTrxgTExMlVwBJuy1ZskSvPs+cOaN1Ilvpm7bVvBMSEoS/v79YsWKFyJkzp9b+ChYsKLy9vcWjR4/0LnawZcsW4ejoaPRzyps3r0ETF+aSmJgo+TeUdjNkolvq/Jx2q127tl6ruaSJjY2VrSieK1cuMXv2bI2rIQUGBorZs2dnSvjo3r27iIiI0DuWD4WFhYmGDRsafcyUKVNG3Lt3T3aVivS3SpUqiUWLFuk0OXjt2jWNRXX0vdnY2IiVK1fq9fps3rxZ5/6LFy9u6NtglKdPn8pO6tna2opTp07p1acuq3gZUnBIH3v27MkwXseOHU021po1a9QJClK3qlWrak0oiYqKynTRe548eYSPj49e8URHR4ubN2+KBQsWaJ1kT7sVKVJELFmyRNy9e1fExsYa83JoXR2kVq1aBp0LhXhf5CctkcyY2/fffy9SU1N1emyOHDlEnz59xD///GPyAidppApFFCpUKMPndMWKFcW2bds0vmdhYWFi1apVomDBgpn66dy5s0Hv8/nz59VFM/S9tW7dOsM5u0GDBjrtN2bMmAwxJCYmioCAAPH777+LRo0a6Xz+HjZsmDh58qQIDQ3V+3308/MzOPmhZs2a4vHjx+q++vTpo9N+HTt2lEy6Cg8PF6dPnxYtW7bUqa/u3buLU6dOiZCQENmk1nfv3onLly9rLb6RdmvRooU4evSoePPmjV4JYjExMbLfa/S5NW/eXMTExOg8dkpKinj16pXYu3evcHd319q/nZ2dmDZtmrhx44bkqjdERERERERERJSRufMZAgICZFfe1vVWq1Yt8fLlS52KDAMQderUEd7e3gb/brR7926N/Q4dOlThV8i0nj9/nmkVdU03FxcXce3aNbPHFxsbK1xcXDLEUq1aNaP6vHr1aqbnZ44FTEJCQmQLmRQoUEAsX75c4xywn5+fmDBhQqaLE8eOHWvwnI05ZZV8kzTXrl0TxYsXl+y3cuXKYu/evRovYD5//rz44osvMjw+Z86cYt26dQbF8qHjx48rcsHnwIEDRUJCgihZsqROv7V36NBBHDhwQKciGfPnz9epeLy2W/HixcWjR4/0en30KXY9ffp0Q98GoyxevFg2Li8vLxEVFaVXn2fOnJF9zfPly6dXwQ1DfLioyL59+0wyTkxMjPjyyy9lX0OVSiWGDh0qQkNDZfv6999/M/0N1K9fX6+L3FNSUkRQUJDw9fUVAwYM0Dk/s3nz5mLv3r0iMDDQoEIOacLCwoSrq6vsWIsXLzao77i4OKML8gP/X7xj48aNOj2+ZMmSYtasWWbLGZUrFPHhZ0Hv3r3Fv//+q7Gf27dvi6FDh2Y6BhwcHMSWLVsMim306NEGveb29vZi0aJF6nl1Pz8/nfbLkSOHOH36dIYYLJG/8vPPPxv0vFUqlZg8ebL6syouLk62sEPazdbWVnLRkaSkJPH8+XOxefNmnRbTyJUrl1i4cKG4d++ebPE4c857WzLvLi4uTvz3339i1qxZOr0XpUuXFtu3bxdPnz7NEt9xiYiIKOtjoQgiIiIiMlh8fLzGH+irVq1q0nEPHz6sdWJA6ubq6iqOHz9ustiCg4M1TpR069bNZGPqKq1QROPGjcWePXvE/v37xezZs0WLFi1kK/WrVCpRuHBhUaFCBVGtWjVRsmRJ2YtQVSqV6NmzpwgKCjI41ujoaHH79m3xzTff6DTxVKlSJfHnn3+KV69eaZx0Sk5OFi9evBC//fabxosUP7zlzZtXrFq1Sjx48EDygq/U1FQRGhoqjh07ptPFcSqVSkycOFFcu3ZNsvjGh0JCQnSqQq7kbevWrRpjGTRokNF9u7u7634QiPeJLZoKr+h6q169ut6T7eYSGRkpTpw4oXFldU23wYMHiwsXLojQ0FDJCytjY2PFrVu3xPTp03W6eLZevXri8OHD4s2bN3qvQPLrr7/KJm3Y2NgIT09P0bZtW9GmTRvh6emZaTLf1dVVrF+/XomXUy0+Pl6MHTvW4IJCPXr0UBeekSsU4ezsLIYOHSouXryod4xBQUGiY8eOBh/XBQsWFIcPH9Z73MePH+v1urx69UrvMQwRExMjbty4IebNm6fTRKSDg4OYOnWquHLlioiIiNB4kXXa+dnHx0enC8BtbGzEd999J27dumWSlbE+/G6gb7EFfT1//lz07dtXa9JS06ZNhbe3t7h3756IjY0V0dHR4tatW2LOnDmZvmfVrVs3wwXmutD1/Kbtpq2I0YciIyPF1atXdf7cql+/vjh69KgIDg7W+1x4/vx5nSa6Nd0KFSok9u/fr+5L7rE1atQQK1eu1KswllKkCkU0adJE/P333yJfvnyZ/kZr1qwp2rZtKz7//HNRrVo1YW9vn2l/R0dH8dNPPxlV8MLb21uv5DwHBwfx888/ZxpTW1EyAGLSpEkZ9tm0aZMixzeg/8/zf/31l17FtFQqlZg0aVKm5AOp1evS33r27KkxOTQgIECR57558+ZMfRtbFBDQLxE6NTVVLF261ODVXFQqlRg/frxeqwDpU7xJ7hYQEKDzmEREREREREREHyNL5DNEREQYPL+rUqnEV199JeLj44UQQrZQRIECBcSECRPEnTt3jI55zJgxGmO5e/eu0X2bWtrcxv/+979MRRjkbk5OTmL8+PHi3LlzZi3MOmLEiAxxSM3N66N69erq/mxsbMx2MWpycrKYOXOm7O/VdnZ2wsvLS7Rr1060bNlSlCtXLtNjSpcuLQ4ePGiWmA2VVfNN0oSGhopu3brJ9p87d27RoEED0aFDB9GoUSNRpEiRTI9p3LixuH//vhIvqdr9+/czHMP63JydnYW3t7e6L7lCEeXLlxc//fSTxgUvtPH19ZUttqHt1rx5c4PG1XVhC+B9kXRzSE1NFcHBweLYsWM6FyQvW7as2LRpk/D391d/vn0oKSlJPH78WPz666+Z5h413UqUKCG2bdsmnj17plPBD30tWrRIPVaxYsWMKn6gi8OHD4vKlStr/RsdNmyY+Ouvv8TLly9FYmKieP36tThx4oTo0aNHhhwhGxsb8e233+o1d6XU3B8AvRb/SE5OFq9fvxYHDx7UqdiWSqUSU6ZMETdv3tQ7tyM1NVXMnTtX49y1LrcWLVqIFy9eCCGEbKEIR0dH0aNHD+Hr62u2xR/SyBWK2LBhg5g4cWKm7Z988olo3Lix6NChg2jSpInkubRcuXLi0qVLBscWHx+vtSjShzcPDw+NxSzKli0ru1/evHkzFYmwVP5Kamqq6Nu3r15juLq6aswr0vZ9wdHRUfzxxx8a45g9e7bRz12lUmXq1xLz3pbIu9OneJPUrVmzZnqNSURERKQvlRBCgIiIiIjIQHPnzsWMGTMybFOpVAgODkaBAgVMNm5ERATmzZuH1atXIzo6WuvjXVxc8PXXX2PixIlwdnY2WVx79uxBt27dMm2/evUqatasabJxdeHh4YGQkBAEBgZmeg3i4uJw6tQpHDlyBD4+Pnj8+LHe/Ts6OqJLly74+uuvjXquNjY2MPZ/UzZv3oz+/fsDAIYMGYKNGzca1adKpcLTp09RsmRJAECLFi3wzz//GBWjSqVCamqq7GOSkpLQsWNH+Pj4oEqVKhg3bhyeP3+OV69eITg4GG/fvsW7d+8QFRWF2NhYxMfHIzExEUlJSUhJSTHoObu7u+Px48dQqVQZtr98+RJv377Vu7/0HBwcUK5cOb32SUxMxNq1a/Hzzz/j+fPnOu1TuHBhfPvtt/jqq69gZ2dnSKgmc/r0aTRv3lzre6/N7NmzMXPmTADAli1bMGjQIKP7TP93o4ugoCD8/PPPWL9+PSIjI3Xez93dHcOGDcO4ceOQK1cuQ0LV6sKFC/juu+9w9uxZnR5fo0YNzJ07F59//rl626xZszB79uwMj2vQoAGGDBmC7t27Gx27j48PZs+ejcuXL+v0eCcnJwwfPhwzZ87EJ598YtCYY8aMwapVqzJtt7e3h729PWJjY9Xbrl+/Di8vL4PG0dWgQYOwadMmo/sJCAjIcH4+efKkUed8d3d3PHnyxOi40ixevBiTJ09W963pHGsKd+/exYIFC7Br1y4kJycb1IerqytmzZqF4cOHw8bGRq99nz59ipiYGIPGTS9fvnwoVqyY1sc9e/YMpUqVMnq8U6dOoUmTJjo/PiYmBgsXLsSyZct0OhfmzJkTI0aMwPTp05E/f3719g+PiXz58qFPnz4YMmQIqlevrnM8SmvatClOnz6daXuTJk1w6tQpPHv2DCNGjMCxY8d06s/e3h49evTArFmzUKZMGaPj279/P0aOHImgoCDZx9WuXRvr1q1D1apVM7VFRkaievXqCAgIyNSWN29e/PLLL+jbt2+G7REREQgMDDQq9jSVK1fWe5/z58+jf//+Ws9V5cqVw5o1azQe08nJyahfvz6uXLmSqS1HjhyYM2eO+tz1oaSkJDx8+FDvuD/k5uaGvHnzZth29+5do/stVKgQChUqpNc+z58/x5w5c7B9+3bEx8frtE/jxo0xb948NGjQQK+xlDp+ypcvD3t7e6P7ISIiIiIiIiLKziyVz3Do0CFMmzYNt2/f1unxzZo1w7x581CvXj31toEDB2Lz5s3q+zY2NmjVqhWGDBmCjh07wsHBQZFYK1eujHv37mXY1q5dO/z111+K9K+0Z8+eqX9fTklJUaRPGxsbqFQqbNiwQa/5Un1dvnxZ/R67ubnhyZMnRv/G9+uvv2Ls2LEAgNatW+v8e71Snjx5gnnz5mHHjh2Ii4vTeT9PT0+MGTMGQ4cOterfObNyvsmHzpw5g/nz5+PYsWM6Px8bGxs0bdoUU6ZMwWeffWZIqFolJSVh5cqVWLBggdb5HuD9XFPfvn0xe/ZsFC9eXL29VKlSePbsmfp+rly50K1bNwwZMgQNGzY0Ksbo6GgsX74cy5cvR0hIiE77lClTBjNnzkS/fv0MmhsOCwtDjRo1NObJuLi4ZJiXrFq1Km7duqX3GPpSYo67WbNm6uM/7Xxu7Lk8ff6MEqpWrYo7d+4AAH744QfMmjVLsb6lpKamYteuXfj5559x8+ZNg/tp3Lgxli1bpneuh1Jzf8D7nAhd8mnmzJmDH374weix9M3tuHv3LqZOnYrDhw/rdC4sW7YsZs2ahd69e6u3bdq0CYMGDcrwuKpVq2LIkCHo27dvhjwAcwoICIC7u7vGto0bN2LgwIHYu3cvxo8fj5cvX+rUZ5EiRTBp0iSMGTMGTk5ORsWXmJiIiRMnwtvbW/bv3tbWFmPGjMG8efM0Hkv79+9H586dNb5/9erVw7Zt2zLlIpg7fyU9IQTmzJmD+fPnIyEhQfaxvXv3xvLlyzX+f8q///6Lxo0ba+yjQoUK2Lp1K2rVqqWx3+DgYAQHB+sVtyYf5jZYct7bnHl3Shw/uXLlkvz7JCIiIlICC0UQERERkVHCwsLg7u6OqKioDNv1veDYUFFRUfjzzz9x7Ngx3Lx5E4GBgYiLi0P+/PlRuHBheHl5oV27dmjTpo1JC0SkGTJkCDZs2JBh22effQYfHx+Tj62Nh4cHPD09ceDAAa2PffLkCf755x9cvnwZfn5+ePHiBcLCwhAbG4uUlBTkzJkTBQoUQKlSpVCtWjU0bNhQsddYiYvD0l90pkSBAyDjD9JKTR7IXRgohECfPn2wc+dOFCxYEFeuXFEnDugrKSkJiYmJiI+PR3h4OEJDQ+Hn54ebN2/i4MGDmQqDWENhkw+lpqbi77//ho+PD65cuQI/Pz9EREQgJSUFefLkgbu7O2rVqoXPP/8cbdu2tdpkkpiYGDx9+tToftJfAKnUpIumizV1ERsbixMnTuD48eO4desW/P39ERkZiYSEBOTJkwf58+dHhQoVUKtWLbRq1Qr169c3y0XyAHDz5k3s2bMHZ8+excOHDxEeHg4AyJ8/P8qVK4cGDRqgU6dOqFOnTqZ90wpFuLq6on///hgyZAjKly+veIy3b9/GgQMHcO7cOTx8+BAhISGIj49Hrly5ULx4cVStWhUtW7ZEly5dDHp/0ktNTcXy5cuxdu1aPH78GIUKFUL//v3x9ddf47///kOjRo3Uj71w4QI+/fRTI5+dPGs9PxtS1EaKEAIVKlTAo0ePAADz58/Hd999p0jfugoKCsLWrVuxZ88eXLlyRaeksbp162LQoEEYMGCA0ZP95qJU8oquiSsfiomJwZ9//gkfHx/cuHEDgYGBiI2NRc6cOeHm5obq1aujVatW6NKlC1xcXDLtr1KpoFKp0Lx5cwwZMgSdO3eGo6Oj0c/HWNoKRaS5c+cODh06hOPHj+PFixcIDg5GTEwMcufODTc3N1SuXBnNmzdHp06dULBgQUVjjI6OxoYNG3Dw4EHcu3cP4eHhyJcvH9zc3NCwYUP06NED9erVk/3sefnyJb799lv4+PggJiYGZcuWRefOnfHVV18pHq9SEhMTsW3bNuzbtw83btxASEgInJ2d4ebmhjp16qB79+5o1qwZbG1tJfuIiIjAtGnTsHfvXrx9+xYlSpRA+/btMX78eIO/d2Z1b9++xb59+/D333/jzp07eP78OaKjo2Fvb48CBQqgQoUKaNiwIbp06WJQkQ8iIiIiIiIiIjIvS+cznDt3Dvv27cPFixfV85u2trbq35oaN26Mrl27olKlSpn2TSsUUapUKQwaNAiDBg3KcFG0Ep4/f45SpUplutDu4sWLGYpWWBMlL2b9kKHzpfrw9PTE/fv3sXDhQslivfqIiIhAkSJFEB8fj127dqF79+4KRGlYHMeOHVP/tvrkyRO8e/cOycnJcHFxwSeffILKlSujdu3a+OyzzyxaJFsf1jqfCRhWiBp4f3H+kSNHcObMGdy/fx+BgYGIioqCjY0N8uXLB1dXV1SvXh116tRBx44d9b4g1lCJiYn466+/cOTIEVy9ehUBAQGIiYmBo6MjihYtisqVK6NFixbo3r27xmLRaYUi6tatiyFDhqBnz56K54klJibCx8cHvr6+uHr1Kp48eaIu2JA3b154eHigTp06aNeuHZo3b653If4PvXz5EtOmTYOPjw8iIiJQo0YNTJw4EV27dsXw4cOxfv16AO8Lh5vqvJieEvlc6S+UVep8bkgBcSnnz59XFxaxtbXFs2fPzPY3kObSpUvYunUrDh48qFMuUM6cOfHll19i5MiRGXI+rJ0SF64bk9vh7++PP/74A6dOncL9+/cRGhqKlJQU9d9y3bp10aFDBzRr1izTPHNaoQgXFxf06tULQ4YMkbxA35x0KRQBAAkJCThx4gSOHDmCS5cuITg4GCEhIRBCqJ9/rVq18Nlnn6F169ay882GuHfvHjZs2KDOLYiPj0eRIkXg7u6ODh06oFu3bihatKhsH4cPH8acOXNw+/ZtODo6ok6dOhgyZAi6detm9LnXVJ49e4a1a9fi2LFjePr0KaKiolC4cGGUKFECn3/+OXr06KF1sY2LFy9i2rRpuHz5MmxsbFC9enX069cPAwcOVKyIXFZjzrw7IiIiImvGQhFEREREZLSff/4Z3377bYZtnTp1wp9//mmhiCwjKSkJrq6uGSaJbWxscOPGDY2rFxPJGTt2LH799VeoVCqcOHECzZs3N8k4qampWLBgAaZNm6be5u3tjeHDh5tkPCKyTgkJCRkKAvj7+2udgCTt/v77b7Rs2RLA+9VtAgMDFUtSMUR4eDguX76Mu3fvIiAgQF1wJ3fu3ChevDg8PT3RqFEjuLq6WixGsi66FoogIiIiIiIiIiIislbMZ5C2aNEiTJkyJcO2Ll26YM+ePRaKKPvz9fXFhQsX8PXXXyNPnjyK9LllyxY8ffoU3333nVUUoSYi0/P29sbIkSMBAA0bNsTZs2ctHFH20K9fP2zbtg0A0LFjR+zfv9+i8Tx8+BBXrlzBo0eP8PLlS8TExMDOzg758uVD6dKlUaNGDdSrV4/nfgKge6EIIiIiIiLKfuwsHQARERERZX0TJkzA2rVr4e/vr97m4+ODt2/fIl++fBaMzLyOHTuWaSWB/v37s0gE6W3u3Ln49ddfAQDDhg0zWZEI4H0xk++//x6XL1/GwYMHAQChoaEmG4+IrFP6zy8nJyezr4qRXf3222/qf3fq1MmiRSIAIH/+/Pj888/x+eefWzQOIiIiIiIiIiIiIiJzYT6DtN9//z3DfXt7e8yfP99C0XwcWrdujdatWyvaZ//+/RXtj4isX/r5fQ8PDwtGkn2EhYVlKJQ0YsQIC0bzXvny5VG+fHlLh0FERERERERWzsbSARARERFR1ufg4IBFixZl2BYfH4/NmzdbKCLL2LRpU4b7+fPnx08//WSZYCjL2rNnD2bMmAHg/cXaP/74o1nGTVvxPm1cIvq43LlzR/3vhg0b8jyggDdv3uDAgQPq+2kruhARERERERERERERkfkwn0Gzu3fv4tq1axm2ffPNNyhbtqyFIiIiIl2ln99Pn+9Dhtu0aRPi4+MBAO7u7mjTpo2FIyIiIiIiIiLSDQtFEBEREZEiOnbsiB49emTYtnDhQsTFxVkoIvN68uQJ9u3bl2HbokWLLL5yOGUtz549w9ChQ9X3u3btigIFCphl7PR/q1xtgOjjc/jwYfW/e/bsacFIso/169cjKSkJwPuVPpo1a2bhiIiIiIiIiIiIiIiIPk4fez6DJosXL85wv1y5cuoFDYiIyHolJSXh+PHjAABnZ2d88cUXFo4o6xNCwNvbW31/2LBhsLHhZTZERERERESUNfD/YImIiIhIMd7e3ihZsqT6/qtXr7B8+XILRmQ+y5YtQ2pqqvp+27ZtMWjQIAtGRFmNEAIDBw5EZGSkelv9+vXNNv6VK1cAALa2tmjUqJHZxiUiy4uIiMDGjRsBAG5ubujXr5+FI8r6kpKSsGrVKvX9ESNGWDAaIiIiIiIiIiIiIiL6mPMZPvT69Wvs2LFDfd/Ozg4bN26Eo6OjBaMiIiJdbN26FSEhIQCAkSNHIm/evJYNKBs4cuQI/Pz8AAD29vYYMmSIhSMiIiIiIiIi0h0LRRARERGRYlxcXLB9+3bY2tqqt/300094+/atBaMyvSdPnmDt2rXq+0WLFsXmzZstGBFlRdu2bcOpU6cybMufP79Zxg4ICMD+/fsBAF988QXy5ctnlnGJyDpMmzYN7969AwAsWbIEDg4OFo4o69u8eTNevXoFAMiZMycGDhxo2YCIiIiIiIiIiIiIiD5yH2s+gyY//PADEhMT1ffnzJlj1kUMiIjIMBEREZg5cyYAoFixYpg6daqFI8oe5s+fr/53ly5dUKhQIQtGQ0RERERERKQfFoogIiIiIkU1aNAACxcuVN+PiIjAV199ZcGITG/ixImIj48H8L6q+M6dO1GgQAELR0VZzf/+979M206cOGHycZOTk9G3b18kJydDpVJh2rRpJh+TiKzHX3/9hdWrVwMA+vbti27dulk4oqwvKioKs2bNUt8fOnQoC/AQEREREREREREREVmBjzGf4UPXrl3D+vXr1fc///xzfPfddxaMiIiIdCGEwPDhw/Hy5UvY2Nhg48aNnIdWwJ9//onz58+r70+ZMsWC0RARERERERHpj4UiiIiIiEhxEydOxMSJE9X3d+zYge3bt1swItM5cOAADh48qL6/Zs0aNG7c2IIRUVb06NEj+Pn5Zdq+cePGDMeX0hISEtC7d2/1hOewYcNQp04dk41HRNbl5MmT6NGjB4QQaN26NdatW2fpkLKF0aNH4+XLlwAAOzs7fP311xaOiIiIiIiIiIiIiIiI0nxM+QwfSkpKwqhRo5CamgoAqFq1Knbt2gWVSmXhyIiISE5qairGjBmD3bt3Q6VSYe3atWjVqpWlw8ryAgMDMXr0aPX9Vq1aoUaNGhaMiIiIiIiIiEh/LBRBRERERCaxePFi9OjRQ31/9OjRCAgIsFxAJvDs2TMMGjRIfX/WrFkYOHCg5QKiLOvdu3cat6ekpKBz586YMWMGoqKiFB3T398frVq1wu7duwEA1apVw5IlSxQdg4iskxACv/zyC9q0aYO4uDh06tQJ+/fvh6Ojo6VDs0rJyclYsWIFqlWrhty5c6N48eLo0KEDNmzYgLCwMPXjYmNjMWTIEGzbtk29bdy4cShZsqQlwiZSRHJyssbtaUnERERERERERERERFnRx5DPoMl3332HK1euAACKFy+OQ4cOwdnZ2cJRERGRnLCwMLRr1w6rV6+Gk5MTNmzYgMGDB1s6LKv18uVLDBw4EO7u7siVKxcqVaqEMWPG4O+//0ZKSor6cXfu3EGzZs0QFBQEALC1tcXPP/9sqbCJjCY1tw9wfp+IiIiIKLtTCSGEpYMgIiIiouwpMTERPXv2xL59+wC8X43i7NmzyJMnj4UjM15cXByaNm2Kf//9FwAwbdo0zJ0718JRUVYVGxuLokWLIjIyUvIx+fLlw/jx49GrVy+UK1fO4LEePXqEdevWYcWKFUhISAAAuLu748yZM3BzczO4XyLKGs6dO4cpU6bg0qVLyJEjBxYuXIgxY8ZYOiyr1r9/f2zdulVjm4ODA1q0aIGiRYvi8OHDePPmjbqtWLFiePDgAXLnzm2uUIkUV69ePVy+fDnT9rp16+LSpUsWiIiIiIiIiIiIiIhIGdk5n0GTvXv3omvXrgDeF4k4deoUSpcubeGoiIhISnx8PNasWYPZs2cjPDwcnp6e2LlzJ6pUqWLp0KzWmzdvUK1aNQQHB2tsL1y4MNq0aYO3b9/iyJEjGS6sHzduHJYvX26uUIkU9+DBA1SsWFFj2+rVqzFy5EgzR0RERERERObCQhFEREREZFIpKSkYPnw4NmzYAABo1qwZDh8+jBw5clg4MsMlJiaiY8eOOHr0KABgzpw5mDFjhoWjoqzul19+wbhx43R6rIeHB1q0aIEKFSqgfPnyKF26NJydnZErVy7kypULKSkpiI6ORlRUFIKCgnDv3j3cvXsXJ0+exM2bNzP0VblyZRw5cgTFixc3wbMiImtx4cIFjB49Grdu3YKdnR0GDhyIH374gQVitAgICIC7u7ve+9nZ2cHX1xfNmjUzQVRE5uPp6Yn79+9n2l6xYkWN24mIiIiIiIiIiIiykuyYz6DJ8ePH0b59eyQkJKBs2bI4duyYQfMfRERkHnPnzsWSJUvw9u1bFClSBDNmzMDQoUNhb29v6dCs2qxZszB79my996tatSouXLiAXLlymSAqIvO4cuUK6tSpo7Htp59+wjfffGPmiIiIiIiIyFzsLB0AEREREWVvtra2WL9+PcqUKYMZM2bg5MmT+Pzzz3Ho0KEsucJ2XFwcevXqhaNHj8LR0RHr169Hnz59LB0WZQNjx47F69evMX/+fK2P9ff3h7+/v9Fjtm/fHtu2bcu2q+IQ0f/7999/ERQUhG+++QbDhw9HmTJlLB1SlvDo0SOD9luyZAmLRFC28OrVK43bX758aeZIiIiIiIiIiIiIiJSX3fIZNDlx4gS+/PJLJCQkoHHjxti3bx/y589v6bCIiEjG3r17Ub58eQwZMgR9+vTJdgWMTMWQ+f0CBQpg//79LBJBWZ7U3D7A+X0iIiIiouzOxtIBEBEREdHH4fvvv4evry8KFSqE06dPo1GjRggMDLR0WHp5+fIlGjdujAMHDqB06dI4c+YMi0SQoubNm4fdu3ejaNGiJh0nT548WL16NQ4ePMgiEUQfid69e+PFixf46aefWCRCD25ubno9XqVSYenSpRg7dqyJIiIyn7t37yIiIkJj27t373Djxg3zBkRERERERERERERkItkhn0GTX3/9FZ9//jni4uIwYcIEHD9+nEUiiIiygMOHD+PixYsYOnQoi0ToQd/5/WLFiuH06dNwd3c3UURE5nP27FnJtjNnzkAIYcZoiIiIiIjInFgogoiIiIjMpkWLFrhz5w66deuGmzdvonbt2jhz5oylw9LJwYMHUatWLVy9ehUDBgzAzZs3UadOHUuHRdlQ165d8ejRI/zwww/ImTOnon3nyJEDX331FR4/foyRI0cq2jcRWbdChQrBzs7O0mFkOZUqVUKjRo10emzevHnxxx9/YMKECaYNisgMoqKiMHr0aNnHjBgxAm/fvjVTRERERERERERERESmlZXzGT4UHh6Ofv36YezYsXB1dcWRI0ewdOlSODg4WDo0IiLSgakXmMmuBg8eDHt7e50eW79+fVy4cAGVKlUycVREpnfx4kWsWrVKsv3mzZuYN2+eGSMiIiIiIiJzUgmWhiMiIiIiC9i/fz/Gjx+Ply9fYv78+ZgyZYqlQ9IoLi4OAwYMwO7du1GpUiWsWrUKTZo0sXRY9JEIDw/Hrl27sG3bNly4cMHgfmrWrImePXti8ODBXCGGiEhPL1++RIsWLfDw4UON7SqVCl26dMHSpUv1XqGEyFo8ePAAUVFRCAwMxKlTp7B9+3aEhYVp3c/NzQ3Dhw9HzZo1UaRIEeTPnx8lS5Y0Q8REREREREREREREppNV8hk0OXLkCAYNGoTw8HCMHz8es2bNQu7cuS0dFhERkVns2LEDgwYNQmJiosb2fPnyYerUqfj6669ha2tr5uiIjBcZGYlXr14hKCgIT58+xe7du+Hr64uUlBSt+7Zq1QrdunVD+fLlkS9fPpQoUQIuLi5miJqIiIiIiEyJhSKIiIiIyGLi4+OxfPly+Pj44NSpU5YOR6OAgAC0bNkS06ZNQ79+/bgaO1lMYGAgLl++jGvXruHGjRsIDAxEZGQkIiIiEBMTA0dHR+TKlQuFChVCyZIlUbFiRdSuXRuNGjVCsWLFLB0+EVGWFh0djSVLlmD37t3w9/eHvb09SpUqhdatW2PAgAGoUqWKpUMkMopKpVKknyZNmljt93oiIiIiIiIiIiIifWSFfAZNhg4diqSkJMyYMQMeHh6WDoeIiMjsbt++jZ9//hknT55ESEgI8ufPj8qVK6Njx44YMGAA8uTJY+kQiQy2adMmDBo0SJG+Nm7ciIEDByrSFxERERERWQ4LRRARERGRxcXHx8PJycnSYWiUlJQElUrFAhFEREREREREREREREREREQfGWvOZ9AkLi4OOXLksHQYRERERERERERERGQGLBRBRERERERERERERERERERERERERERERERERERERERERJRF2Fg6ACIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi0g0LRRARERERERERERERERERERERERERERERERERERERERERZREsFEFERERERERERERERERERERERERERERERERERERERERElEXYWToAIn1ERETg9OnT6vvFixeHo6OjBSMiIiIiIiIiIiIiIiIiIqLsLCEhAS9evFDfb9KkCfLmzWu5gEgScwqIiIiIiIiIiIiIiIiIiMicLJlTwEIRlKWcPn0aX375paXDICIiIiIiIiIiIiIiIiKij9T+/fvRsWNHS4dBGjCngIiIiIiIiIiIiIiIiIiILMmcOQU2ZhmFiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiMxkIRRERERERERERERERERERERERERERERERERERERERERERZhJ2lAyDSR/HixTPc379/Pzw8PCwUDRERERERERERERERERERZXf+/v748ssv1fc/nLcm68GcAiIiIiIiIiIiIiIiIiIiMidL5hRk60IRQUFBeP78OaKiohAdHY2YmBioVCo4OTkhd+7ccHV1RZEiRVCgQAFLh0o6cnR0zHDfw8MDnp6eFoqGiIiIiIiIiIiIiIiIiIg+Nh/OW5P1YE4BERERERERERERERERERFZkjlzCrJNoYiHDx/i7NmzOHv2LG7duoUnT54gJiZGp33z5MmDihUromrVqmjQoAEaNmwId3d3E0dMRERERERERERERERERERERERERERERERERERERERERKSfLF0o4vz589i1axf27t2LN2/eqLcLIfTqJzIyEpcvX8bly5exdu1aAED58uXRoUMH9OnTB1WqVFE0bmsVFxeHoKAgvHv3DgkJCUhMTISjoyNy5syJHDlyIG/evMiXL5+lwyQiIiIiIiIiIiIiIiIiIiILYF4BERERERERERERERERERGRdchyhSIiIyPx22+/YdWqVQgMDASguTCESqXSq98P+3jw4AEePnyIhQsXwsvLC2PGjEHfvn1hb29vePBWQgiB69ev4+zZs7h+/Tru378PPz8/REdHa903V65cKFGiBEqVKoWaNWuiXr16qFevHhM9iIiIiIiIiIiIiIiIiIiIsgnmFRAREREREREREREREREREVm3LFMoIjg4GD/++CM2btyImJiYDIUdpIpCCCF0Lhih6XFpY1y/fh1Dhw7FjBkz8M0332DUqFFZsmDEiRMnsHPnTuzfvx8RERHq7ZoKbUiJjo7G/fv38d9//8HHxwfA+9fu008/RY8ePdC1a1cULlxY6dCJiIiIiIiIiIiIiIiIiIjIxJhXQERERERERERERERERERElDXYWDoAbRITE7FgwQKULVsWv/76K6Kjo9UFINJuUnQtEiG3f1ofQgi8evUKEydORPny5bF7926j+jYXIQTWrVuHSpUqoU2bNti0aRPevn0LIYT6BiDD66ntltZv2i01NRUXLlzA+PHjUaJECfTr1w9379615NMmIiIiIiIiIiIiIiIiIiIiHTCvgIiIiIiIiIiIiIiIiIiIKOux6kIRFy5cQKVKlTBt2jRERUVlKBCRXvrkgg9vAJA7d27kz58frq6ucHNzQ5EiRfDJJ5/A2dkZNjY2WvdPn8wghEBAQAB69uyJ9u3b48WLF2Z/XXT1zz//oEqVKhgxYgQePHigfk66JGno+nqkf12EEEhOTsaOHTtQrVo19OrVC2/evLHkS0BEREREREREREREREREREQSmFdARERERERERERERERERESUNdlZOgBNUlNTMWvWLCxYsADJyckAkCHpII1KpULJkiVRoUIFVKxYEe7u7nBzc4ObmxtcXV3h4uICZ2fnTIUlPhQREYGwsDC8efMGT58+RUBAAPz8/HD79m38999/SExMzDBmWhxHjhxBtWrVsH79enTq1Enpl8FgiYmJmDJlClauXJkhiUMbXR6jy75p79Eff/yBo0ePYtmyZRgwYIDBfRMREREREREREREREREREZFymFdARERERERERERERERERESUtVldoYjIyEh07NgRZ8+eVScipCUl5MyZE40aNULTpk1Rt25d1KxZE87OzkaPmTdvXuTNmxdlypRBgwYNMrQlJyfjzp07OHXqlPoWFRWlbo+IiEDXrl0xceJELFq0yOhYjBUaGoqOHTvi0qVLGVb5SC99sQ2lpB8jfTGNyMhIDB48GLdv38aiRYuMShohIiIiIiIiIiIiIiIiIiIi4zCvgIiIiIiIiIiIiIiIiIiIKOuzqkIRz549Q9u2bfHgwQP1Njs7O7Rr1w4DBgxA69at4eTkZNaY7Ozs4OXlBS8vL0ycOBEJCQk4cuQIdu3ahX379iEpKQlCCCxduhSPHz/Gzp07zR5jmuDgYDRv3hz//fdfhtU+0idwuLi4oGLFiqhUqRJKly4NV1dXFCpUCAULFoSjo6P6Zmtri5SUFKSmpiI+Ph4JCQmIjo7Gu3fvEBERgZCQEAQFBeHFixcICAiAn58fwsPDM8STfvxly5YhISEBv/76q/leECIiIiIiIiIiIiIiIiIiIlJjXgEREREREREREREREREREVH2YDWFIh4+fIhmzZohKCgIQgjY2NigX79+mD17NkqWLGnp8NQcHR3RqVMndOrUCa9evcLy5cuxevVqREdH4+DBg2jfvj3++usvsxeLSExMRMeOHXH//n31ah9CCOTIkQNt27ZFixYt0KxZM5QvX95kMbx69QrXr1/HuXPncOTIEdy9excA1LGsXr0aFSpUwFdffWWyGIiIiIiIiIiIiIiIiIiIiCgz5hUQERERERERERERERERERFlHyqRflkIC3nx4gUaNmyIwMBACCHQoEEDeHt7o1KlSpYOTSevX7/GlClTsGPHDqhUKrRq1QqHDx+Gra2t2WKYMmUKFi9erE6ecHd3x7fffotevXrB2dnZbHGk5+/vjxUrVmD9+vWIj49XJ5jcuXMHpUuXNqjPe/fuoXLlyur7d+/ehaenp1IhExERERERERERERERERERZZBd5qk/hryC7PJeERERERERERERERERERFR1mDJeWobs4wiIzY2Fm3btsWLFy9ga2uL//3vfzh9+nSWKRIBAEWKFMG2bdtw4MAB5M2bF8ePH8eYMWPMNr6fnx+WLVsGlUoFGxsbzJo1Cw8fPsTw4cMtlswBAB4eHlixYgVu3bqFmjVrAgDi4+MxceJEi8VERERERERERERERERERET0sWFeARERERERERERERERERERUfZi8UIRw4YNw71791CwYEGcOXMG06ZNg42NxcMySPv27XHt2jWULVsWa9euxfr1680y7vLly5GSkgIbGxvs3LkTM2fOhJ2dnVnG1oWHhwdOnjyJ2rVrQwiBQ4cO4f79+5YOi4iIiIiIiIiIiIiIiIiI6KPAvAIiIiIiIiIiIiIiIiIiIqLsxaIVGbZt24adO3eiePHiuHjxIurVq2fJcBRRqlQpnD17Fp6enpgwYQL8/PxMPubevXuhUqkwfPhwdO3a1eTjGSJXrlzYtWsXnJycAABbtmyxcEREREREREREREREREREREQfB+YVEBERERERERERERERERERZS8WKxQREhKCiRMnwtXVFSdPnkTp0qUtFYriChYsiGPHjsHFxQUjR4406ViBgYEICgoCAAwbNsykYxmrVKlSGDRoEIQQOHHihKXDISIiIiIiIiIiIiIiIiIiyvaYV0BERERERERERERERERERJT9WKxQxDfffIPo6Gjs378/WxWJSFOkSBHs378f58+fx65du0w2zps3b9T/rlSpksnGUcpnn30GAHj69KmFIyEiIiIiIiIiIiIiIiIiIsr+mFdARERERERERERERERERESU/VikUMSdO3ewdetWLFu2DHXr1rVECGZRq1YtTJ06FTNnzoQQwiRjODo6qv8dFxdnkjGUlDNnTgBAbGyshSMhIiIiIiIiIiIiIiIiIiLK/phXQERERERERERERERERERElP1YpFDEw4cPMW/ePIwYMcISw5vV999/j06dOuHx48cm6d/NzQ0qlQoAcObMGZOMoaRbt24BAAoUKGDhSIiIiIiIiIiIiIiIiIiIiLI/5hUQERERERERERERERERERFlPxYpFNG1a1d88803lhja7Ozt7bFgwQJ4eHiYpP98+fKhcuXKEEJgzpw5SE1NNck4SkhMTIS3tzdUKhW8vLwsHQ4REREREREREREREREREVG2x7wCIiIiIiIiIiIiIiIiIiKi7McihSJIWX379gUAXL9+HQMGDLDapI7hw4fDz88PANC2bVsLR0NERERERERERERERERERPRxYF4BERERERERERERERERERFR9sJCEdnA8OHD8cknnwAAduzYgQYNGsDf39/CUf2/gIAAtG7dGlu3bgUAuLi4qJNQiIiIiIiIiIiIiIiIiIiIyLSYV0BERERERERERERERERERJS9sFBENuDi4oKFCxdCCAEAuHz5Mjw9PTFw4EDcuHHDYnFduHABQ4YMQcWKFfH3339DCAGVSoUff/wRuXPntlhcREREREREREREREREREREHxPmFRAREREREREREREREREREWUvdpYOwBJCQ0Px4MEDvHnzBra2tihatCi8vLzg4OBg6dAMNnDgQJw5cwabNm2CSqVCUlIStm7diq1bt6JkyZJo164d6tevDy8vL5QrVw4qlUrxGF68eIFr167h2LFjOHDgAIKCggBAnWiiUqnQoUMHjBo1SvGxiYiIiIiIiIiIiIiIiIiISBrzCoiIiIiIiIiIiIiIiIiIiLKPj6pQxJYtW+Dt7Y1///0XqampGdocHR3Rpk0bfPXVV2jRooWFIjTOmjVr8OLFC/z9999QqVTqRIqAgACsXLkSK1euBPD+ubq5uWW6FS5cGDlz5kTOnDmRI0cO9X8BID4+Xn2Ljo7Gq1ev8PLlSwQGBuLp06e4fv06wsLC1LGkjQ1AHUujRo2wfft2M74iRERERERERERERERERERElIZ5BURERERERERERERERERERNlDligU8fjxYzx58gRhYWFwdnZGmTJlUKFCBZ33f/LkCbp3744bN24AyJhskCY+Ph4HDx7EwYMH0aZNG6xatQqlSpVS6imYhZ2dHQ4fPozBgwdjx44dGVb3SP+c4+Pj4e/vj8ePHys29oev6Ydjd+7cGdu2bYOTk5NiYxIREREREREREREREREREZHumFdARERERERERERERERERESUPVhtoYjw8HAsXboUW7duxYsXLzK1FyxYEEOGDMGECRNQsGBByX4uXbqEDh06ICwsTJ10kD7ZIL209qNHj6J27dr4448/0KxZMwWejfk4ODhg27Zt8PLywsyZMxEXFweVSqXxOWsqmGEoqf5z5MiB+fPnY9y4cZnag4ODERISotc4/v7+BsdIRERERERERERERERERET0scsqeQXMKSAiIiIiIiIiIiIiIiIiIpKmEkrO6itkx44dGD16NKKiomSTDlQqFfLly4eVK1eiR48emdoDAwNRs2ZNhISEZEo40LZSBQA4OTnB19cXDRs2NObpWMzjx48xZswY+Pr6ApAukKE0IQRUKhU6deqExYsXo2TJkhofN2vWLMyePduose7evQtPT0+j+iAiIiIiIiIiIiIiIiIiIpJy7949VK5cWX0/O81TW3NeAXMKiIiIiIiIiIiIiIiIiIjI2lkyp8DGLKPoYfLkyejXrx/evXunTgyQugkhEB4ejt69e2Px4sWZ+ho9enSGIhFCCPXtQ+nb0vqPj4/Hl19+iaCgIJM/b1MoU6YMjh49igsXLuCLL76Qff5p0j9G003bfnZ2dujfvz/u3LmDPXv2SBaJICIiIiIiIiIiIiIiIiIiIstiXgEREREREREREREREREREVHWZGfpANKbOXMmlixZAiDjKhWaEgnSijmktX/zzTcoXbo0OnXqBAC4cOECDh06lOExH/YrJa1YBAC8ffsWX331FXbv3m3EM7OsevXq4a+//sKzZ8+wc+dO7Nq1C7du3crwmLTnq+vqIOnfE1tbWzRo0ADt27dHz549UaxYMeWCJyIiIiIiIiIiIiIiIiIiIpNiXgEREREREREREREREREREVHWohJyyzmY0ZkzZ9CsWbMM29IXbNAkfbsQAnnz5oW/vz/y58+Pfv36Yfv27VCpVJn6kXvK6ftLv+/169dRrVo1Y56iVQkKCsKFCxdw4cIF3Lp1C0+fPsWLFy+QmJgou59KpYK7uzs8PT3h6emJatWqoXXr1siXL5/eMQQHByMkJESvffz9/fHll1+q79+9exeenp56j01ERERERERERERERERERKSLe/fuoXLlyur7H8s8taXzCphTQERERERERERERERERERE1s6SOQV2ZhlFi9TUVAwdOjRTcYb0RRs+lL49TWRkJP73v/9h3rx5+PPPPzOtZiGEgIuLC7p27YoWLVqgQoUKyJUrF4KCgvDw4UP8+eefOH78OJKTkzP1/csvv2DdunWmePoW4erqik6dOqFTp07qbUIIBAcH4927d4iNjUVsbCyEEMidOzecnZ3h7OwMFxcX2NvbKxJDoUKFUKhQIUX6IiIiIiIiIiIiIiIiIiIiIuVYOq+AOQVERERERERERERERERERETSrKJQxO7du+Hv75+hSATwPsHAzc0N7du3R6lSpZAvXz6EhITg+vXrOHr0KGJiYjIUgxBCYP369WjUqBHi4uIy9GNvb4/vvvsOkydPhrOzc4bxy5Yti4YNG2LIkCG4c+cORo4ciYsXL6qLUQghcPDgwQyxZUcqlQqurq5wdXW1dChERERERERERERERERERERkZZhXQEREREREREREREREREREZB2solDEihUr1P9OK8zg5uaGX375BR07dtS4T0xMDFasWIEff/wRcXFxGbZ//fXX6vtCCOTPnx+HDx9G3bp1tcZSpUoVnD59Gn379sUff/yhLgwRFhaGq1evonbt2oY+TSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIio9hYOoCgoCBcunRJXSBCCIEmTZrg3r17kkUiACBXrlyYOnUqrly5Ajc3NwBQF3V4/vy5uj8HBwf4+PjoVCQijZ2dHXbu3ImWLVtCCKHefvPmTcOeJBERERERERERERERERERERERERERERERERERERERERGRAixeKOLIkSPqYgwqlQoNGzaEj48PnJ2dddq/YsWKOH78OHLlyqXellYkQqVS4YcffkDt2rX1jkulUmHjxo3ImzevugDFvXv39O6HiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiEgpFi8UcfHiRQCAEAK5c+fGtm3b4OTkpFcf5cqVw5w5c9QFJ9IUK1YMkyZNMji2YsWKYfTo0ep+nz59anBfRERERERERERERERERERERERERERERERERERERERERETGsrN0ADdv3gQAqFQqTJ8+HSVKlDCon9GjR+N///sfIiIiIISASqXCmDFj4ODgYFR8I0aMwIIFCyCEQHBwsFF9ZUcJCQm4cOEC/P39ER4ejrx586JIkSKoX78+ChQoYOnwiIiIiIiIiIiIiIiIiIiIyIKYV0BERERERERERERERERERKQ8ixeKePr0KQDAwcEBQ4YMMbgfBwcHtG/fHlu2bFFv69Onj9HxFS9eHNWrV8f169ezXKEIIQTOnDkDPz8/hIeHw9XVFQ0bNkSZMmWM7vvGjRtYtGgR9u3bh4SEhEztNjY2aNiwIaZMmYK2bdsaPR4REREREREREREREREREREpi3kFREREREREREREREREREREWZNFC0XEx8cjLCwMKpUKbdu2Rf78+Y3q79NPP8WWLVugUqlQvnx5uLm5KRJnnTp1cP36dURGRirSn6mlpKTg559/xooVKzQWt6hfvz5mzpyJVq1a6d13ZGQkpkz5P/buPMzO+f4f//OebERCJBFqiYjYt1RslSZEaKi1JSiK0tLS+ipt7UpTS0uL4vJRqrR2Rak1NBJ7RWOJ2BOJBCHIrlnn/v3R30wTgiQzk5OZPB7XdV/OOTPn/XreJ/6b1/U8P8+f/vSnJP9dGvm8DEOGDMmjjz6afv365brrrssqq6yyyPMAAAAAAAAAgPplrwAAAAAAAAAAGreqSg7/+OOPax9/7Wtfq/N5m266ae3jnj171vm8GltssUWSZNasWfV2ZkMZN25cttxyy5x++ul5//33U5blZ64nnngiu+66a7773e9mxowZC332iBEj8tWvfjV/+tOfas8qiuILr7Is8+CDD2b77bfPyJEjG/DOAQAAAAAAAIAvY68AAAAAAAAAABq/ihZFTJo0qfbx1ltvXefzVl999drH6623Xp3Pq9GhQ4ckS39RxKhRo9KrV68MHz78S5ctyrLMjTfemN69e2fy5MlfevbTTz+dnj17ZsyYMfOdPa8FLY/UGDlyZHbcccdMmDCh3u8bAAAAAAAAAPhy9goAAAAAAAAAoGmoaFHEzJkzax937ty5zud17Nix9vHaa69d5/NqrLTSSkmS2bNn19uZ9W3WrFnZd999M2bMmPmWNj7vqlnG+Pe//50999zzC78B5F//+ld22223TJkyJUlqz65RlmU6d+6cX/7yl/nnP/+ZV199Nc8//3xuueWWfPvb3659zzvvvJODDjpovvcCAAAAAAAAAA3PXgEAAAAAAAAANB3NKzl81qxZtY9ryhjqYrnllqt9vOKKK9b5vBotWrSot7MayhlnnJEXXnihdtli5ZVXzmGHHZYdd9wxa6+9dtq0aZOpU6fmjTfeyJAhQ3Lrrbfmww8/TFEUeeKJJ/L9738/119//WfOfeONN7L77rtn8uTJ833TR82c5s2b56yzzsrPf/7zz3xOm2++efr375+nn346++23X959990MGjQoN9xwQw455JAG/0wAAAAAAAAAgP+yVwAAAAAAAAAATUdVJYfPnTu39nF9FEXMu1Cwwgor1Pm8GjXfeLG0mjhxYi6//PLaJYvvfe97efvtt/P73/8+e+21V7bYYousu+666d69e/r375/LLrssY8eOzTnnnJNWrVqlLMvcdNNNueKKK+Y7d8KECdltt93y8ccfz7fMkfz32z46duyYf/7znzn11FO/sExju+22y2OPPZYOHTokSc4///z6/xAAAAAAAAAAgAWyVwAAAAAAAAAATUtFiyLKsqx9PGvWrDqfN2/xRPPmzet8Xo1JkybV21kN4eqrr84nn3ySJDn22GPzpz/96UuLMlq1apVTTjkljz/+eNZaa62UZZkTTzwxr776apJkzpw5+fa3v51Ro0YtcJmjc+fOefzxx9OrV6+FyrjOOuvkiiuuSFmWeeWVV/LYY48txp0CAAAAAAAAAIvKXgEAAAAAAAAANC0VLYqY1+TJk+t8Rn2UTSzI0l4U8dBDDyVJunTpkosvvniR3rvlllvmySefzIYbbpgZM2bk8MMPT1mW+clPfpInnnhigcsc66yzToYMGZL1119/kWbtt99+2WijjZIkgwYNWqT3AgAAAAAAAACLx14BAAAAAAAAADQtTaooYtq0afWQ5LNGjRrVIOfWh+rq6jz11FMpiiI//vGP06xZs0U+Y4011shjjz2WTTbZJEOHDk3fvn1z5ZVXLnCZY4011sg///nPrL322ouVd6+99kpZlnn00UcX6/0AAAAAAAAAwMKzVwAAAAAAAAAATc9SUxTx+uuv1/mMCRMm1D6urq6u83k1hg8fXm9n1bcPPvgg06dPT5L07dt3sc/p0KFDHnrooay77roZMmTIZ35elmVWXnnlPPjgg+nSpctiz9lyyy2TJGPHjl3sMwAAAAAAAACAhWOvAAAAAAAAAACanqWmKOK5556r8xnjxo2rfTxlypQ6n1fjxRdfrLez6tvHH39c+7guixZJsuqqq2aDDTZIWZbzfetHWZZp1apV/v73v2fjjTeu04wOHTokST766KM6nQMAAAAAAAAAfDl7BQAAAAAAAADQ9DSvdIAa999/f50XEgYPHlz7+NZbb82HH35Yt1BJPvnkk6V6+aDmWz+SpHXr1nU66+STT869996boihqlzpq/nvVVVelV69edY2bmTNnJpk/NwAAAAAAAADQMOwVAAAAAAAAAEDTs9QURTzzzDN55pln6uWssizz17/+NX/961/r5byaxYal0corr1z7+OOPP06nTp0W65w///nPueCCCxa4zPGLX/wihxxySL3kHTt2bJKkffv29XIeAAAAAAAAAPD57BUAAAAAAAAAQNNTVekANcqyrJervs9bWgsianTo0KH28XPPPbdYZzz66KP54Q9/mKIokmS+ZY7tttsu5513Xr1kTZIHHnggSbLKKqvU25kAAAAAAAAAwILZKwAAAAAAAACApmepKYooiqJervo+b94zl0Yrr7xyvvKVryRJ7r777kV+/8iRI7Pvvvtm9uzZSVJbjFGz1PHss8/m3nvvrZeso0ePzv3335+iKNKlS5d6ORMAAAAAAAAA+Hz2CgAAAAAAAACg6VlqiiLKsqy96qI+yx3qI8+SsMMOO6Qsy1x77bUZN27cQr/vvffey+67756PPvpovm/7qLnnI488Mu3bt89+++2Xm2++uU4Zy7LMsccem5kzZyZJvvGNb9TpPAAAAAAAAABg4dgrAAAAAAAAAICmZakpiqgpeKivkof6sLTl+Tx77bVXkmTGjBnZf//9M2PGjC99z8svv5yvfe1ref3112vvcd6ljm9961u56qqrcuONN2bOnDk55JBD8rOf/az2G0IWRVmW+dGPfpT777+/9rXddtttkc8BAAAAAAAAABadvQIAAAAAAAAAaFqWmqKIsixrr1atWqVjx45Za6210rlz5yV6rbnmmllllVXSokWL2jxLu/79+2edddZJkvzrX//KzjvvnLFjxy7wd2fPnp1zzjknW221Vd5+++0F/s52222XG264IUnSp0+fnHfeeamurs5FF12UjTfeOLfddluqq6sXKtvIkSOz00475aqrrkry36WRfv36pWvXrot6mwAAAAAAAADAYrBXAAAAAAAAAABNS/NKB6jRo0ePnHLKKfn617+eTp06VTpOkuTdd9/NP//5z/zyl7/M6NGjKx3nczVr1iy/+tWv8t3vfjdFUeTJJ5/MRhttlO985zvp27dvOnTokHfffTdDhw7NzTffnIkTJ9Z+w8e8yrLMlltumfvvvz+tWrWqff1nP/tZRo4cmSuvvDKjRo3KgQcemDXWWCPf/va307dv32y66aZZbbXVstxyy2XSpEkZP358nnrqqfzjH//IPffck+rq6trCjaqqqvzmN79Zop8PAAAAAAAAACzL7BUAAAAAAAAAQNNSlDV/aa+AJ554Ir169cpGG22UoUOHpnXr1pWK8oXefffdbLHFFvn4448zd+7cSsf5XEcccUSuvfbaFEWxwIWNJLWLFQta5ujevXseeuihdOjQ4TPvq66uzgEHHJDbb7/9C8//snknnXRSzj333EW+txojRozIpptuWvv8pZdeyiabbLLY5wEAAAAAAADAF2lKf6du6nsFTenfCgAAAAAAAIClXyX/Tl21RKZ8iVNOOWWpLYlIktVXXz3HH398pWN8qSuuuCK777577bJFWZafuYqiWOAyR9++fTNkyJAFLnMk//3GjltuuSUHHXTQF57/efPKssx3v/vdOpVEAAAAAAAAAACLz14BAAAAAAAAADQNFS+KKIoiffr0qXSML7XTTjtVOsKXatWqVe66664cd9xxtUsbNQsVn7fIUVVVlTPOOCMPPPBA2rZt+4XnV1VV5frrr8+AAQM+c+7nXTWLHcccc0z+9Kc/Ndi9AwAAAAAAAABfzF4BAAAAAAAAADQNFS+KSJJOnTpVOsKXWnXVVSsdYaFUVVXl4osvzjPPPJNdd901zZs3X+A3crRu3TqHHXZYRowYkbPPPjvNmjVb6BmnnXZannjiifTo0aP2vE+reb1r1665/fbbc9llly3SDAAAAAAAAACg/tkrAAAAAAAAAIDGr3mlA5Rl2Sj+0N+sWbMFLi4srbbccsvcd999mTRpUh577LGMGzcuEydOTLt27bLxxhtn2223zfLLL7/Y52+77bZ55plnMmTIkNxwww21M8qyzGqrrZZtttkme++9d/bbb79G8e8LAAAAAAAAAMsSewUAAAAAAAAA0HhVtChis802yyOPPJKqqqpKxlgoq622Wh555JFKx1hk7dq1y5577tlg5++www7ZYYcdGux8AAAAAAAAAKDh2CsAAAAAAAAAgManog0NK664YqNZBmjVqlWjyQoAAAAAAAAAAAAAAAAAAAA0TRUtimgIP/jBD/Lee+9VOgYAAAAAAAAAAAAAAAAAAABAvWtyRRHXXXddxo8fX+kYAAAAAAAAAAAAAAAAAAAAAPWuyRVFlGWZUaNGVToGAAAAAAAAAAAAAAAAAAAAQL1rckURSXLddddVOgIAAAAAAAAAAAAAAAAAAABAvWuSRRH33ntvTjjhhEyePLnSUQAAAAAAAAAAAAAAAAAAAADqTfNKB/gyH3/8cSZMmJAPPvggEyZMSFVVVfbZZ58vfd8ll1ySyy+/PBtttFHWWmutrLTSSmnZsuViZTjttNOy7rrrLtZ7AQAAAAAAAAAAAAAAAAAAAOpLxYoiJk2alIceeigTJkz43Oujjz5KdXV17XvKsszee++9UEURZVlm9uzZefHFFzN8+PA6ZZ0zZ07+8pe/1OkMAAAAAAAAAAAAAAAAAAAAgLqqWFHEyy+/nAMOOCBJUhTFfD8ry3K+561bt87hhx+e733ve+nRo8dCnV9zZlmWnzlvUd10000566yz0rVr1zqdAwAAAAAAAAAAAAAAAAAAAFAXVZUavP3222fmzJl5/PHHs+aaa9YWOpRlWVvy0KpVq5x00kkZPXp0LrvssoUuiZhXURR1upKkuro6l156ab3ePwAAAAAAAAAAAAAAAAAAAMCiqlhRRJK0aNEi22+/fQ455JAk/yt1KMsy22+/fZ5//vmcd9556dix42KdX5ZlnTPW5Ln22mszc+bMOp8HAAAAAAAAAAAAAAAAAAAAsLgqWhRR45VXXql9XJZljjjiiAwZMiQbbLBBnc4timK+cxfnqjFlypTcdddddcoDAAAAAAAAAAAAAAAAAAAAUBfNKx1g+vTpGThwYG2pw1FHHZX/+7//q/O5NSUP7dq1yxprrJEVV1wxLVq0mK88YmG89tprGT9+fJLkb3/7W/bff/86ZwMAAAAAAAAAAAAAAAAAAABYHBUvirj77rvzySefpCiKbL/99rnsssvq5dztttsu//d//5fNN9+8Tuf84x//yN57752yLPPQQw9l7ty5adasWb1kBAAAAAAAAAAAAAAAAAAAAFgUVZUOcPPNNydJll9++dx6661p3rzu3RVdunTJQw89VOeSiCTZc88907179yTJlClT8vLLL9f5TAAAAAAAAAAAAAAAAAAAAIDFUdGiiGnTpmXgwIEpiiI//OEP85WvfKVezj366KOzwgor1MtZSXLUUUfVPn7++efr7VwAAAAAAAAAAAAAAAAAAACARVHRoogHH3wwM2fOTKtWrXLyySfX27ndu3evt7OSpH///mnevHmS5IUXXqjXswEAAAAAAAAAAAAAAAAAAAAWVkWLIgYOHJgk6dmzZzp27Fhv59bnWUnSoUOHbLPNNkmS4cOH1+vZAAAAAAAAAAAAAAAAAAAAAAurokURTz75ZIqiyC677FJvZ5555plZa6216u28Gj169EhZlpkwYUK9nw0AAAAAAAAAAAAAAAAAAACwMJpXanBZlnnzzTeTJD179qy3c88444x6O2tem222WZJkypQpDXI+AAAAAAAAAAAAAAAAAAAAwJepqtTgd955JzNnzkySrLbaapWKsdA6duyYJJk8eXKFkwAAAAAAAAAAAAAAAAAAAADLqooVRcxbuLDKKqtUKsZCa9euXZJk6tSplQ0CAAAAAAAAAAAAAAAAAAAALLMqVhQxffr02sdt2rSpVIyFNmvWrEpHAAAAAAAAAAAAAAAAAAAAAJZxFSuKaN68ee3jadOmVSrGQvvoo4+SJCussEKFkwAAAAAAAAAAAAAAAAAAAADLqooVRay00kq1jz/88MNKxVhor7zyShJFEQAAAAAAAAAAAAAAAAAAAEDlVKwoYsUVV6x9XFPCsDR78sknkySdOnWqcBIAAAAAAAAAAAAAAAAAAABgWVWxoogOHTpkueWWS5L8+9//rlSMhTJx4sQ8/vjjKYoiXbt2rXQcAAAAAAAAAAAAAAAAAAAAYBlVsaKIqqqqbLzxxinLMvfdd1+lYiyUG2+8MbNmzUqSrLvuuhVOAwAAAAAAAAAAAAAAAAAAACyrKlYUkSSbb755kuTZZ5/NG2+8Uckon2vOnDm5+OKLa59vueWWlQsDAAAAAAAAAAAAAAAAAAAALNMqWhTRu3fvJElZlrnooosqGeVz/fGPf8zIkSNrn/fq1auCaQAAAAAAAAAAAAAAAAAAAIBlWUWLIvbaa680b948ZVnm6quvzksvvVTJOJ8xevTonHbaaSmKIknSrVu3rLbaahVOBQAAAAAAAAAAAAAAAAAAACyrKloU0b59++ywww5Jkjlz5uR73/teZs6cWclItWbNmpUDDjggkydPTlmWKYoi+++/f6VjAQAAAAAAAAAAAAAAAAAAAMuwihZFJMlxxx2XJCmKIsOGDcsRRxxR4UTJzJkzs88++2To0KEpiqL29UMOOaSCqQAAAAAAAAAAAAAAAAAAAIBlXcWLIvbcc89sscUWSZKyLHPzzTfnkEMOydy5cyuS56OPPso3v/nNPPDAAymKImVZpiiK7Ljjjtlggw0qkgkAAAAAAAAAAAAAAAAAAAAgWQqKIpLk3HPPrS1kKMsyN910U3bYYYeMGzduieZ4+OGHs/nmm2fw4MGf+dmZZ565RLMAAAAAAAAAAAAAAAAAAAAAfNpSURSx22675fvf//58ZRFPPvlkNttss/zmN7/JjBkzGnT+qFGj8p3vfCe77rprBUZ04QAA9lZJREFU3nvvvflyFEWRvn37ZocddmjQDAAAAAAAAAAAAAAAAAAAAABfZqkoikiSiy66KF27dk2SFEWRJJk8eXJOPfXUrL/++vnTn/6UTz75pF5nDh06NN///vez8cYb59Zbb011dXWKoqidnyQrrLBC/vjHP9brXAAAAAAAAAAAAAAAAAAAAIDFsdQURaywwgq54447stJKKyVJbWFDWZYZN25cjjrqqKy66qo55JBDct999y12acSzzz6b8847L1/96lez3Xbb5c9//nNmzZqVsiznK4ioeX7hhRemS5cu9XGLAAAAAAAAAAAAAAAAAAAAAHXSvNIB5rX55pvn3nvvzTe+8Y3aIoia8oayLDN9+vTcdNNNuemmm1JVVZX11lsvPXr0yCabbJL27dunXbt2WWmlldKiRYtMnTo106ZNy4QJE/Laa6/ltddeywsvvJBJkybVnldj3oKImp8VRZFjjjkmRx111JK5eQAAAAAAAAAAAAAAAAAAAIAvsVQVRSTJ1772tdx5553Zd999M23atNrX5y2MSJK5c+fm1VdfzWuvvbbQZ89bDjHvmTU/m/f5Pvvskz/84Q+LdQ8AAAAAAAAAAAAAAAAAAAAADaGq0gEWZOedd87TTz+dddddd4HlDvNeZVku9PVF7523iOKII47IbbfdNl9xBAAAAAAAAAAAAAAAAAAAAEClLZVFEUmy0UYbZejQodl7770/UxYx7/NPlz980VXz3ppr3veXZZmqqqqce+65ufrqq1NVtdR+NAAAAAAAAAAAAAAAAAAAAMAyaqluQ1hppZVy55135s4770znzp3nK3dI5i99WNirxqfLI9Zbb70MHjw4J5988pK/UQAAAAAAAAAAAAAAAAAAAICFsFQXRdTYe++98/LLL+fss89Ohw4daksfasoe5r0+z4J+ryzLrLjiihkwYECGDx+enj17LqlbAgAAAAAAAAAAAAAAAAAAAFhkjaIoIkmWX375nHHGGXn77bdz+eWXp3v37rWFEWVZ1v7egsoj5i2GqLm6du2a888/P6NHj85pp52Wli1bVurWAAAAAAAAAAAAAAAAAAAAABZK80oHWFTLLbdcfvSjH+VHP/pRxowZk7vuuiuPPfZYnn/++YwaNWq+0oh5tW/fPj169EjPnj2z++67p0ePHks4OQAAAAAAAAAAAAAAAAAAAEDdNLqiiHmtvfbaOe6443LcccclST755JN88MEHmTx5cqZNm5YWLVqkTZs2WWONNbLSSitVOC0AAAAAAAAAAAAAAAAAAABA3TTqoohPa926dbp06VLpGAAAAAAAAAAAAAAAAAAAAAANoqrSAQAAAAAAAAAAAAAAAAAAAABYOIoiAAAAAAAAAAAAAAAAAAAAABqJihRFnHvuuenevXtmzpxZifFL1IgRI7LGGmvkzTffrHQUAAAAAAAAAAAAAAAAAAAAoJGrSFHE0UcfnVGjRuWss86qxPglZvr06TnwwAOz2267pVu3bpWOAwAAAAAAAAAAAAAAAAAAADRyFSmK6NChQ0455ZRceOGFGThwYCUiNLiyLPOd73wn48aNyznnnFPpOAAAAAAAAAAAAAAAAAAAAEATUJGiiCT52c9+lnXXXTcHHHBAXn311UrFaDBHHXVU7r333vzud7/LqquuWuk4AAAAAAAAAAAAAAAAAAAAQBNQsaKIFi1a5C9/+UumT5+ePn36ZPjw4ZWKUq+qq6vzgx/8INdcc0369euXI444otKRAAAAAAAAAAAAAAAAAAAAgCaiYkURSbLNNtvknHPOyfvvv58dd9wxDzzwQCXj1NmHH36Y3XffPddcc03WWmutXH/99ZWOBAAAAAAAAAAAAAAAAAAAADQhFS2KSJKf//zn+e53v5uJEydmjz32yEknnZSZM2dWOtYiu/fee7PZZptl4MCBad26dW6//fa0b9++0rEAAAAAAAAAAAAAAAAAAACAJqTiRRFJcvXVV6dfv36prq7OhRdemA022CC33XZbpWMtlLfeeiuHHHJI9tprr7z//vtp2bJl7rzzzvTo0aPS0QAAAAAAAAAAAAAAAAAAAIAmZqkoimjRokXuuuuu7LrrrinLMmPHjs2BBx6YjTfeOFdffXVmzJhR6Yif8eabb+aYY47JRhttlJtuuillWaZ169b529/+lp133rnS8QAAAAAAAAAAAAAAAAAAAIAmaKkoikiSli1b5u67787hhx+esiyTJK+++mqOPvrodOrUKQcffHDuuuuuTJ8+vWIZX3vttVx00UXp3bt3Nthgg1x55ZWZNWtWyrJMx44dM2jQoOy+++4VywcAAAAAAAAAAAAAAAAAAAA0bc0rHWBezZs3zzXXXJNNNtkkp556aubMmZOyLDNt2rTcfPPNufnmm9OsWbP06NEjO+ywQ7bccst079496623XoqiqNcs48aNyyuvvJLnnnsuQ4cOzZNPPpnx48fX/rwsy9qZm222WW6//fZ069atXjMAAAAAAAAAAAAAAAAAAAAAzGupKoqoceKJJ+brX/96DjrooLz11lspiiJlWSZJ5syZk2eeeSbPPPNM7e8vt9xy6dKlS9ZZZ5106dIlnTp1SseOHdOhQ4e0bt06LVu2TMuWLVMURebMmZPZs2dn5syZmTx5ciZNmpRJkyblvffeyzvvvJNx48Zl5MiRmT59+nyZauYnqS2IKMsyP/nJT/Lb3/42rVq1WgKfDAAAAAAAAAAAAAAAAAAAALAsWyqLIpJk2223zUsvvZQzzzwzF198cebOnTtfQcO8/vOf/+SVV17Jq6++Wue5nz67Rs3smt/p1q1bLr300vTr16/OMwEAAAAAAAAAAAAAAAAAAAAWRlWlA3yR5ZdfPhdccEGee+657LrrrinLMmVZpiiKz1xJan9elyvJF57ftm3b/Pa3v82IESOURAAAAAAAAAAAAAAAAAAAAABL1FJdFFFj0003zX333ZchQ4bMVxgxrwWVOyzuNa+aWZ06dcqAAQMyatSo/OxnP0uLFi2W5EcAAAAAAAAAAAAAAAAAAAAAkOaVDrAoevXqlV69euXll1/OH//4x9x444358MMPk+QzBQ91UVNCUVVVlR122CGHHnpoDjrooLRs2bLeZgAAAAAAAAAAAAAAAAAAAAAsqkZVFFFj4403zsUXX5wLL7wwgwcPzt13352BAwfm9ddf/8zvflGBRE0hxLzatWuX7bffPrvttlv222+/rLrqqvWaHQAAAAAAAAAAAAAAAAAAAGBxNcqiiBrNmzfPzjvvnJ133jlJ8uGHH+bpp5/OSy+9lFdeeSVjxozJ+PHj8+GHH+Y///lPZs6cmebNm6dNmzZZYYUV0r59+3Tt2jXdunXL+uuvn2222SabbrrpF5ZLAAAAAAAAAAAAAAAAAAAAAFRKoy6K+LSOHTtmjz32yB577FHpKAAAAAAAAAAAAAAAAAAAAAD1rqrSAQAAAAAAAAAAAAAAAAAAAABYOIoiAAAAAAAAAAAAAAAAAAAAABoJRREAAAAAAAAAAAAAAAAAAAAAjYSiCAAAAAAAAAAAAAAAAAAAAIBGQlEEAAAAAAAAAAAAAAAAAAAAQCOhKAIAAAAAAAAAAAAAAAAAAACgkVAUAQAAAAAAAAAAAAAAAAAAANBIKIoAAAAAAAAAAAAAAAAAAAAAaCQURQAAAAAAAAAAAAAAAAAAAAA0EooiAAAAAAAAAAAAAAAAAAAAABoJRREAAAAAAAAAAAAAAAAAAAAAjYSiCAAAAAAAAAAAAAAAAAAAAIBGQlEEAAAAAAAAAAAAAAAAAAAAQCOhKAIAAAAAAAAAAAAAAAAAAACgkVAUAQAAAAAAAAAAAAAAAAAAANBIKIoAAAAAAAAAAAAAAAAAAAAAaCQURQAAAAAAAAAAAAAAAAAAAAA0EooiAAAAAAAAAAAAAAAAAAAAABqJRlkU8eijj1Y6AgAAAAAAAAAAAAAAAAAAAMAS1yiLIvr06ZORI0dWOgYAAAAAAAAAAAAAAAAAAADAEtUoiyLKssw111xT6RgAAAAAAAAAAAAAAAAAAAAAS1SjLIpIkt/+9re56qqrKh0DAAAAAAAAAAAAAAAAAAAAYIlptEUR1dXV+eEPf5h+/frl/vvvr3QcAAAAAAAAAAAAAAAAAAAAgAbXaIsikqQsyzz88MPZY489svbaa+dXv/pV3nnnnUrHAgAAAAAAAAAAAAAAAAAAAGgQjbooIvlvWURZlhk3blzOPvvsdOnSJXvttVfuueeelGVZ6XgAAAAAAAAAAAAAAAAAAAAA9aZ5pQMsrtVXXz2HHXZYpk6dmmeffTZPP/10yrLM3Llzc++99+bee+/N6quvniOPPDJHHnlk1lprrUpHBgAAAAAAAAAAAAAAAAAAAKiTqkoHWFx//vOf8+tf/zqXXHJJnnjiibz99ts566yzsvbaa6csy5RlmXfffTcDBgxI165ds/vuu+fuu+9OdXV1paMDAAAAAAAAAAAAAAAAAAAALJZGWxSx3Xbbzfd8jTXWyJlnnplRo0blvvvuy7e+9a00a9YsZVlm7ty5eeCBB/Ktb30rnTt3zplnnpm33367QskBAAAAAAAAAAAAAAAAAAAAFk+jLIr45S9/mTZt2izwZ0VRZNddd83tt9+esWPH5pxzzknXrl1TlmXKssx7771X+9puu+2Wv//975k7d+4SvgMAAAAAAAAAAAAAAAAAAACARddoiyIWxqqrrppTTjklb775Zh5++OH0798/LVq0SFmWqa6uzsCBA7PvvvtmrbXWyumnn57Ro0c3bHAAAAAAAAAAAAAAAAAAAACAOmiURRGLY6eddsott9ySd955JxdccEE23HDDlGWZsizz/vvv57zzzku3bt3Sr1+/3HHHHZk7d26lIwMAAAAAAAAAAAAAAAAAAADMZ5kpiqjRoUOHnHjiiXn55ZczZMiQHHzwwWnVqlXKskx1dXUefvjh9O/fP2uuuWZOPfXUjBo1qtKRAQAAAAAAAAAAAAAAAAAAAJIsg0UR8+rVq1f++te/5t13382vfvWrVFX99+MoyzLvv/9+fvOb32T99dfPLrvskr/97W+ZM2dOhRMDAAAAAAAAAAAAAAAAAAAAy7JluigiSSZMmJALLrggv/vd71KWZZKkKIoURZGyLFNdXZ1BgwblgAMOyJprrpmTTz45I0eOrHBqAAAAAAAAAAAAAAAAAAAAYFm0zBZFjBkzJj/+8Y/TpUuXnH/++Zk8eXLKsqy9kvkLI8qyzAcffJALLrgg66+/fvr27Ztbb701s2fPrvCdAAAAAAAAAAAAAAAAAAAAAMuK5pUOsKSNGDEi559/fm655ZbMnTt3vlKITyvLMh07dsxPfvKTVFdX55prrsnYsWOTJIMHD87gwYPToUOHHHXUUfnJT36SVVdddYneCwAAAAAAAAAAAAAAAAAAALBsqap0gCXl6aefzt57750tttgiN954Y+bMmZOyLFMUxXwlEWVZpizLdO7cOX/4wx8yZsyYnHHGGfnlL3+Zt956K//4xz+y5557pqqqKmVZ5sMPP8x5552XLl265MQTT8zUqVMreJcAAAAAAAAAAAAAAAAAAABAU9YoiyKOOOKIhf7dBx98MDvuuGN69uyZe+65J9XV1V9YELHZZpvl+uuvz5tvvpkf//jHWX755Wt/p6qqKrvvvnvuuuuujBkzJmeeeWZWW221lGWZmTNn5uKLL86GG26YQYMG1ev9AgAAAAAAAAAAAAAAAAAAACSNtCjiuuuuy7Rp0z7352VZ5tZbb02PHj3yzW9+M4899lhtEcTnFUT07t079957b1544YUcdNBBadas2RdmWH311XPWWWflrbfeyoUXXpg2bdokSd57773suuuuufzyy+vnZgEAAAAAAAAAAAAAAAAAAAD+f42yKKIsy/zrX//6zOuzZ8/O1VdfnQ022CDf+c538txzz31hQUSS7L333nnqqacyePDg7LbbboucpVWrVjnhhBMybNiwdO7cOUVRZM6cOTnuuONyzTXXLP5NAgAAAAAAAAAAAAAAAAAAAHxKoyyKSJIf//jH+fe//51PPvkkzz77bE499dR07tw5Rx99dN58883aIogFFUS0aNEi3/ve9zJixIjceeed2Xbbbeucp1u3bvnb3/5WO68syxxzzDF57rnn6nw2AAAAAAAAAAAAAAAAAAAAQJI0r3SAxfX6669nm222me+1ecshPq0sy7Rp0yZHHXVUTjjhhKy++ur1nqlHjx7Zcsst8+yzz6YoisyaNSvf+9738vzzz9f7LAAAAAAAAAAAAAAAAAAAAGDZU1XpAHVRluV8V1EUnymJKMsyq6yySn7961/n7bffzoUXXtggJRE1s9555535MgwfPjy33XZbg8wDAAAAAAAAAAAAAAAAAAAAli2Nuiiiphji0wURNcURXbp0yeWXX54xY8bk1FNPTbt27Ro0zyOPPJL33nvvM6//9a9/bdC5AAAAAAAAAAAAAAAAAAAAwLKheaUD1EVZlklSWxJR87x79+456aST0r9//1RVLbkujFtuuWW+50VRpCzLDB06dIllAAAAAAAAAAAAAAAAAAAAAJquRl0U8emCiD59+uSkk07KN77xjYrkefjhh2szzWvixIkVSAMAAAAAAAAAAAAAAAAAAAA0NY26KCL5b0nEZpttlksuuSQ77rhjRbO8//77C3x97bXXXsJJAAAAAAAAAAAAAAAAAAAAgKaoqtIB6qIoipx22mn597//XfGSiCRZf/31P/NaURQ5+OCDK5AGAAAAAAAAAAAAAAAAAAAAaGoabVFE8+bNc8cdd2TAgAFp3rx5peMkSU4//fQkSVmWtVfv3r1zyimnVDgZAAAAAAAAAAAAAAAAAAAA0BQsHQ0Li+Hwww/PXnvtVekY8/n2t7+dRx55JNdff30++uij9O3bNz/4wQ/SokWLSkcDAAAAAAAAAAAAAAAAAAAAmoBGXRSxNOrdu3d69+5d6RgAAAAAAAAAAAAAAAAAAABAE1RV6QCL45FHHsk666yT//f//l/22muvXHjhhZk7d26lYwEAAAAAAAAAAAAAAAAAAAA0qOaVDrA4Ntxww2yzzTYZN25ckuTee+/NsGHDcuONN1Y4GQAAAAAAAAAAAAAAAAAAAEDDqap0gMVx+umnZ+zYsSnLsva65ZZb8s4771Q6GgAAAAAAAAAAAAAAAAAAAECDaZRFEffee2+Koqi9akycOLGCqQAAAAAAAAAAAAAAAAAAAAAaVqMsivj444/ne14URdZbb71suummFUoEAAAAAAAAAAAAAAAAAAAA0PAaZVFEly5dah+XZZmiKHLFFVdULhAAAAAAAAAAAAAAAAAAAADAEtAoiyK+/e1vpyzLJElRFPnpT3+aPn36NOjMsWPHZu7cuQ06AwAAAAAAAAAAAAAAAAAAAOCLNMqiiJ/97Gfp1KlTbVnEySef3KDzZs6cmS5duuS1115r0DkAAAAAAAAAAAAAAAAAAAAAX6RRFkW0b98+119/fVq0aJEkGT58eIPOGz9+fG0pBQAAAAAAAAAAAAAAAAAAAEClNMqiiCTZeeedc8stt6RVq1Y5+OCD8/LLLzfYrIEDB6YoigY7HwAAAAAAAAAAAAAAAAAAAGBhNNqiiCTZZ599Mnjw4LRo0SJf+9rXcsMNN9T7jKlTp+Y3v/lNvZ8LAAAAAAAAAAAAAAAAAAAAsKgadVFEkmyzzTZ54YUXst9+++XQQw/NN7/5zbz66qt1Pnfq1Km566678rWvfS2jRo2qh6QAAAAAAAAAAAAAAAAAAAAAddO80gEWR9euXRf4eosWLfLggw9m8803z5prrrlYZ1dXV2fatGmZOHFikqQsy8XOCQAAAAAAAAAAAAAAAAAAAFCfGmVRxIQJE/LJJ5/MV+JQFEWS/xY7zJkzJ6NHj66XWUVRKIsAAAAAAAAAAAAAAAAAAAAAlgpVlQ6wOPbdd9+UZZmiKGqvsiw/81p9XAAAAAAAAAAAAAAAAAAAAABLi0ZZFHHYYYd95jXFDgAAAAAAAAAAAAAAAAAAAEBT1yiLIvr06ZPOnTt/5vWyLOv9AgAAAAAAAAAAAAAAAAAAAFhaNK90gMV1yCGH5Nxzz01RFCnLMt26dcs222yT9u3bZ/nll0+LFi3SrFmzFEWRoigW6ey5c+dm5syZeeedd/L3v/89n3zySQPdBQAAAAAAAAAAAAAAAAAAAMDCa7RFEYcddljOPffcJMmpp56aX//61w0yZ+zYsdlhhx0yZsyYBjkfAAAAAAAAAAAAAAAAAAAAYGFVVTrA4lpvvfWy7bbbJklOOumkBpuz1lpr5ayzzmqw8wEAAAAAAAAAAAAAAAAAAAAWVqMtikiSww47LElSlmWDzunbt2+Dng8AAAAAAAAAAAAAAAAAAACwMBp1UcSBBx6Yli1bZtiwYQ06Z/XVV2/wMgoAAAAAAAAAAAAAAAAAAACAL9O80gHqol27drnrrruyxRZbNOicoigyevTorL766g06BwAAAAAAAAAAAAAAAAAAAOCLNOqiiCT5xje+sUTmdO7ceYnMAQAAAAAAAAAAAAAAAAAAAPg8VZUOAAAAAAAAAAAAAAAAAAAAAMDCaV7pAA1pzJgxGTx4cB5//PGMGzcuH374YaZMmZK2bdumQ4cO2XjjjfPVr3413/jGN7LaaqtVOi4AAAAAAAAAAAAAAAAAAADAF2pyRRHV1dW57bbbctFFF2Xo0KHz/awsy9rHRVHk4Ycfrn2+1VZb5fvf/34OOuigrLDCCkssLwAAAAAAAAAAAAAAAAAAAMDCqqp0gPr02GOPZcMNN8xBBx2UoUOHpizL+a7kvwURST7zs6FDh+aHP/xh1lxzzZx//vmZMWNGJW8FAAAAAAAAAAAAAAAAAAAA4DOaRFHEnDlzctxxx6VPnz558803a8sfiqL4zJXkc18vyzKTJ0/Oaaedlo022ihPPPFEJW8LAAAAAAAAAAAAAAAAAAAAYD6Nvihi2rRp2XXXXXP55Zenurp6vvKHsiwX+pxPv2/MmDHp06dPLr300gZMDwAAAAAAAAAAAAAAAAAAALDwmlc6QF3Mnj07++yzTwYNGpTkv2UP86p5viiFEfO+b86cOTn++OMze/bsnHDCCfWQGAAAAAAAAAAAAAAAAAAAAGDxNeqiiJNOOimDBg36TEFE8r9yiE6dOuWrX/1qvvrVr2aDDTbISiutlBVXXDErrbRSmjVrlunTp2f69OkZP358Xn311YwYMSKDBg3K9OnTUxRFyrLML37xi2y22WbZZZddlvQtAgAAAAAAAAAAAAAAAAAAANRqtEURQ4cOzSWXXPKZkoiyLNO5c+ccfPDB+e53v5sNN9xwkc+eOXNm7rnnnpxxxhl59dVXU11dnUMPPTRvvPFG2rRpU1+3AAAAAAAAAAAAAAAAAAAAALBIqiodYHGdcsopKcuy9nlZlll99dVz0003ZfTo0TnnnHMWqyQiSVq1apV99903w4cPz7HHHpsk+eCDD3LBBRfUS3YAAAAAAAAAAAAAAAAAAACAxdEoiyJef/31DBo0KEVRpCzLlGWZE044Ia+99loOOOCAepvTrFmzXHrppTniiCNSlmUuvfTSzJo1q97OBwAAAAAAAAAAAAAAAAAAAFgUjbIo4q677kqSlGWZZs2a5aqrrsqFF16Y1q1bN8i8Sy65JKuttlomT56cf/zjHw0yAwAAAAAAAAAAAAAAAAAAAODLNMqiiEcffTRJUhRFfv7zn+fII49s0HkrrLBCDjrooJRlmYceeqhBZwEAAAAAAAAAAAAAAAAAAAB8nkZZFPHKK68kSb7yla9kwIABS2TmdtttlyR59tlnl8g8AAAAAAAAAAAAAAAAAAAAgE9rlEURH3zwQYqiyCGHHJJmzZotkZkdO3ZMkowdO3aJzAMAAAAAAAAAAAAAAAAAAAD4tEZZFDFjxowkyVe/+tUlNvPDDz9MkkyePHmJzQQAAAAAAAAAAAAAAAAAAACYV6MsilhxxRWTJKuuuuoSm/nYY48lSaqqGuVHBgAAAAAAAAAAAAAAAAAAADQBjbL1YPXVV0+SfPDBB0tk3uTJk3PDDTckSdq3b79EZgIAAAAAAAAAAAAAAAAAAAB8WqMsiujRo0eS5J///OcSmfeTn/wkH3/8cYqiyAYbbLBEZgIAAAAAAAAAAAAAAAAAAAB8WqMsithll11SlmVuvPHGfPDBBw0666STTsr1119f+3z77bdv0HkAAAAAAAAAAAAAAAAAAAAAn6dRFkXss88+WWGFFfLJJ5/k6KOPbpAZ7733Xvbcc89ceOGFKYqi9vW99tqrQeYBAAAAAAAAAAAAAAAAAAAAfJlGWRTRunXr/OhHP0pZlrn77rvTv3//TJ48uV7OHj9+fE477bRsuOGGue+++1KWZZKkKIr06NEjW2+9db3MAQAAAAAAAAAAAAAAAAAAAFhUjbIoIklOOumktG/fPklyxx13ZKONNsrFF1+cSZMmLfJZ06ZNyx133JHvfve7WWeddXL++edn6tSpKcsyRVHUlkWcd9559XkLAAAAAAAAAAAAAAAAAAAAAIukeaUDLK4OHTrkyiuvTP/+/VMURcaPH58TTzwxJ598cr7+9a9nu+22y4Ybbpg111wzbdu2TatWrfKf//wn06ZNy5QpU/LWW2/l5ZdfzogRI/Lvf/87s2fPTpLaUoiiKGqfF0WRI444In379q3Y/QIAAAAAAAAAAAAAAAAAAAA02qKIJNl3331zxhlnZMCAASmKImVZZtasWXnkkUfyyCOPLPQ5NeUQyf8KIub19a9/PZdffnm9ZAYAAAAAAAAAAAAAAAAAAABYXI26KCJJzj777DRr1ixnn312bcnDvMUPC2NB5RA15/Tp0yd33XVXWrZsWeesAAAAAAAAAAAAAAAAAAAAAHVRVekA9eHMM8/MP/7xj6yyyiopyzJFUSzS9WllWaaqqiq/+MUvMnDgwLRp06YCdwUAAAAAAAAAAAAAAAAAAAAwvyZRFJEk3/zmN/PGG2/kxBNPTKtWrVKW5SKfUZZlyrLM1ltvnaFDh+b8889Ps2bNGiAtAAAAAAAAAAAAAAAAAAAAwKJrMkURSdK2bdtccMEFGTt2bAYMGJCuXbvWlj/UXDU+/XpRFNljjz1y//3351//+le6d+9euRsBAAAAAAAAAAAAAAAAAAAAWIDmlQ7QEDp06JDTTjstp512WkaMGJFBgwblueeeyxtvvJFJkyZl1qxZWXnlldOhQ4esv/766dWrV3r37p2OHTtWOjoAAAAAAAAAAAAAAAAAAADA52qSRRHz2mSTTbLJJptUOgYAAAAAAAAAAAAAAAAAAABAnVVVOgAAAAAAAAAAAAAAAAAAAAAAC0dRxCI48sgj895771U6BgAAAAAAAAAAAAAAAAAAALCMUhSxkP7zn//k2muvzcSJEysdBQAAAAAAAAAAAAAAAAAAAFhGKYpYSMOHD690BAAAAAAAAAAAAAAAAAAAAGAZpyhiIZ1//vmVjgAAAAAAAAAAAAAAAAAAAAAs45pXOkBDKMsykyZNysyZMzN79uyUZbnIZ8yePTsTJ07MyJEjc9111+WBBx5IURQNkBYAAAAAAAAAAAAAAAAAAABg4TSJoogPP/ww1157bR5++OG89NJLef/991NdXV3pWAAAAAAAAAAAAAAAAAAAAAD1qlEXRcycOTNnn312LrnkksyYMSNJUpZlvc8piqLezwQAAAAAAAAAAAAAAAAAAABYVI22KOLjjz/ObrvtlmeffXa+cgilDouuuro606ZNy8yZMzNr1qy0atUqrVu3zvLLL+/zBAAAAAAAAIBlnL0CAAAAAAAAAFi6NNqiiAMPPDBDhw5NohxiYX300Ud57LHHMmzYsLz88st54403Mn78+Hz00UfzlW3Mq02bNll77bXTuXPndOnSJT169Mh2222XjTbaaAmnBwAAAAAAAAAakr0CAAAAAAAAAGgcGmVRxD333JOHH354gQURn7eYUBeNuYjijTfeyM0335y//e1veemll+b72cJ8VlOnTs1LL72UESNGzPf6SiutlN133z0HHHBA+vXrlxYtWtRrbgAAAAAAAACg4dkrAAAAAAAAAIDGp1EWRfz5z3/+zGtlWaZ9+/bZY489suWWW2bNNddMmzZt0qpVq8WaUV1dnZkzZ+add97JFVdckWHDhtU19hL18MMP53e/+10GDhyY5POXNxamBKMsy8+8f9KkSbnxxhtz4403pl27djnmmGPy//7f/0vHjh3rHh4AAAAAAAAAaFD2CgAAAAAAAACg8WqURRH/+te/ahcRyrJMURQ5/PDDc/nll2f55Zev93mHHnpodtpppzz55JP1fnZ9e+WVV/LTn/40Dz30UJL5Fzm+aHnjixY+Pu99Ne+ZOHFizj333Pz+97/PcccdlzPPPLNB/h0AAAAAAAAAgLqxVwAAAAAAAAAAjV9VpQMsjgkTJiT5X0nEzjvvnGuuuabBlghatGiRk046qUHOrk8XXXRRevTokYceeqj22zpqFjK+7Bs+5v29xXlPWZb5z3/+k9/+9rfZZJNNMmjQoPq8NQAAAAAAAACgjuwVAAAAAAAAAEDT0CiLIj5dCPHzn/+8wWdus802DT5jcc2YMSP9+/fPz372s8yYMWO+RY551Sx51Mf1afMudowePTq77rprLr300iX1EQAAAAAAAAAAn8NeAQAAAAAAAAA0Lc0rHWBxdOvWLc8991zt86222qrBZ3bq1OlLvwmjEqZPn57dd989jz32WO0iR5LPLF2sttpq2XjjjdO1a9esuuqq6dSpU1ZZZZW0atWq9mrWrFnmzp2b6urqzJgxIzNnzsy0adMyZcqUTJo0KRMmTMj777+fsWPHZvTo0Xn//ffnmzHvEsmcOXNy/PHHZ/r06Tn55JOXzIcBAAAAAAAAAMzHXgEAAAAAAAAAND2Nsihixx13zLBhw2qft2rVaonMHTVqVFZfffUlMmthlGWZAw88MI8++uh837yRJD169Ejfvn3Tp0+fbLfddllppZXqff7UqVMzfPjwDBs2LI8//ngeeuihTJw4MUlqs5x++unp1q1b9ttvv3qfDwAAAAAAAAB8PnsFAAAAAAAAANA0FeWnvyKiEXjxxRfTvXv3JP9dHBgxYkQ23HDDyoaqgN/+9rc5+eSTa5cnVlxxxRxzzDE54ogj0q1btyWeZ+7cuRk0aFAuvfTS3HvvvUn+u3Sy8sor55VXXkmnTp3qPGPEiBHZdNNNa5+/9NJL2WSTTep8LgAAAAAAAAAsSGP+O/WytlfQmP+tAAAAAAAAAGh8Kvl36qolMqWebb755tlrr71qnw8cOLCCaSrjvffey1lnnVW7zHH44Ydn9OjROffccyuyzJEkzZo1yy677JK77747gwcPzjrrrJMkmTRpUn7xi19UJBMAAAAAAAAALIvsFQAAAAAAAABA09UoiyKS5LLLLku7du2SJH/+85+XyMzmzZvn5ZdfXiKzvswll1ySGTNmJEl+//vf55prrqn9PJYGvXr1yuOPP5711lsvZVnmxhtvzNtvv13pWAAAAAAAAACwTLBXAAAAAAAAAABNV6MtilhzzTVz2223pVmzZnnxxRdzww03NOi8KVOmpLq6ukFnLIpbb701RVFk//33z/HHH1/pOAu02mqr5dZbb02zZs0yd+7cXHvttZWOBAAAAAAAAADLBHsFAAAAAAAAANB0NdqiiCTp27dvrr/++lRVVeW4445r0G+WeOmll1IURYOdvyjef//9jB49Okly3HHHVTbMl9hiiy3yne98J2VZ5sEHH6x0HAAAAAAAAABo8uwVAAAAAAAAAEDT1qiLIpJk//33z4033pjp06dnr732yrRp0xpkzu9///sGOXdxvPvuu7WPu3fvXrkgC2mfffZJkrzxxhuVDQIAAAAAAAAAywB7BQAAAAAAAADQtDWvdID60L9//3Tq1Cnf+ta3ss8+++Tqq69OVVXdOjDmzJmT6dOnZ9y4cbnuuutyxx13pCiKekpcN/PmqK6urmCShbPyyisnSaZMmVLhJAAAAAAAAADQ9NkrAAAAAAAAAICmrUkURTz00EP5y1/+kiR55JFHsu6661Y4UcNaY401ah8/88wz6dOnTwXTfLlXX301yf8WOwAAAAAAAACAhmOvAAAAAAAAAACatqpKB6iL0aNHp3fv3tl1111z4403ZvLkySnLskGupckqq6yS9dZbL0ly3nnnVTjNFyvLMn/6059SFEU222yzSscBAAAAAAAAgCbPXgEAAAAAAAAANG2NtijijTfeSM+ePfPEE0/MV+hQFEWDXEub/fffP2VZ5p///GdOPfXUSsf5XKeffnqGDRuWJOnXr1+F0wAAAAAAAADAssFeAQAAAAAAAAA0XY2yKGLu3Lk58MAD89577yXJUl3o0FB+/OMfp3Xr1kmS3/zmN+nfv38+/vjjCqf6n6lTp+bII4/M+eefnyRZbrnlcvjhh1c2FAAAAAAAAAAsI+wVAAAAAAAAAEDT1SiLIm655ZY899xztcUQZVnW/qwsy3q/lkarrrpqzjrrrNp8d9xxRzbYYIOcddZZmTBhQsVyvfPOOxkwYEDWXXfdXHvttSnLMkVR5OSTT06HDh0qlgsAAAAAAAAAliX2CgAAAAAAAACg6Wpe6QCL46abbprveVEUKcsyzZo1y0477ZRevXpl3XXXTbt27bL88svXFkosirlz52bmzJkZO3ZsLr/88gwfPry+4tebE044IYMGDcoDDzyQoijy0UcfZcCAATn33HPTs2fP7Lnnntl+++2zxRZbZPnll2+QDHPnzs3w4cPz4IMP5s4778yzzz47X8FGURT52te+llNOOaVB5gMAAAAAAAAAC2avAAAAAAAAAACapkZZFPHvf/+7tvyhZnGgR48eufnmm7PuuuvW+7zDDz88O++8c5544ol6P7suqqqqcuutt6Znz54ZPnx4bWHGnDlz8uijj+bRRx+t/b2uXbtm7bXXzpprrjnftdpqq6V169Zp3bp1ll9++dr/JsmMGTNqr2nTpuXdd9/NO++8k3HjxuWtt97KsGHDMnz48MyaNSvJ//4tkv+Vd2y44Ya5884707x5o/xfDQAAAAAAAAAaLXsFAAAAAAAAANA0Ncq/sn/88cfzPe/WrVsGDx6cFVZYoUHmtWzZMmeeeWb69evXIOfXRZs2bTJkyJB861vfypAhQz5ToJH899s53njjjbz55pv1OnveGTXmnb/tttvmnnvuSYcOHep1LgAAAAAAAACwcOwVAAAAAAAAAEDTU1XpAIujffv2Sf67NFAURc4+++wGK4moseWWWzbo+XXRrl27DBw4MMcee2zta0VRfOYqy7JerwXNqXn9+OOPz6OPPmqZAwAAAAAAAAAqzF4BAAAAAAAAADQtjbIoYsMNN5zvWyf69u3b4DPbt2+/wG+6WFq0aNEil156aR599NHPfD41FrTkUderRs2SR48ePfLUU0/l97//fVq0aLEkPwIAAAAAAAAA4HPYKwAAAAAAAACApqNRFkXsscce8z1faaWVlsjc0aNHZ/31118isxZXz54989JLL+XGG2/MpptuOt+3dCzIonzLxxe9v3fv3rnvvvsydOjQbLPNNg1xawAAAAAAAABAHdkrAAAAAAAAAIDGr1EWRRx22GFp06ZN7fMxY8YskbmdO3dO8+bNl8isuiiKIgceeGBeeOGFDB48OEcffXQ6dOiwwAWNRfmGj08veay11lo59thj8/TTT2fw4MHZddddK3XLAAAAAAAAAMBCslcAAAAAAAAAAI3b0t96sAAdOnTIT3/60wwYMCBJMmTIkKy//voVTrV06t27d3r37p3LLrsszz77bJ588sk8+eSTeeGFF/L2229n1qxZC3VOy5Yts8EGG2STTTbJFltskd122y2bb755nbJ98MEHmTBhwiK9580336zTTAAAAAAAAADgf5bWvQI7BQAAAAAAAADw+Ypy3q+BaETmzJmT7bffPs8++2x69OiRoUOHNvjMbt265YEHHki3bt0afNaSUJZl3n333YwbNy5TpkzJJ598kk8++SRlWaZNmzZp27Zt2rZtm5VXXjldunRJs2bN6nX+WWedlbPPPrtOZ7z00kvZZJNN6ikRAAAAAAAAAMxvxIgR2XTTTWufL0t/p67kXoGdAgAAAAAAAACWdpXcKWi+RKY0gObNm+f222/P9ttvn2HDhuWuu+7K3nvv3WDzZsyYkVGjRi30N2U0BkVRZI011sgaa6xR6SgAAAAAAAAAwFLGXgEAAAAAAAAALJ2qKh2gLtZaa60MGjQoq622Wn76059m2rRpDTZrzJgxKYqiwc4HAAAAAAAAAAAAAAAAAAAA+DLNKx2grtZbb7088sgj6dOnT77//e/n5ptvbpA511xzTYOcuyw75phj0r9//0V6z5tvvpl99tmnYQIBAAAAAAAAAEsFOwUAAAAAAAAA8PkafVFEkqy//voZMmRI+vTpk+OOOy5/+MMf6nzm3LlzM3ny5IwaNSrXXnttrrjiinpIyrw6deqUTp06VToGAAAAAAAAALCUsVMAAAAAAAAAAJ+vURZFNGvW7HN/dvnll+fyyy+v95llWaYoino/t7H49GdeFEXmzJlToTQAAAAAAAAAwNLEXgEAAAAAAAAALDmNsiiiXbt2mThxYqVjLFPKsqx0BAAAAAAAAABgKWWvAAAAAAAAAACWnKpKB1gcRx55ZJL/fvvEkrqIzwIAAAAAAAAA+Fz2CgAAAAAAAABgyWiURRE/+tGPUlX1v+i+lQIAAAAAAAAAAAAAAAAAAABYFjTKooh11lkn/fr1qy2IqPk2irIsG+QCAAAAAAAAAAAAAAAAAAAAWBo0r3SAxXXsscfm/vvvT/LfgogOHTpkp512SteuXdO+ffssv/zyWW655VJVVZVmzZot0tllWWbWrFmZOHFiXn/99fz973/PxIkTG+I2AAAAAAAAAAAAAAAAAAAAABZaoy2K2G233dK1a9e89dZb2XbbbfPwww9nhRVWaJBZv/nNb7Lzzjtn+PDhDXL+ojr77LPzq1/9aonPLctyvseLUsBRFEXmzJnTELEAAAAAAAAAgHnYKwAAAAAAAACApq2q0gEWV1EUOfroo5Mk++67b4OVRCRJx44dc9FFFzXY+YujLMsletVHBgAAAAAAAABgybBXAAAAAAAAAABNV6MtikiSI488Mq1atcrEiRMbfNZWW2211C0lFEWxxK66zAcAAAAAAAAAljx7BQAAAAAAAADQNDWvdIC6aN++fQ444IA88sgjDT6rbdu2WWedddKyZcsGn/VlunTpMt/zeQssLFAAAAAAAAAAwLLNXgEAAAAAAAAANG2NuigiSc4555y0atVqicwaOXLkEpnzZQ477LB06tQpRx55ZMaPH1+7xFGW5XzLHQ1tSc4CAAAAAAAAABaOvQIAAAAAAAAAaNoafVHE6quvXukIFbHbbrtl+PDhOfLII3P33XenKIoURZHNNtssxx9/fL1+A0hZljniiCPmWxwpiiLXXHNNvc0AAAAAAAAAAOqPvQIAAAAAAAAAaLqKsol+fcPs2bPzwQcf5MMPP8y6666bNm3afO7vjho1Kuuss069LkEsSVdddVVOOOGETJ8+PUVRZIcddshf/vKXrLnmmvU2o6qq6jMLHXPnzq238xfWiBEjsummm9Y+f+mll7LJJpss8RwAAAAAAAAALBuawt+pl5W9gqbwbwUAAAAAAABA41HJv1NXLZEpS8i7776bX/3qV+ndu3fatm2bzp07Z8stt8yLL774ue955ZVXssEGG2TllVfOPvvsk3/84x+prq5egqnr7gc/+EGGDRuWrbfeOmVZZsiQIdliiy1y2223VToaAAAAAAAAAFBh9goAAAAAAAAAoGlpEkURU6dOzTHHHJN11103Z599dp544onMmjUrZVl+6Xs32mijvPrqqzn88MPz4IMPZp999sn666+fv//97w0fvB6tt956efLJJ3P66aenqqoqEydOzIEHHpjvfe97mT59eqXjAQAAAAAAAAAVZK8AAAAAAAAAAJqORl8UMWLEiGy11Va58sorM3PmzJRlmbIsUxTFQp+x7rrr5uKLL86rr76aXXbZJaNGjcq+++6bPffcM5MmTWq48PWsWbNm+dWvfpUhQ4aka9euKcsyf/nLX9K9e/c888wzlY4HAAAAAAAAAFSQvQIAAAAAAAAAaBoadVHEa6+9ll69euXNN9+sLYeouRbH2muvnQceeCC/+MUvUpZl7rvvvmy99dZ5+eWX6zl5w9p+++3z/PPP57DDDktZlhk5cmS+/vWvZ8CAASnLstLxAAAAAAAAAIAKslcAAAAAAAAAAI1boy2KmDx5cvbYY49MmjQpSRa7HGJBzj///PmWIXbeeeeMGjWq3s5fEtq0aZM///nPue2229K+ffvMmTMnZ511Vnr37p0xY8ZUOh4AAAAAAAAAUEH2CgAAAAAAAACg8Wq0RRHnnHNORo4c+ZmCiLIsa6+6+MMf/pBVVlklRVFk/Pjx6devX6ZNm1anMyth3333zfDhw7PzzjunLMs8+eST2WKLLXLDDTdUOhoAAAAAAAAAUGH2CgAAAAAAAACg8WmURRHjx4/PZZddNl9JRFmWWW655bLtttvmW9/6Vg455JA6zWjbtm2OPPLIlGWZoigyatSoDBgwoK7RK+IrX/lKBg4cmN///vdp1apVpkyZkkMPPTSHHHJIpk6dWul4AAAAAAAAAEAF2SsAAAAAAAAAgMalURZF3HXXXZkxY0bt8xYtWuSss87KRx99lKeeeiq33357/vKXv9R5zh577FH7uCzLXHLJJXnvvffqfG6lHH/88XnmmWey2WabpSzL3HTTTdliiy3y5JNPVjoaAAAAAAAAAFBh9goAAAAAAAAAoHFolEUR999/f5L/ljcst9xyGTRoUM4888wst9xy9Tpn4403nu/57Nmzc8cdd9TrjCVt0003zdChQ/PTn/40STJ69OjssMMOOfPMM1NdXV3hdAAAAAAAAABAJdkrAAAAAAAAAIClX6MsinjttdeSJEVR5Morr8z222/fIHPatGnzmdfuueeeBpm1JLVs2TK/+93vMnDgwKyxxhqZO3duzjnnnPTs2TOjRo2qdDwAAAAAAAAAoILsFQAAAAAAAADA0q1RFkW8//77KYoiW221VQ455JAGmzN+/Pjax0VRpCzLjBw5ssHmLWl9+/bN8OHD079//5RlmWeeeSbdu3fPtddeW+loAAAAAAAAAECF2SsAAAAAAAAAgKVToyyKmDZtWpLk4IMPbtA5CyqFmLc8oilo165dbrnlllx77bVp27Ztpk2bliOPPDL7779/Jk2aVOl4AAAAAAAAAEAF2SsAAAAAAAAAgKVPoyyKaNu2bZJkk002adA5t99++2demzVrVoPOrJRDDz00zz//fHr27JmyLHP77bdn8803z+DBgysdDQAAAAAAAACoMHsFAAAAAAAAALD0aJRFEV26dEmSzJkzp8FmTJ8+PTfddFOKopjv9Y4dOzbYzErr0qVLHn300QwYMCDNmzfPuHHjsvPOO+ekk06qdDQAAAAAAAAAoMLsFQAAAAAAAADA0qFRFkVsueWWSZLXX3+9wWb8/Oc/z0cffVT7vCzLFEWRjTfeuMFmLg2Koshpp52WJ554Iuutt16qq6tz4YUXpiiKlGVZ6XgAAAAAAAAAQAXZKwAAAAAAAACAymuURRH9+vVLWZa54447GuT8u+66K1deeWWKovjMz/r06dMgM5c2W221VZ5//vkcddRRtYscC/o8AAAAAAAAAIBlj70CAAAAAAAAAKicRlkUseeee6Z9+/Z59NFH8/DDD9fr2XfffXcOPPDABf6sKIocdNBB9Tpvabb88svn//7v/3L33XenY8eOKcvSt38AAAAAAAAAAEnsFQAAAAAAAABApTTKoohWrVrlxBNPTFmWOeyww/Luu+/W+czq6uqcc8452X///TNz5swkqV1eKMsyRVGkf//+WXvttes8q7HZY4898v7776e6urr2mjt3bqVjAQAAAAAAAABLAXsFAAAAAAAAALBkNcqiiCQ58cQTs8EGG+S9995Lz5498+KLLy72WQ899FC22WabnHnmmZk1a1aKokiS2v8mSdu2bfPb3/62zrkBAAAAAAAAAAAAAAAAAAAAFlejLYpo2bJlbrnllqywwgp5++23s9VWW+VHP/pRhg0b9qXv/c9//pPHHnss55xzTrp165Zdd901zz33XMqyrC2HKMuy9r9FUeSqq67KWmut1aD3BAAAAAAAAAAAAAAAAAAAAPBFmlc6QF1svvnmueOOO7L33ntnxowZ+eMf/5g//vGP6dSpUzbddNPa3zv77LPTqlWrTJ48ORMmTMibb76ZuXPnJvlfIUSS+UoiiqKo/dkFF1yQ/v37L8E7AwAAAAAAAAAAAAAAAAAAAPisRl0UkSS77LJLhgwZku985zsZNWpUkuT999/PBx98kOS/pQ8PP/xw7e/PWwyR/K8couZnRVHUlkS0adMmV1xxRQ4++OAlcCcAAAAAAAAAAAAAAAAAAAAAX6yq0gHqw9Zbb53nn38+hx566HzFDzWlD8l/SyDmLYKY92fz/n7N72299dYZNmyYkggAAAAAAAAAAAAAAAAAAABgqdEkiiKSpE2bNrn22mvz2muv5dhjj80KK6xQW/pQlmWSfKYYIsl8v1OWZXbeeefcf//9+de//pVu3bot6dsAAAAAAAAAAAAAAAAAAAAA+FzNKx2gvnXr1i2XXnppLrjggjzzzDN58skn89RTT2Xs2LGZOHFiJk6cmE8++SQrrrhi2rdvn44dO6Z79+7p1atXevXqlTXXXLPStwAAAAAAAAAAAAAAAAAAAACwQE2uKKLGcsstl969e6d3796VjgIAAAAAAAAAAAAAAAAAAABQL6oqHQAAAAAAAAAAAAAAAAAAAACAhaMoAgAAAAAAAAAAAAAAAAAAAKCRqHhRxNtvv13pCAtt/PjxmTt3bqVjAAAAAAAAAAAAAAAAAAAAAMuoihdFrLPOOpWOsNC+8Y1v5LXXXqt0DAAAAAAAAAAAAAAAAAAAAGAZVfGiiLIsU5ZlpWMslLlz51Y6AgAAAAAAAAAAAAAAAAAAALAMq3hRRJJ88MEHlY6wUD766KNKRwAAAAAAAAAAAAAAAAAAAACWYUtFUcRjjz1W6QhfauTIkZkwYUKlYwAAAAAAAAAAAAAAAAAAAADLsKWiKOKcc87JrFmzKh3jC/3617+udAQAAAAAAAAAAAAAAAAAAABgGbdUFEW8+OKL2WmnnfLwww9n6tSplY5Ta8aMGXn66adz5JFH5rrrrqt0HAAAAAAAAAAAAAAAAAAAAGAZ17zSAWo89dRT6devX5Kkbdu2adOmTVq2bFmRLLNmzconn3ySyZMnV2Q+AAAAAAAAAAAAAAAAAAAAwIIsNUURZVnWPp4yZUqmTJlSwTQAAAAAAAAAAAAAAAAAAAAAS5+lpiiiKIpKR/hC8xZZAAAAAAAAAAAAAAAAAAAAAFTCUlMUMW8Rw9JSGlGTaWnJAwAAAAAAAAAAAAAAAAAAACzbqiodYEHmLY2opKIolEQAAAAAAAAAAAAAAAAAAAAAS43mlQ5Qo6aQoaYkYmkpi0iiLAKA/4+9O4+zczz/B36dyWRPRIglQWJPlNYasYulthI7Re21lCgVaRVtLVVLKSUI1aqitS+toJbYv0qIqEYIKpGSRBZJZE8m9++P/DIy5pzJbOecOTPv9+t1Xp15nvPc93Vm0s/cZ57bNQAAAAAAAAAAAAAAAAAA0CQUvVHED3/4w7jrrrtiwYIFkclkIpPJREopysrKYr/99otDDjmk4I0aFi5cGHPnzo2JEyfG22+/HcOHD4+KioqC1gAAAAAAAAAAAAAAAAAAAADwTUVvFHHbbbfF5ZdfHjfccEMMHTo0pk2bVtksYtiwYTFmzJg499xz48QTT4x27doVpcZRo0bFPvvsE1OmTCnK/AAAAAAAAAAAAAAAAAAAAAAREWXFLiAiYrXVVovLLrssPv3007jxxhtj/fXXj5RSpJTiv//9bwwcODB69uwZl156aUybNq3g9W2xxRbx29/+tuDzAgAAAAAAAAAAAAAAAAAAACyvSTSKWKZ9+/Zx5plnxtixY+OBBx6I7bffvrJhxNSpU+OSSy6Jnj17xplnnhkff/xxQWs77LDDonXr1gWdEwAAAAAAAAAAAAAAAAAAAGB5TapRxDKZTCYOPfTQePXVV+Pll1+OAQMGRFlZWaSUYt68eTF06NDo06dPHH744fGvf/2rIDW1b98+evToUZC5AAAAAAAAAAAAAAAAAAAAALJpko0ilrfjjjvGo48+GmPGjIlTTz012rdvHymlqKioiIcffjh23HHH2GWXXeIf//hH3mvp2LFj3ucAAAAAAAAAAAAAAAAAAAAAyKXJN4pYZqONNoqhQ4fG+PHj45e//GWsttpqkVKKlFK8+uqrcdBBB8Umm2wSt99+eyxcuDAvNRx00EHRtWvXvIwNAAAAAAAAAAAAAAAAAAAAsCIl0yhimW7dusXFF18c48ePj5tvvjk22mijyoYRY8eOjdNOOy169eoVv/nNb+LLL79s1Lkvu+yy6N69e6OOCQAAAAAAAAAAAAAAAAAAAFBbJdcoYpl27drF6aefHu+//3489NBDscMOO1Q2jPjiiy/iF7/4RfTs2TPOPvvsGDduXLHLBQAAAAAAAAAAAAAAAAAAAGiwkm0UsUwmk4mDDz44XnnllXjttdfi4IMPjkwmEymlmDNnTgwZMiQ23njjOOqoo+Ktt94qdrkAAAAAAAAAAAAAAAAAAAAA9VbyjSKW169fv3jooYdi7Nix8aMf/Sg6dOgQKaVYvHhx3H///bHtttvG7rvvHk8++WSxSwUAAAAAAAAAAAAAAAAAAACos2bVKGKZ9ddfP2666ab49NNP45JLLonVV189UkqRUooXX3wx9t9//9hss83izjvvjMWLFxe7XAAAAAAAAAAAAAAAAAAAAIBaaZaNIpZZZZVV4he/+EWMHz8+hg4dGr17965sGDFmzJg46aSTolevXnH11VfHrFmzil0uAAAAAAAAAAAAAAAAAAAAQI2adaOIZdq2bRunnnpqjBkzJh599NHYeeedKxtGTJo0KX7+85/HOuusE4MGDYoJEyYUu1wAAAAAAAAAAAAAAAAAAACArFpEo4jlDRgwIF588cV4/fXX47DDDouysrJIKcVXX30V119/fWy44YZx7LHHxjvvvFPsUgEAAAAAAAAAAAAAAAAAAACqaHGNIpbp27dv3H///TF27NgYOHBgdOzYMVJKsWjRovjrX/8aW221Vey1117xzDPPFLtUAAAAAAAAAAAAAAAAAAAAgIhowY0illl33XVjp512ivXWWy8iIjKZTKSUIqUUzz33XOyzzz6xxRZbxD333BMVFRVFrhYAAAAAAAAAAAAAAAAAAABoyVpso4gFCxbELbfcEhtvvHEcddRRMXr06MpzmUymSsOId999N4477rhYf/314/PPPy9i1QAAAAAAAAAAAAAAAAAAAEBLVl7sAgrtyy+/jCFDhsSQIUNi6tSpkVKqcn7Z58uaRSx/rFevXtG2bdvCFgwAAAAAAAAAAAAAAAAAAADw/7WYRhGffvppXHvttfGnP/0p5s6dW6UhxDIppWqfl5WVxcEHHxyDBw+Ofv36FbxuAAAAAAAAAAAAAAAAAAAAgGWafaOIf//733HVVVfFAw88EBUVFTU2iFh2LKUU7du3jxNOOCHOPffc2GCDDYpSOwAAAAAAAAAAAAAAAAAAAMDymm2jiOHDh8fVV18dzzzzTERErRtEdOvWLc4888w488wzo1u3boUvHAAAAAAAAAAAAAAAAAAAACCHZtUoIqUUDzzwQPz2t7+NkSNHVh6LqNogYplMJlN5foMNNohzzz03TjzxxGjXrl3higYAAAAAAAAAAAAAAAAAAACopWbRKGL+/Pnxpz/9KX73u9/FJ598EhE1N4hY/vy2224bgwcPjkMOOSTncwEAAAAAAAAAAAAAAAAAAACagpJuFDF9+vQYMmRI3HTTTTF16tTK5g8RXzeISClVaQCx7PP9998/Bg8eHDvvvHPB6wYAAAAAAAAAAAAAAAAAAACoj5JsFDF+/Pi49tpr44477oi5c+dWNojI1hBi+YYRbdq0iR/84Adx3nnnRZ8+fYpSOwAAAAAAAAAAAAAAAAAAAEB9lVSjiHfeeSeuvvrqeOCBB6KioqLWDSJWXnnlOP300+PHP/5xrLnmmkWpHQAAAAAAAAAAAAAAAAAAAKChSqJRxHPPPRdXX311PPvssxERK2wQsex8z54945xzzolTTjklOnbsWPjCAQAAAAAAAAAAAAAAAAAAABpRk20UkVKK+++/P37729/G22+/XXksomqDiGWWbxCx+eabx+DBg+PII4+MVq1aFa5oAAAAAAAAAAAAAAAAAAAAgDwqK3YB3zR//vy46aabYsMNN4yjjz46Ro4cGSmlSClFJpPJ2iRi2fnvfve78fTTT8fbb78dRx99dKM3iTj55JNj/PjxjTomAAAAAAAAAAAAAAAAAAAAQG2VF7uAZaZPnx433nhj3HTTTTFt2rRIKVWeW9YcYlmziGVSSlFeXh5HHnlknHfeebH55pvntcY33ngj5syZk9c5AAAAAAAAAAAAAAAAAAAAAHIpeqOIcePGxbXXXht33HFHzJs3r7JBxDcbQmQymSoNIzp37hynnHJKnHPOObH22msXpNbZs2cXZB4AAAAAAAAAAAAAAAAAAACAbIreKGKjjTaKJUuW1LpBRPfu3ePss8+O008/PVZaaaWC1Tlnzpz4/PPPCzYfAAAAAAAAAAAAAAAAAAAAwDcVvVFERUVFlWYQEVUbRCxrIPGtb30rzjvvvDjmmGOidevWBa/z/vvvj8WLFxd8XgAAAAAAAAAAAAAAAAAAAIBlit4oYnnLmkIs3yCif//+MXjw4Nh3332LVte//vWvOO+884o2PwAAAAAAAAAAAAAAAAAAAEBEE2oUkVKKTCZT+XFZWVnsu+++0bdv3xgxYkSMGDGiYLUsXLgw5s6dGxMnTox///vf8f7771epDwAAAAAAAAAAAAAAAAAAAKAYmkyjiOVlMplIKcUTTzwRTzzxRFFrSSkVdX4AAAAAAAAAAAAAAAAAAACAZZpMo4hMJhMRTbMxw7LGFQAAAAAAAAAAAAAAAAAAAADF1GQaRaSUYvXVV4+99torevfuHd26dYu2bdtWNpAopIULF8bcuXNj4sSJ8fbbb8fw4cOjoqKi4HUAAAAAAAAAAAAAAAAAAAAALK/JNIr44Q9/GEOGDIk2bdoUu5RqRo0aFXvvvXdMnTq12KUAAAAAAAAAAAAAAAAAAAAALVhZsQuIiOjXr1/ceuutTbJJRETEFltsEVdffXWxywAAAAAAAAAAAAAAAAAAAABauCbRKOKss86KTCZT7DJqdMQRR0Tr1q2LXQYAAAAAAAAAAAAAAAAAAADQgjWJRhH9+vUrdgkr1L59++jRo0exywAAAAAAAAAAAAAAAAAAAABasCbRKKJ79+7FLqFWOnbsWOwSAAAAAAAAAAAAAAAAAAAAgBas6I0ijj/++Gjfvn2xy6iVgw46KLp27VrsMgAAAAAAAAAAAAAAAAAAAIAWqrzYBdxxxx3FLqHWLrvssmKXAAAAAAAAAAAAAAAAAAAAALRgZcUuAAAAAAAAAAAAAAAAAAAAAIDa0SgCAAAAAAAAAAAAAAAAAAAAoERoFAEAAAAAAAAAAAAAAAAAAABQIjSKAAAAAAAAAAAAAAAAAAAAACgRGkUAAAAAAAAAAAAAAAAAAAAAlAiNIgAAAAAAAAAAAAAAAAAAAABKhEYRAAAAAAAAAAAAAAAAAAAAACVCowgAAAAAAAAAAAAAAAAAAACAEqFRBAAAAAAAAAAAAAAAAAAAAECJ0CgCAAAAAAAAAAAAAAAAAAAAoERoFAEAAAAAAAAAAAAAAAAAAABQIjSKAAAAAAAAAAAAAAAAAAAAACgRGkUAAAAAAAAAAAAAAAAAAAAAlAiNIgAAAAAAAAAAAAAAAAAAAABKhEYRAAAAAAAAAAAAAAAAAAAAACVCowgAAAAAAAAAAAAAAAAAAACAEqFRRB2Ul5fHe++9V+wyAAAAAAAAAAAAAAAAAAAAgBaqZBtFXHrppQWdb/bs2bFkyZKCzgkAAAAAAAAAAAAAAAAAAACwvJJtFHHJJZfEtGnTCjbff/7zn8hkMgWbDwAAAAAAAAAAAAAAAAAAAOCbSrZRREqpoI0irr/++oLNBQAAAAAAAAAAAAAAAAAAAJBNyTaKiIgYOXJkQea5++674/777y/IXAAAAAAAAAAAAAAAAAAAAAC5lHSjiKeeeirvczz++ONx8skn530eAAAAAAAAAAAAAAAAAAAAgBUp6UYRDz/8cEybNi1v4991111x2GGHxeLFi/M2BwAAAAAAAAAAAAAAAAAAAEBtlXSjiDlz5sTgwYPzMvYFF1wQJ5xwQixcuDAv4wMAAAAAAAAAAAAAAAAAAADUVUk3ioiIuPPOO+OBBx5otPG++uqrGDBgQFx11VWRUopMJtNoYwMAAAAAAAAAAAAAAAAAAAA0RMk3ikgpxYknnhgjRoxo8FjvvfdebLPNNjFs2DBNIgAAAAAAAAAAAAAAAAAAAIAmp+QbRWQymZg7d27st99+MWbMmHqPc//998d2220XH330UWWTiJRSI1YKAAAAAAAAAAAAAAAAAAAA0DAl3yhiWTOHadOmxV577RXjxo2r0/UVFRXxk5/8JI466qiYPXt2RCxtPrHsf1NKGkYAAAAAAAAAAAAAAAAAAAAATUJJN4rYbbfd4sUXX4yf/vSnERHx+eefx5577hmTJk2q1fWTJk2K3XbbLW644YZIKVU2iFgmpRSbb755XHfddbHPPvs0ev0AAAAAAAAAAAAAAAAAAAAAdVFe7AIa4pZbbomNNtoodt5551hvvfXijDPOiE8++SS++93vxosvvhirrLJKzmtffvnlOPLII2Py5MnVmkSklKJVq1ZxySWXxPnnnx9lZWVxxBFHxFprrVWIlwUAAAAAAAAAAAAAAAAAAACQVVmxC6ivX/3qV7HhhhtWfn7aaafFkCFDIqUU7733Xuy7774xe/bsrNf+7ne/iz333DMmTZqUtUnEmmuuGc8991xccMEFUVa29EvUvXv3uPjii2P11VfP7wsDAAAAAAAAAAAAAAAAAAAAyKGkG0Us3+AhIuJHP/pRXH311ZFSijfffDMGDBgQCxYsqDw/Z86cOPLII2Pw4MGxaNGiyGQy1ZpE9O/fP95+++3YZZddqs35y1/+Mrp165a/FwUAAAAAAAAAAAAAAAAAAABQg5JtFJHLeeedFz//+c8jpRQvvvhiHHbYYVFRURHvv/9+bLvttvHggw9GSqlag4iIiJ///Ofx7LPPxhprrFGs8gEAAAAAAAAAAAAAAAAAAAByKi92Aflw+eWXx8yZM+Pmm2+OJ554Ir773e/GW2+9FV999VVERLUmEausskr85S9/if32269YJQMAAAAAAAAAAAAAAAAAAACsUFmxC8iXIUOGxDHHHBMppXjxxRdzNono27dvjBw5slZNIsrLy+O9997LW80AAAAAAAAAAAAAAAAAAAAANWm2jSIiIv785z/HgAEDIqUUmUymWpOIM888M1555ZXo2bPnCseaP39+LFmyJJ/lAgAAAAAAAAAAAAAAAAAAANSoWTeKaNWqVdx///2x++67R0opIpY2iOjYsWPce++9ceONN0br1q1rNdYnn3xSpdEEAAAAAAAAAAAAAAAAAAAAQKE160YRERFt2rSJxx57LLbddttIKcVmm20WI0aMiCOOOKJO41x77bV5qhAAAAAAAAAAAAAAAAAAAACgdsqLMelLL71U8DnPP//8uOaaa+Kiiy6KyZMnx+TJk2t8/uLFi2PWrFkxfvz4eOihh+KVV16JTCZToGoBAAAAAAAAAAAAAAAAAAAAqitKo4j+/fsXrenC9773vaLMCwAAAAAAAAAAAAAAAAAAANBQRWkU0bNnz/j000+LMXW9FKupBQAAAAAAAAAAAAAAAAAAAMDyyoox6Y9+9KOIWNqAoRQeAAAAAAAAAAAAAAAAAAAAAE1BURpFnHLKKdGuXbvKz1NKxSgDAAAAAAAAAAAAAAAAAAAAoKQUpVHEKqusEkceeWRlg4hMJhMppSb9AAAAAAAAAAAAAAAAAAAAACi28mJNfNZZZ8Wdd94ZEREppTj44IPj4IMPjl69ekXnzp2jXbt20bp162jVqlVkMpmC17dw4cKYPn16vPfee3HnnXfGSy+9VPAaAAAAAAAAAAAAAAAAAAAAAJZXtEYRW221VfTr1y/eeOONOPnkk+MPf/hDsUqpUb9+/eLEE0+MAQMGxLBhw4pdDgAAAAAAAAAAAAAAAAAAANCClRVz8oEDB0ZKKfr161fMMmrlxz/+cbFLAAAAAAAAAAAAAAAAAAAAAFq4ojaKOOKII2KNNdaI0aNHF7OMWtlyyy2LXQIAAAAAAAAAAAAAAAAAAADQwhW1UUTr1q3jhz/8YUyYMKGYZdTKqquuGimlYpcBAAAAAAAAAAAAAAAAAAAAtGDlxS7gV7/6VZSXF72MaiZOnBhTpkyJ9dZbLzp37hwREePGjYsePXoUuTIAAAAAAAAAAAAAAAAAAACgpSordgFNsUlERERKKQ4//PDYcsstY/To0RER0bNnzyZbLwAAAAAAAAAAAAAAAAAAAND8Fb1RRFPVo0ePeO6552LhwoWx8847x+uvv17skgAAAAAAAAAAAAAAAAAAAIAWTqOIGqy99tpx5513xowZM2K//faL999/v9glAQAAAAAAAAAAAAAAAAAAAC2YRhErsNVWW0VExIwZM+Kwww6LRYsWFbkiAAAAAAAAAAAAAAAAAAAAoKUqL3YBja2ioiJmzpwZCxcujEWLFkVKqdbXppSioqIiFi5cGHPmzInx48fHbbfdVnluzJgxMXTo0DjrrLPyVT4AAAAAAAAAAAAAAAAAAABATiXfKGLevHkxdOjQePTRR+O9996L6dOnN/ocmUwmUkqRUoo///nPGkUAAAAAAAAAAAAAAAAAAAAARVHSjSJGjhwZhx56aHz66acREZFSyss8mUymslnEmDFj8jIHAAAAAAAAAAAAAAAAAAAAwIqUbKOI//73v7HnnnvGjBkzKo9lMpm8z9ulS5e8zwEAAAAAAAAAAAAAAAAAAACQTVmxC6ivs88+O2bMmBGZTKbykUtKqV5zfPO6TCYTxx57bL3GAgAAAAAAAAAAAAAAAAAAAGio8mIXUB8ffvhhPPHEE9WaQ9TUEKI+zSIymUzldR07doyTTjopfvOb39R5HAAAAAAAAAAAAAAAAAAAAIDGUJKNIh577LFIKVU2ikgpRa9evWLfffeNTTbZJNZaa63o2LFjtGvXLu655564/fbb45BDDomzzjqr1nP87Gc/ixEjRsRpp50WZ511Vmy00UbRunXrfL0kAAAAAAAAAAAAAAAAAAAAgBUqyUYRL7/8cuXHXbt2jaFDh8Zhhx2W9blrr7123H777fHaa6/FfffdF61atarVHHfeeWdsueWWcdddd8XZZ5+tSQQAAAAAAAAAAAAAAAAAAABQdGXFLqA+Pvjgg4iIKCsriyeeeCJnk4iIiA022CB22mmnmDRpUjz22GO1nqN3797x85//PObOnRtHHHFELFiwoMF1AwAAAAAAAAAAAAAAAAAAADRESTaKmDx5cmQymTjiiCNi2223XeHzf/jDH0ZKKW666aY6zTNo0KBYY401YvTo0XHeeefVt1wAAAAAAAAAAAAAAAAAAACARlGSjSLmzJkTERH77rtvrZ5/xBFHRNeuXeOFF16I//znP7Wep0OHDnHyySdHSiluvvnmePbZZ+tVLwAAAAAAAAAAAAAAAAAAAEBjKMlGEW3bto2IiLXWWqtWz2/Xrl0cd9xxkVKKa665pk5zHXbYYRERkVKK0047LRYuXFi3YgEAAAAAAAAAAAAAAAAAAAAaSUk2ilh55ZUjImLevHm1vubMM8+MTCYTf/3rX2Ps2LG1vq53794REZHJZGLcuHHx0EMP1alWAAAAAAAAAAAAAAAAAAAAgMZSko0ievToERERb7zxRq2v2XDDDWP//fePxYsXx8CBA2t93VdffVXl8wceeKDW1wIAAAAAAAAAAAAAAAAAAAA0ppJsFNG3b99IKcXQoUNj2rRptb7upz/9aUREPPfcczFkyJBaXXP//fdXfpxSinfeeaduxQIAAAAAAAAAAAAAAAAAAAA0kpJsFLHLLrtERMSUKVNi7733jk8++aRW1+24447Rv3//SCnFueeeG48++miNz3///ffjV7/6VWQymcpjkyZNqnfdAAAAAAAAAAAAAAAAAAAAAA1Rko0iDjrooOjWrVtERIwcOTI23njj2GabbWL33XePPfbYI77//e/H7bffHkuWLKl27eWXXx4REYsXL47DDz88Lrjggpg1a1a15917772xyy67xJdfflnleLt27fLwigAAAAAAAAAAAAAAAAAAAABWrLzYBdRHmzZt4ic/+UlceOGFkclkoqKiIkaOHBmZTKbyOQ888EC89dZbccstt1S5dvvtt49jjz027rrrrqioqIirrroqbrjhhth+++2je/fuMWPGjBgxYkR88cUXkVKqHHPZxxtvvHFBXysAAAAAAAAAAAAAAAAAAADAMmXFLqC+fvrTn8bWW29drZnD8o8///nPUVFRUe3a66+/PtZcc83IZDKRUoq5c+fG8OHD45577olhw4bF5MmTq4y7vIMPPjjvrw0AAAAAAAAAAAAAAAAAAAAgm5JtFNGqVat4/PHHY+ONN65s6rD8IyKyNnqIiOjatWvcd999UV5eXvn85RtMLD/G8tZcc80488wz8/q6AAAAAAAAAAAAAAAAAAAAAHIp2UYRERFrrLFGvPLKKzFgwIAqjR5SShERcdppp0WrVq2yXrvzzjvH3XffXXn+m00mlpdSivbt28fDDz8cHTt2zN8LAgAAAAAAAAAAAAAAAAAAAKhBebELaKhu3brFo48+Gv/3f/8X9913X3z88cex0korxX777RfHHHNMjdcefvjhsdpqq8Xxxx8fEyZMqDyeyWQqm01ERGy66aZxzz33xHe+8528vQ4AAAAAAAAAAAAAAAAAAACAFSn5RhHL7LDDDrHDDjvU+br+/fvHxx9/HPfff3889thjMW7cuJg5c2asssoq8Z3vfCf233//+N73vheZTCYPVQMAAAAAAAAAAAAAAAAAAADUXrNpFNEQ5eXlcfTRR8fRRx9d7FIAAAAAAAAAAAAAAAAAAAAAciordgEAAAAAAAAAAAAAAAAAAAAA1I5GEQAAAAAAAAAAAAAAAAAAAAAlQqMIAAAAAAAAAAAAAAAAAAAAgBJRXuwCGtv48ePjueeei5deeik+++yzmDp1avzpT3+KLbfcMuvzp02bFoceemhsttlmseeee8b+++8f5eXN7ssCAAAAAAAAAAAAAAAAAAAANAPNpiPC66+/Hr/+9a/jiSeeqDyWUopMJhPz5s3LeV1KKXbZZZe4/fbb45ZbbonVVlstTj/99Bg8eHB07NixEKUDAAAAAAAAAAAAAAAAAAAA1EpZsQtoqJRS/OxnP4sddtghnnjiiUgpVT5qo1u3bnHppZfGf//737j88stj7ty5cdlll0Xv3r3joYceynP1AAAAAAAAAAAAAAAAAAAAALVX0o0iFi9eHPvtt19cc801lc0hMplM5aMu2rVrF+eff368+eab8a1vfSs+//zzOOKII+Lcc8+NJUuW5OkVAAAAAAAAAAAAAAAAAAAAANReSTeKOO200+Kf//xnlQYRyxpG1NfGG28czz//fGy88caRUorf//73ceihh2oWAQAAAAAAAAAAAAAAAAAAABRdyTaKuP/+++OOO+6obBCxzDc/r49u3brFXXfdFa1atYqUUvz973+PU089taElAwAAAAAAAAAAAAAAAAAAADRISTaKWLx4cVx00UXVjqeUqjwaom/fvjFgwIDKce+444545JFHGjQmAAAAAAAAAAAAAAAAAAAAQEOUZKOIf/7zn/HRRx9FJpOJiKWNHHr37h1//vOfY8yYMTFz5sxYtGhRg+c55phjIiIik8lESikGDRrUKOMCAAAAAAAAAAAAAAAAAAAA1EdJNop44oknqnx+5plnxqhRo+K4446L3r17R+fOnaNVq1YNnqdfv35VPh8/fnw89dRTDR4XAAAAAAAAAAAAAAAAAAAAoD5KslHEa6+9VvnxkUceGTfeeGO0adOm0edZffXVqx175JFHGn0eAAAAAAAAAAAAAAAAAAAAgNooyUYRkyZNioiIbt26xW233Za3eWbPnl3l85RSvPXWW3mbDwAAAAAAAAAAAAAAAAAAAKAmJdkoYtq0aZHJZOK4446LTp065W2eCRMmVH6cyWQiImLixIl5mw8AAAAAAAAAAAAAAAAAAACgJiXZKKJNmzYREbHzzjvndZ7nn3++2rEZM2bkdU4AAAAAAAAAAAAAAAAAAACAXEqyUcSaa64ZERErrbRSXue58847qx3r1KlTXucEAAAAAAAAAAAAAAAAAAAAyKUkG0V861vfioiIzz//PG9z3H///TFq1KjIZDIREZFSioiI9ddfP29zAgAAAAAAAAAAAAAAAAAAANSkJBtF9O/fP1JKMXz48LyM/8UXX8TAgQMrm0Qsk8lkYrvttsvLnAAAAAAAAAAAAAAAAAAAAAArUpKNIg477LAoKyuL++67LyZNmtSoY0+dOjW++93vxtSpUyMiIqVU5fzBBx/cqPMBAAAAAAAAAAAAAAAAAAAA1FZJNopYZ5114uCDD445c+bEaaed1mjjfvTRR7H77rvHu+++G5lMJlJKVf63T58+scceezTafAAAAAAAAAAAAAAAAAAAAAB1UZKNIiIifvOb30S7du3i8ccfj1NPPTWWLFlS77FSSvG73/0utthiixg9enTO51155ZX1ngMAAAAAAAAAAAAAAAAAAACgoUq2UcRGG20UV155ZaSU4o9//GPsvPPO8frrr9dpjM8++ywuvfTSWHfddWPw4MExd+7cSClFJpOp9r/HHXdcHHDAAXl6NQAAAAAAAAAAAAAAAAAAAAArVl7sAhrixz/+cbz33ntx2223xb/+9a/YYYcdYtNNN439998/Nt1008rnjRgxIiZNmhQzZ86MKVOmxNtvvx1vvPFGjBs3LiIiUkoREZHJZCo/X/ZxRMQOO+wQt956a+FeGAAAAAAAAAAAAAAAAAAAAEAWJd0oIiJi6NCh0bFjx7juuusiImL06NExevToyvMppTj33HOrXbesOUREVGkKsfznKaX47ne/Gw899FC0adMmH+UDAAAAAAAAAAAAAAAAAAAA1FpZsQtoDNdee2384x//iNVWW62yAURKKTKZTGQymUgpVXssO/fNJhHLrm3VqlVcccUV8dRTT0WnTp0K/ZIAAAAAAAAAAAAAAAAAAAAAqmkWjSIiIr73ve/F6NGj48ILL4xu3bpFRFQ2jVi+KURNzSFSSlFWVhZHHnlkjBgxIn72s59lfS4AAAAAAAAAAAAAAAAAAABAMZQXu4DG1K1bt7jsssvioosuigcffDCee+65+L//+78YO3Zsjdd16tQptt9++9hll13i2GOPjZ49exaoYgAAAAAAAAAAAAAAAAAAAIDaa1aNIpZp27ZtHHPMMXHMMcdERMT06dPjf//7X3z55Zfx5Zdfxty5c2OllVaKVVZZJbp16xYbbrhhlJWVFblqAAAAAAAAAAAAAAAAAAAAgJo1y0YR37TKKqvEKqusUuwyAAAAAAAAAAAAAAAAAAAAABqkrNgFAAAAAAAAAAAAAAAAAAAAAFA7GkUAAAAAAAAAAAAAAAAAAAAAlAiNIgAAAAAAAAAAAAAAAAAAAABKRHmxC1iRDz/8MJ599tkYOXJkfPHFF7F48eJYY401onv37rHzzjvHbrvtFm3bti12mQAAAAAAAAAAAAAAAAAAAAB512QbRbzxxhvxi1/8Ip599tmcz7nyyiujffv2cdJJJ8UvfvGLWG211QpYIQAAAAAAAAAAAAAAAAAAAEBhlRW7gGx+8YtfxE477RTPPvtspJRqfMydOzduuumm2HDDDeNvf/tbsUsHAAAAAAAAAAAAAAAAAAAAyJvyYhewvIqKijjxxBPjnnvuiZRSRERkMpkVXpdSiq+++ip+8IMfxCeffBIXXHBBvksFAAAAAAAAAAAAAAAAAAAAKLiyYhewvHPPPTfuvvvuSClFJpOJTCYTKaUaHxFR5bm/+MUv4q677iryKwEAAAAAAAAAAAAAAAAAAABofE2mUcRDDz0UN954Y2XTh4io1ggi2+ObDSNSSnHGGWfE2LFji/ZaAAAAAAAAAAAAAAAAAAAAAPKhSTSKmDdvXpxzzjmVny9r/vDNphHffERElYYRy8ydOzcuvvjiQr4EAAAAAAAAAAAAAAAAAAAAgLwrL3YBERF33nlnfPbZZ5UNH5ZvDhER0bp16+jTp0+sv/760alTp5g1a1ZMnjw5Ro0aFQsXLoyIqLxm2RgPPvhgXHXVVbHOOusU50UBAAAAAAAAAAAAAAAAAAAANLIm0Sjitttuq/x4+SYRu+66a5xxxhmx7777RqdOnapdN2/evPjnP/8ZV155ZbzxxhuV10ZEVFRUxD333BPnn39+/l8AAAAAAAAAAAAAAAAAAAAAQAGUFbuAzz//PEaNGlWlQUT37t3jySefjOeffz4OP/zwrE0iIiLat28fBx10UPzrX/+KG2+8MVq3bl3l/CuvvJL3+gEAAAAAAAAAAAAAAAAAAAAKpbzYBbzwwgtVPu/du3e88MILscYaa9RpnDPPPDM22GCDGDBgQFRUVERKKV577bVGrBQAAAAAAAAAAAAAAAAAAACguMqKXcC///3viIhIKUWHDh1i2LBhdW4Sscw+++wTv/3tbyOlFBERM2bMiBkzZjRWqQAAAAAAAAAAAAAAAAAAAABFVfRGEWPGjImIiEwmEz/96U9j/fXXb9B4Z511Vmy22WaVn3/55ZcNGg8AAAAAAAAAAAAAAAAAAACgqSh6o4iJEydGRER5eXkMHDiwweOVlZXFKaecUvm5RhEAAAAAAAAAAAAAAAAAAABAc1H0RhGTJ0+OTCYTO+64Y3Tt2rVRxtxrr70qP66oqGiUMQEAAAAAAAAAAAAAAAAAAACKreiNIr766quIiNhiiy0abcy111678uNOnTo12rjf+c534r333mu08QAAAAAAAAAAAAAAAAAAAADqouiNIhYsWBAREWussUajjdmuXbvKjxtz3JRSo40FAAAAAAAAAAAAAAAAAAAAUFdNplFEJpNptDFnzJgREREdOnSIVVZZpdHGnTVrVqONBQAAAAAAAAAAAAAAAAAAAFBXRW8UsWTJkoiImDJlSqON+dlnn0VExMYbb9xoY37xxReV4wIAAAAAAAAAAAAAAAAAAAAUQ9EbRSzz8ccfN9pYY8eOjYiITTfdtNHGvPHGGyOl1GjjAQAAAAAAAAAAAAAAAAAAANRVebELWObtt99utLFGjx4dmUwmtt566waPNX/+/Lj11lvjiiuuaITKAAAAAAAAAAAAAAAAAAAAAOqvyTSK+PTTT+PEE0+MTCbT4LFeffXViIh4/PHH45133qnTtSmlWLhwYcyePTsmTJgQY8aMiYULF0ZKqVFqAwAAAAAAAAAAAAAAAAAAAKivJtMoIqUUf/nLXxp1vOHDhzd4jOZo+vTpMWrUqHjvvffiww8/jEmTJsXkyZNj1qxZsWDBgli4cGG0bds2OnToEO3bt4+VV145evXqFT179ox11103tt5661hvvfWK/TIAAAAAAAAAgDywrwAAAAAAAAAAmrYm0ygik8k0emOGxhgvk8k02ljF9PLLL8eDDz4Yw4cPjzFjxmR9PdmOLXv937TaaqvFdtttFwcccEAccsgh0bVr10avGQAAAAAAAAAoDPsKAAAAAAAAAKB0lBW7gGVSSpHJZBrtERGNNk6p+vLLL+Oqq66KXr16Rf/+/WPIkCExevToWLJkSaSUqj2WWf51Z3teSim++OKL+Mc//hGnnnpqrLnmmnHAAQfEc889V4yXCQAAAAAAAADUg30FAAAAAAAAAFCamkyjiMZW6k0eGmLBggVx5ZVXxnrrrRcXXHBBTJgwocqmjcZqsrFszEWLFsUTTzwRe+21V2y77bbxz3/+s5gvHwAAAAAAAACogX0FAAAAAAAAAFDamkyjiGUbCXL9pYliPUrNm2++GZtvvnlceOGFMWvWrEgpZd2w0Riybe548803Y7/99osjjzwyJk2a1GhzAQAAAAAAAAANZ18BAAAAAAAAAJS+8mIXsExKKVq1ahWbbLJJrLPOOtG5c+do27ZtlJUVtpdFSikWLlwYc+fOjcmTJ8fo0aNj9uzZBa2hvm688cY477zzYvHixZUbOXKpbxOMXGN+s9HHgw8+GK+88ko8+uij0bdv33rNBQAAAAAAAAA0HvsKAAAAAAAAAKB5aDKNIn72s5/FBRdcEJ07dy52KVUsXrw4hgwZEoMHD44lS5YUu5ycfvrTn8a1115b5S99RFTfuNGmTZvo2bNnrLHGGrH66qvHaqutFm3btq18tGrVKioqKmLJkiUxf/78WLBgQcyePTtmzZoVM2bMiClTpsTkyZNj6tSp1Wr45rwTJ06M/v37x6OPPhrf/e538/9FAAAAAAAAAACysq8AAAAAAAAAAJqPJtEo4rDDDosrrrii2GVkVV5eHuecc05MmTIlrrzyymKXk9Ull1wS11xzTUQs3VSxbBNHq1atYuutt47ddtsttttuu9hkk01iww03jLKysgbPuWDBghg3blx8+OGH8e9//ztGjhwZr776akyePLmyjoiIefPmxeGHHx6vvvpqbLrppg2eFwAAAAAAAACoG/sKAAAAAAAAAKB5aRKNIgYOHFjsElboxz/+cVx11VXFLqOaYcOGxaWXXlq5kSOlFNttt12cfPLJcdhhh0WXLl3yMm/btm2jd+/e0bt379h///0rj48cOTIeeuih+OMf/xhffPFFZDKZmDVrVhxxxBExatSoaN26dV7qAQAAAAAAAACqs68AAAAAAAAAAJqfJtEoYosttih2CSu0xhprRPfu3YtdRhXz5s2L0047rfIvffTp0yeGDBkSu+++e9Fq2mqrrWKrrbaKX/7yl3HNNdfEr3/961i4cGG8//77cdVVV8VFF11U+dwvvvgipkyZUqfx33vvvSqff/TRR41SNwAAAAAAAABk88370gsWLChSJXVXyvsK7CkAAAAAAAAAoKkr5p6CTFq2G6BIWrVqFRUVFcUsoda+/e1vx3333Rff+ta3il1KRETceOONcfbZZ0cmk4lDDjkk7r777mjbtm2xy6ripZdeiv333z9mz54dXbp0iQkTJkSnTp0iIuLiiy+OSy65pMgVAgAAAAAAAEDtPfroo3HggQcWu4xaKeV9BfYUAAAAAAAAAFBqCrmnoKwgs9SgZ8+exS6h1tZaa61o06ZNscuo9Je//CUiIrbeeuu47777mtxmjoiIXXbZJf7whz9ERMSsWbPirrvuKnJFAAAAAAAAANAy2FcAAAAAAAAAAM1T0RtFfPLJJ8Uuodaeeuqp2HDDDYtdRkREfPXVVzFy5MjIZDJx0UUXRVlZ0b+VOR155JGx6667RkTEsGHDilwNAAAAAAAAADR/9hUAAAAAAAAAQPOVSSmlYhdB3b377rux+eabRyaTiWnTpsXKK69c7JJq9Oc//zlOOumk6NGjR/zvf/+LiIgvvvgipkyZUqdxZs2aFW+++WastNJKsfLKK8c666zTJP/iCQAAAAAAAADNw4IFC2LChAmVn++6665N/h59ROnvK7CnAAAAAAAAAICmrph7CsoLMguNbsGCBZUfd+jQoYiV1M66664bERFTp06tPLb66qvH6quvXuextt9++8YqCwAAAAAAAABWaKuttip2CXVW6vsK7CkAAAAAAAAAoBQUa09BWVFmpcGW3wzx/vvvF7GS2vn8888jIqJTp05FrgQAAAAAAAAAmj/7CgAAAAAAAACg+dIookT17NkzVltttYiIGDp0aJGrWbEHH3wwIiI22GCDIlcCAAAAAAAAAM2ffQUAAAAAAAAA0HxpFFHC9t9//0gpxW233Rb/+Mc/il1OTo8++mg8+uijkclkYrfddit2OQAAAAAAAADQIthXAAAAAAAAAADNk0YRJeycc86JTCYTS5YsiSOOOCJuuummYpdUzV133RVHH3105ecnnnhiEasBAAAAAAAAgJbDvgIAAAAAAAAAaJ40iihh3/72tys3SCxYsCB+/OMfx+677x4vvPBCcQuLiJdffjn23nvvOOGEE2L+/PmRyWTiqKOOit69exe7NAAAAAAAAABoEewrAAAAAAAAAIDmKZNSSsUugvqbMWNGbLPNNvHJJ59ESikymUxERGy22WZxyCGHxAEHHBBbbrll5fF8ev311+ORRx6JRx55JD766KOIiMqaunfvHm+//Xasttpqea8DAAAAAAAAAFjKvgIAAAAAAAAAaH40imgGPvjgg9hhhx1ixowZEbF0E0VEVG7iaN++fXz729+O73znO9GrV69Ye+21qzw6dOhQ67mWLFkSEydOjP/973/xySefxMiRI+Ott96Kt99+O2bOnFlt/pRSdO7cOZ577rnYZpttGvFVAwAAAAAAAAC1YV8BAAAAAAAAADQvGkU0E2+++WYMGDAgJk+eXHls+W9tTX/5o2PHjtGhQ4fo0KFDtG/fvvJ/IyLmz59f+Zg9e3ZMmTIllixZUm2MbHOllGKVVVaJYcOGRb9+/Rr8GgEAAAAAAACA+rGvAAAAAAAAAACaD40impFPP/00DjrooBg1alS1DRx1/TYvvymjLs9ffr6+ffvG/fffH7169arT3AAAAAAAAABA47OvAAAAAAAAAACah7JiF0Dj6dmzZ4wYMSJ+/etfR9u2bav9NY7aPJZJKdXp+uWv69ChQ1x11VXx6quv2swBAAAAAAAAAE2EfQUAAAAAAAAA0DxkUl3/JAQlYfz48XHFFVfEnXfeGQsWLKj2lzkivv6rHtnO1VVKKVZaaaU4/fTT45xzzok111yzwWMCAAAAAAAAAPlhXwEAAAAAAAAAlC6NIpq5iRMnxm233Rb33XdfvP/++5XHG7qJY/l/Nptuumkce+yxcfrpp8dKK63UoHEBAAAAAAAAgMKxrwAAAAAAAAAASo9GES3IO++8E0899VT83//9X7z22msxderUeo2z5pprxuabbx777rtvDBgwINZdd93GLRQAAAAAAAAAKDj7CgAAAAAAAACgNGgU0YJ9/vnn8cknn8S4cePif//7X8yaNSvmzp0bc+fOjZRSdOrUKTp37hydO3eOrl27Ru/evWPTTTeNrl27Frt0AAAAAAAAACDP7CsAAAAAAAAAgKZJowgAAAAAAAAAAAAAAAAAAACAElFW7AIAaHo+/PDDOOecc2LllVeOTCZT7HLq5KWXXoojjjgiWrduHf379y92OUCRyTOgOZFpQHMgy4DmQp4BpUyGAQCNwZoCaA5kGdCcyDSguZBnQHMgy4BSJ8egdJQXuwAAmoYlS5bEsGHDYsiQIfHMM89ESqnYJdXanDlz4u67746bbrop3n333WKXEy+88EKsvvrq8a1vfavYpUCLJM8ajzyD4pNpQHMgyxquoqIipk2bFjNmzIgZM2ZE69atY+WVV4411lgjOnToUKsxFi5cGG+88UastdZasd566+W5Ymie5FnDyTMoHhkGADQGa4rG4z4cFI8sazyyDIpPpgHNhTxrOPfhoPhkWcPJMiguOQalSaMIgBZu+vTp8cc//jFuueWW+OSTT4pdTp18+OGHcfPNN8cdd9wRM2fOLHY5ERExZcqU2GeffWLLLbeM1157rdjlQIsizxqXPIPiasmZ9uabb8b8+fMbpZZWrVpF69ato3Xr1rHSSitF165do0uXLiXX2RZKVUvOsoaaP39+DBs2LIYPHx5vvfVWvPPOO1mzsaysLNZff/3YcsstY5999on9998/Vl999axj/v3vf4/DDz88zj777Lj++uvz/AqgeZFn9SfPoPhacoaNGjUqZs+e3eA6ysrKory8PFq3bh0dO3aMTp06xaqrrhpt27Zt8NgAUCpa8poiH9yHg+KQZY1LlkFxteRMs6cAmpeWnGcN5T4cNB2yrP5kGTQNLTnH7CugWUgAjaRXr14pImr92GCDDVJFRUVRal2yZEnq3bt3nert1atXUWrNl4kTJ6aTTjoptW/ffoWvval566230t57750ymUyNde+6664Fr+3yyy+vnH/kyJEFn5/GIc9KizzLD3nWfMi00iLT6v5vtq6Pdu3apd69e6eDDz44XX755WnEiBFpyZIlhfkiUW+yrLTIsvobOXJkOvbYY1Pnzp3rlXFlZWVpv/32S0888USVbFu4cGHaaqutUkSks88+Oy+1UzvyrLTIs/qTZ82TDCstMiylAw44IG2wwQZptdVWW+FY9Xl07tw5bbLJJmm//fZLgwYNSnfeeWcaO3ZsYb5IACXMmqK0WFPkh/twpU+WlRZZlh+yrPmQaaVFptlTQG7yrLTIs/pzH655k2WlRZbVnyxrvuRYaZFj9hXQPJQFQCP5+OOPY8aMGfHOO+/E9ddfH2uttdYKn//QQw8VqLqq/v73v8cHH3xQ43MOPPDAeOaZZ2LatGmxZMmSGDduXGGKK5DWrVvH2LFj42c/+1kMGTIkdtxxx2KXVGvl5eXRqlWruO666+KWW26JPn36FLukiIioqKiIoUOHVn5+yy23FLEaGkKelRZ51vjkWfMi00qLTFv6b3DRokUxbdq0eP755+Ooo45q1Drnz58fH3zwQTzyyCNx4YUXRt++fWOdddaJiy66KL744otGnYvGI8tKiyyru3fffTcOPvjg2GqrreKuu+6Kr776qvJc375947LLLosnn3wyxo0bFzNnzoyFCxfG5MmT47333ou//e1vccYZZ8S6664bS5YsiSeeeCL222+/6NOnT1xzzTVx3333xX777RcjR44syGuhZvKstMizupNnzZsMKy0ybOm/g48++ii++OKLmDRpUlx++eXRpk2bRqvzq6++ijFjxsQTTzwR1157bRx//PGx8cYbx9prrx0/+tGP4tVXX220uQCaE2uK0mJN0fjch2seZFlpkWWNT5Y1LzKttMg0ewrITZ6VFnlWd+7DtQyyrLTIsrqTZc2fHCstcsy+ApqJYneqAJqv6dOnp6233rrGrkh9+/YtSm077bRTjXWdc845RamrmGbPnp1WW221kuj69U3vv/9+QbsX5vLggw9Wmb9jx45pxowZBa2B/JBnpUWeNZw8a95kWmmRaUtdccUVOf9drLrqqmngwIHpT3/6U3rzzTfTuHHj0vTp09OiRYvSzJkz06effpreeuutdPvtt6fTTz89rb322jnHateuXbr44ovTokWLGv8LQqOSZaVFluW2aNGidPHFF6fy8vIq45eVlaVjjz02vf/++7Ueq6KiIj388MNp2223rfHfoG75TYs8Ky3yLDd51jLJsNIiw5Z64IEHcv67KC8vT1tuuWU65ZRT0q233ppeffXV9MEHH6Rp06alxYsXp6+++ipNmDAhvfjii2nIkCHpyCOPTCuvvHKN/9a22Wab9Oyzzzb+FwWgGbGmKC3WFA3nPlzzJMtKiyxrOFnWvMm00iLTlrKngGzkWWmRZ7m5D9eyybLSIstyk2UtlxwrLXJsKfsKKDVN//+hQEkbOXJkjT/IIiINHz68oDW9/vrrNdbTunXrNGvWrILW1FT84Ac/KMnFXEopbbDBBnl7U1pb/fv3r1bD73//+4LWQP7Is9IizxpGnjV/Mq20yLSlNwm6du3aKL/AW7x4cXrsscfSlltuWeMv3CZPnlznOiksWVZaZFl148ePz3oTbOONN04jR46s97gVFRXpmmuuSe3bt8/6NXcTtOmRZ6VFnlUnz1o2GVZaZNhSuTb712e8+fPnpwcffDD17du3xn93++67b5o0aVK96gVoCawpSos1RcO4D9d8ybLSIssaRpY1fzKttMg0ewrITZ6VFnlWnftwpCTLSo0sq06WIcdKixxbyr4CSklZAOTRlltuGWuvvXaNz7n66qsLVM1Sv/3tb2s8v+mmm0bnzp0LVE3Tst566xW7hHrr2bNnUef/z3/+Ey+88EK147fcckvhiyEv5FlpkWf1J89aBplWWmRaRHl5efTr169RxmrVqlUMGDAgXn/99fjlL38ZmUym2nPefPPN2HXXXWPy5MmNMif5IctKiyyr6r333osdd9wx3nrrrSrH991333jzzTdjyy23rPfYZWVlMWjQoBg+fHh06dKloaVSAPKstMizquQZMqy0yLCltt5660Ybq23btnHooYfGG2+8EQ888ED06NEj6/OefPLJ2HLLLeOll15qtLkBmhNritJiTVF/7sM1b7KstMiy+pNlLYNMKy0yzZ4CcpNnpUWeVeU+HMvIstIiy6qSZUTIsVIjx5ayr4BSolEEkHe9e/eu8fxTTz0V7777bkFq+e9//xuPPPJIjc9ZZ511ClJLU7TyyisXu4R6W2mllYo6/5AhQ7Ief//99+P5558vcDXkizwrHfKs/uRZyyHTSodMW6pXr16NNlZEROvWreOSSy6JG2+8Mev5999/P4499thIKTXqvDQuWVY6ZNnXRo0aFTvvvHP873//q3J8l112iYcffrjRbjBtt9128eyzzxZ9fUntyLPSIc++Js9YRoaVDhm21Io2IdXXYYcdFv/5z39in332yXp+4sSJsccee8Tjjz+el/kBSp01Remwpqg/9+GaP1lWOmRZ/cmylkOmlQ6ZtpQ9BeQiz0qHPPua+3B8kywrHbLsa7KM5cmx0iHHlrKvgFKiUQSQd926dav8OFtn3YjCdf667rrroqKiosZaOnXqVJBamqJ27doVu4R6a9OmTdHmnjlzZtx99905z998880FrIZ8kmelQ57VjzxrWWRa6ZBpS+Xrl/hnnnlmnH322VnPPfPMM/GHP/whL/PSOGRZ6ZBlS02ePDkGDBgQ06dPr3K8R48e8eijjzb612mbbbaJm266qVHHJD/kWemQZ0vJM5Ynw0qHDFuqY8eOjTbWN3Xt2jWGDRsWp5xyStbzixcvjsMPP9x/PAWQhTVF6bCmqB/34VoGWVY6ZFn9yLKWRaaVDpm2lD0F5CLPSoc8W8p9OLKRZaVDli0ly/gmOVY65NhS9hVQSjSKAPKubdu2lR/vu+++WZ9z7733xoQJE/Jax/Tp0+OOO+6IiKU/+Pfcc8+szyvmzbRia926dbFLqLdift/uuOOOmDNnTs7zjz76aEycOLGAFZEv8qx0yLP6kWcti0wrHTJtqfbt2zfaWN/061//OtZaa62s537zm9/EokWL8jY3DSPLSocsi1i0aFEccsghWf893nbbbdG1a9dGmeebfvCDH8T3v//9vIxN45FnpUOeyTOqk2GlQ4Ytle+NLWVlZXHrrbfGSSedlPX8/Pnz46CDDorx48fntQ6AUmNNUTqsKerHfbiWQZaVDllWP7KsZZFppUOmLWVPAbnIs9Ihz9yHIzdZVjpkmSwjOzlWOuTYUvYVUEo0igDybvnuWqeddlrWrr2LFy+O3/3ud3mt45Zbbqm8UXXUUUdFjx498jpfKSovLy92CfVWVlacH2kppRV2Hly8eHHcdtttBaqIfJJnpUOe1Z08a3lkWumQaUvl6trbGDp16hTHH3981nPjx4+Pl19+OW9z0zCyrHTIsqUdz//v//6v2vEDDjggvve97zXKHLlce+21VW620fTIs9Ihz+QZ1cmw0iHDlsrn+8vl5xg6dGjsuuuuWc/PmjUrjjvuuFiyZEneawEoFdYUpcOaou7ch2s5ZFnpkGV1J8taHplWOmTaUvYUkIs8Kx3yzH04cpNlpUOWyTKyk2OlQ44tZV8BpUSjCKCgVlpppTj11FOznrv99tvjyy+/zMu8CxYsiBtvvLHy8/POOy8v85S6Qixi8qVYN0Gfeuqp+OijjyIiok+fPnHooYdmfd4f/vCHqKioKGRp5Jk8a9rkWd3Js5ZNpjVtMq0wDjzwwJznnnvuuQJWQn3JsqatpWfZxx9/HL/+9a+znvvFL37R4PFXpEePHnHKKafkfR4ahzxr2uSZPKNmMqxpa+kZVmitW7eOu+66K7p06ZL1/EsvvRQ33HBDgasCKA3WFE2bNUXduQ/XMsmypk2W1Z0sa9lkWtMm0wrDnoLmQZ41bS09z9yHo7ZkWdMmy2QZKybHmraWnmOFZl8BjaH0/uUDJe/ss8+O1q1bVzs+e/bsuPnmm/My51133RWTJ0+OiIh99903Nttss7zMQ8szZMiQyo8HDhwYAwcOzPq8zz77LB577LFClUWByDOaE3mGTKOlW3fddXOe++9//1u4QmgQWUZTde6558b8+fOrHe/fv3/07du3IDX8/Oc/L+lu3y2NPKOpkmfUhgyDr62zzjo5N8NFRFx++eUxe/bsAlYEUDqsKWhO3IdruWQZzYksQ6bR0tlT0HzIM5oq9+GoC1lGUyXLqC05Bl+zr4CG0igCKLi11147jjrqqKznbrzxxqxvChoipRS/+93vKj8fPHhwo45Py/Xxxx/HU089FRFLO9odf/zx0b9///jWt76V9fn5erNC8cgzmgt5RoRMg65du+Y8N23atAJWQkPIMpqi0aNHxz/+8Y+s544++uiC1dGjR4/Ya6+9CjYfDSPPaIrkGbUlw6CqU089Ned/SDB16tQqf7UGgK9ZU9BcuA/XsskymgtZRoRMA3sKmg95RlPkPhx1JctoimQZdSHHoCr7CmgIjSKAojjvvPOyHp88eXLceeedjTrXsGHDYsyYMRERsfXWW8duu+3WqOPTct10002xZMmSiIg48cQTo1OnThERccYZZ2R9/vDhw2Ps2LEFq4/CkGc0B/KMZWQaLdmUKVNynuvcuXMBK6GhZBlNzTXXXBMppWrHW7duHYceemhBaznmmGMKOh8NI89oauQZdSHD4Gtt2rTJ+Zd2IyKuu+66WLx4cQErAigd1hQ0B+7DIctoDmQZy8g0WjJ7CpoXeUZT4z4c9SHLaGpkGXUlx+Br9hXQEBpFAEXx7W9/O/bZZ5+s56655prKG0uN4Zprrqn8ONciMl9ee+21GDx4cOy6667RvXv3aNeuXbRr1y7WXHPN2GmnneKcc86Jp556KioqKvJWw9ixY+M3v/lN7LXXXrHOOutE+/bto0OHDrHeeuvFIYccEnfeeWcsXLgwb/NHRLz55ptx0UUXxW677RZrr712tG/fPtq3bx+9evWKHXfcMX7xi1/E66+/ntcaGtvcuXPjjjvuiIiITCZTZTF23HHHVd4QXV5KKW655ZaC1UhhyDN5Js9oTmSaTCv1TGuIkSNH5jy3wQYbFLASGkqWybKmlGUzZsyIv/71r1nPbbPNNrHKKqsUtJ6DDjoovv3tbxd0TupPnskzeZabPGv6ZJgMa0oZ1hQcf/zx0bp166znpkyZEsOHDy9wRQClwZrCmqLU1xTuwxEhy2SZLKN5kWkyrdQzrSHsKWhe5Jk8a0p55j4c9SXLZJksy02WlQY5JseaUo41BfYVUG8JIM+OP/74FBEpItLzzz9fefy5556rPP7NxwMPPNAoc7/55puVY6677rpp8eLFWeta/nH88cc3aM6Kior017/+NfXp0yfn6/vmY+21105DhgxJixYtauAr/toHH3yQDjjggJTJZFY4/wYbbJCeffbZdMcdd2Q9X1/PPPNM6tu3b62/DrvttlsaMWJEvebK9v3cdddd6137itx6662V8+y3337Vzp9++ulZX+PKK6+c5s6dm7e6yC95Js/kmTxrTmSaTCu1TPvVr36Vtb7Gyshc//YiIj3++OONMgeNT5bJsqaeZffcc0/Omn7yk5/Uqx6aJ3kmz+QZpUyGybCmnmHflO/3l7n0798/59fm5JNPzuvcAKXAmsKaotTWFLXhPlzLI8tkmSyTZc2JTJNppZZp9hSQizyTZ009z9yHozZkmSyTZZQ6OSbHmnqOfZN9BZQSjSKAvMu1mEsppa222irrD65tt922UeY+8sgjK8f8/e9/n7OuxlrMjRs3Lu2yyy5Vxttll13SDTfckJ555pn02GOPpeuuuy5tv/32Wefecsst0wcffNDAV53STTfdlNq0aVM5biaTSfvss0+69dZb09NPP53+9re/pbPPPjt16dKl8jnl5eVp7733bpTF3Lx589JJJ51UeX2PHj3Seeedlx588ME0fPjwdPfdd6cf/OAHVWpcvo5bbrmlznMW+ibot7/97cp5nnzyyWrn33333ZwLs9tvvz1vdZFf8kyeyTN51pzINJlWapmWz1+4jRs3Luvrjlj6i9fG/KUrjUuWybKmnmWHH354zrXUfffdV+daaL7kmTyTZ5QyGSbDmnqGfVOxNnRceeWVObO0R48eeZ0boBRYU1hTlNqaojbch2t5ZJksk2WyrDmRaTKt1DLNngJykWfyrKnnmftw1IYsk2WyjFInx+RYU8+xb7KvgFKiUQSQdzUt5v72t7/l/OH1zefW1SeffJJatWqVIiJ17do1zZ49O2ddjbGYe/PNN9Mqq6xSOU737t3T008/nfP5Tz/9dOrevXu1+VdeeeX0yiuv1KuGlFIaNGhQlfF69uyZXnjhhazP/eqrr9IxxxyT83tQn8Xcl19+mbbddtvKReT555+fszv8hx9+WOVm4vKPSy+9tE7zFvIm6AsvvFA5x0YbbZSWLFmS9Xk777xz1te29dZb56Uu8k+eZSfP5BmlSaZlJ9Oabqbl6xduFRUVac8998z5db711lsbND75Jcuyk2VNJ8u6du2a87W/8847daqD5k2eZSfP5BmlQYZlJ8OaToZ9U7E2dDz77LM1fh+++OKLvM4P0NRZU2RnTdF01xQr4j5cyyTLspNlsozSJNOyk2lNN9PsKSAXeZadPGs6eeY+HLUhy7KTZbKM0iHHspNjTSfHvsm+AkqJRhFA3tW0mFu8eHHq1atX1h9c++67b4Pm/fGPf1w51gUXXFBjXQ1dzL3zzjtVOmituuqqaezYsSu8bvz48alHjx7VaujUqVMaOXJkneu4+OKLq4yz3nrrpfHjx6/wup/85CeNsphbuHBh2m677Sqvu+OOO1Z4zaxZs6pcs+yRyWTS3//+91rPXciboIcddljlHN/sJre8e++9N+fX9PXXX89LbeSXPMtNnskzSo9My02mNc1My8cv3BYsWJCOPfbYnF/jvffeO+eGN5oGWZabLCt+lo0fP77G1z5jxoxa10DzJ89yk2fyjKZPhuUmw4qfYdkUa0PH1KlTa/w+1LRBCKAlsKbIzZqiaa4pVsR9uJZJluUmy2QZpUem5SbTmmam2VNALvIsN3lW/DxzH47akmW5yTJZRmmQY7nJseLnWDb2FVBKNIoA8q6mxVxKKV1//fU5f3i9++679Zpz+vTpqVOnTikiUtu2bdPEiRNrrKshi7mZM2emjTbaqMoY99xzT62vHzlyZCovL69Wx1prrZW+/PLLWo/z+OOPp0wmU3l9eXl5euONN2p17cKFC9NWW23V4MXc4MGDK68599xza33d+++/n9q1a1dt3lVXXTV99dVXtRqjUDdB//e//1V+vzp37pxmzZqV87kLFy5Ma665ZqO9aaD45FnN5Jk8o7TItJrJtKaXaY39C7eXXnqpxq9vv379av06KR5ZVjNZVtwse/zxx3O+7pVWWqnWr4GWQZ7VTJ7JM5o2GVYzGdb831/WRceOHXN+H2644Ya8zw/QlFlT1MyaoumtKWriPlzLJctqJstkGaVFptVMpjW9TLOngFzkWc3kmftwlAZZVjNZJsto+uRYzeRY83+PWRf2FVBXZQFQZCeffHJ07do167mrr766XmMOHTo0Zs+eHRERxx57bKy55pr1rm9FfvrTn8aHH35Y+fm3v/3tOOqoo2p9/ZZbbhlnnnlmteOfffZZnHvuubUa46uvvorTTz89UkpV6urbt2+trm/dunVccskltSs4h+HDh8c111wTERGrrrpq/OpXv6r1tb17947vf//71Y5PmzYtbrnllgbV1dhuueWWWLx4cUREHH/88dG5c+ecz23dunWccsopWc/dd999MX369LzUSPHIM3kmz2hOZJpMK5VM++yzz+KBBx6IN998MyZMmBCzZs2KRYsWRUopKioqYu7cuTFp0qQYOXJkPPDAA3H++efHZpttFrvsskuMHDky65gnn3xyvPDCC9GpU6cCvxoamyyTZcXMsrFjx+Y8t/rqq+d1bpofeSbP5BmlTIbJsFJ5f1kIa621Vs5zX375ZQErASg91hTWFKW0pnAfjlxkmSyTZTQnMk2mlUqm2VPAisgzeeY+HM2BLJNlsoxSJ8fkWKm8xywE+wqoK40igKLr1KlT/OhHP8p67t57740JEybUabyFCxfGjTfeGBERmUwmBg0a1OAac3n33Xfj9ttvr3LslFNOiUwmU6dxLrnkkqxvgO644454/vnnV3j9BRdcEP/73/8qP2/Tpk2cc845daphv/32i169etXpmuX96le/qlxMfv/734+VVlqpTtf369cv6/Gbbrqp3jU1toULF8Yf/vCHiFj6b2vgwIErvOa0006LVq1aVTs+f/78uOOOOxq9RopLnsmzCHlG8yHTZFpEaWTaRx99FEcccUT07ds3evbsGV26dIk2bdpEWVlZlJeXR8eOHaN79+6x9dZbxxFHHBFXXXVVjB49OutYu+yyS7zyyitx++23R7t27Qr8SsgHWSbLIoqXZTX9Qr59+/Z5nZvmR57Jswh5RumSYTIsojTeXxZCTf9h1cyZMwtYCUDpsaawpogojTWF+3DURJbJsghZRvMh02RaRGlkmj0FrIg8k2cR7sNR+mSZLIuQZZQ2OSbHIkrjPWYh2FdAXWkUATQJZ511VrRt27ba8UWLFsV1111Xp7HuueeemDhxYkRE7L///tGnT59GqTGbSy65JCoqKqocO/DAA+s8TpcuXeLUU0/Neu7KK6+s8doPP/wwbr755irHDj300FhttdXqVENZWVnsuuuudbpmmZEjR8Yrr7xS+fn3vve9Oo/Ro0ePrMfHjx8fH330Ub3qamz3339/fPHFFxERsddee0Xv3r1XeM1aa60VAwYMyHpu6NChVTq10TzIM3kmz2hOZJpMK4VMawytWrWKn/3sZ3H33XfHjjvuWOxyaGSyTJYVK8tq+oW8m6DUhzyTZ/KMUibDZFhLeX+5IjXl5qxZswpYCUBpsqawpiiFNYX7cKyILJNlsozmRKbJtFLItMZgT0HzJ8/kmftwNAeyTJbJMkqdHJNjLeU95orYV0BdaRQBNAlrrrlmHHvssVnP/eEPf4gZM2bUeqxrr7228uPBgwc3tLScPv3003j00UerHOvevXv07NmzXuPlev1PP/10zu7EERE33HBDLFmypMqx+iymIiI233zzel33zcXkZpttVucxOnbsmPPcSy+9VOfx8mFZN7mIpW9AauvMM8/Mevyjjz6Kp59+usF10bTIM3kmz2hOZJpMK4VM22CDDeLee++NZ599Nl5++eXKx0svvRRPPfVUPPzww3HjjTfGoEGDYpdddsn6Vz0qKiriqquuip49e8Z2220Xt912WyxYsKAIr4Z8kGWyrFhZNnv27Jznst3QghWRZ/JMnlHKZJgMK4X3l4Xwze/l8srLywtYCUBpsqawpiiFNYX7cKyILJNlsozmRKbJtFLINHsKqA15Js/ch6M5kGWyTJZR6uSYHCuF95iFYF8BdaVRBNBkDBo0KDKZTLXjs2fPrrZYyOXJJ5+sXPj069cvdt5550atcXl33nlntY5fDekwtvHGG8e2226b9dz999+f9fjMmTPjz3/+c7Xjffv2rVcNq6yySr2ue+6556p83rNnz8hkMnV67LnnnjnH/+yzz+pVV2N6880344033oiIpTcO9t1331pfu8cee+TsrF/bf9uUFnkmz3KRZ5QimSbTcmkKmRYRsfbaa8eRRx4Ze+yxR+y0006Vj5133jn23nvvOPjgg2PgwIFxzTXXxIsvvhhffvll3HfffbH77rtnHe/111+P0047LXr37l3tl7eULlkmy3LJZ5a1bt065zkbx6gveSbPcpFnlAIZJsNyaSrvLwth3rx5Oc916NChgJUAlC5rCmuKXJrCmsJ9OGpLlsmyXGQZpUimybRcmkKmRdhTQO3JM3mWi/twlBJZJstykWWUCjkmx3JpKu8xC8G+AupKowigyejTp08ccMABWc/dcMMNMX/+/BWOcc0111R+fN555zVabdk89thj1Y6tvfbaDRqzf//+WY+/8MILWY8//vjj1brvderUKTbaaKMG1VEXEydOjHHjxuV1jqlTp+Z1/NpYvlP+wIEDo6ysbj9CzzjjjKzHhw0bFhMmTGhQbTQ98kye5SLPKEUyTabl0hQyrT7atWsXRxxxRDz33HMxfPjw2GCDDbI+b/z48XHwwQfHhRdeWOAKyQdZJstyyWeW1fQL+blz5+ZtXpo3eSbPcpFnlAIZJsNyKdX3l/VR01+5WWONNQpXCEAJs6awpsilKawp3IejtmSZLMtFllGKZJpMy6UpZFp92FPQcskzeZaL+3CUElkmy3KRZZQKOSbHcinV95j1YV8BdVVe7AIAljd48OD4+9//Xu345MmT484774zTTjst57UjR46M4cOHR8TSbuaHHHJI3uqcOXNmjBw5strxzp07N2jcLbfcMuvx119/PRYvXhzl5VVjO9sir1u3blm7p+XLa6+9Vu3Y888/X63WhlhzzTUbbaz6mDJlStx3330REdGxY8c48cQT6zzG8ccfHxdccEHMmTOnyvGKioq49dZb49e//nWj1ErTIc/kWTbyjFIl02RaNsXOtMaw2267xahRo+LQQw+Np59+OutzfvOb30S3bt3iJz/5SYGro7HJMlmWTT6zrKaxZ82albd5af7kmTzLRp5RKmSYDMumOby/rI2UUo1/5aRXr14FrAagtFlTWFNkU+w1hftw1JUsk2XZyDJKlUyTadkUO9Magz0FLY88k2fZuA9HqZFlsiwbWUYpkWNyLJvm8B6zNuwroD40igCalJ122im22267+Ne//lXt3LXXXhunnHJKzi7ly3f8Ovfcc+vczbwuRo0aFSmlasfbtm3boHFzLeYWLFgQU6ZMie7du1c5nm0x16VLlwbVUFfZOr1vttlm0a1bt4LWkU9/+MMfYsGCBRERcdxxx9Xra9ylS5c45phj4rbbbqt27vbbb49f/epX0bp16wbXStMhz+RZUyTPqC+ZJtOas06dOsVjjz0Wu+yyS4wYMSLrc84777zYZZddYuutty5wdTQmWSbLCq1nz545z33++edZb9pAbcgzeVZo8ozGJMNkWEs2YcKEWLhwYc7zffr0KWA1AKXNmsKaoilyH466kmWyrCmSZdSXTJNpzZk9BS2LPJNnheY+HPkgy2RZockyGpsck2MtmX0F1Ef+kg6gngYPHpz1+IcffhiPPPJI1nOffvppPPDAAxGxtOtVfbqZ18WHH36Y9fi8efMaNO5GG22Us2PX1KlTq3w+f/78+Oijj6o9r6Gdx+rqyy+/rHZs5syZBa0hnyoqKmLo0KGVn99yyy2RyWTq9ch2AzRiaVe7hx9+uFAviQKSZ/KsKZFnNJRMk2nNWbt27eKuu+7KeTNiyZIlMWjQoAJXRT7IMllWSJtttlnOc4sXL47x48cXsBqaG3kmzwpJntHYZJgMa6my/TWZZTp06FBj3gJQnTWFNUVT4j4c9SXLZFlTIstoKJkm05ozewpaFnkmzwrJfTjyRZbJskKSZeSDHJNjLZV9BdSHRhFAk3PQQQfFhhtumPXcb3/726zHr7/++li8eHFERJxxxhnRvn37vNUXETFjxoysx2fPnt2gccvKynIuxmbNmlXl8ylTpmR93ty5cxtUQ11lW8zlqq0UPfbYY1k7mzW2m2++Oe9zUHjyTJ41JfKMhpJpMq256927d/zgBz/Ief7FF1+MDz74oIAVkQ+yTJYVUp8+faJjx445z48ePbqA1dDcyDN5VkjyjMYmw2RYS5XtL94ss+OOO0arVq0KWA1A6bOmsKZoStyHo75kmSxrSmQZDSXTZFpzZ09ByyHP5FkhuQ9HvsgyWVZIsox8kGNyrKWyr4D60CgCaHLKyspydtZ9/fXX48UXX6xybObMmXH77bdHxNKuvQMHDsx7jQsXLsx6/JsLrvpYaaWVsh7/5iLvm13AGrOGusi2eHz77bcLWkM+3XjjjZUf33bbbfHyyy836HHZZZdlneell17yBrgZkmfyrCmRZzSUTJNpLcHJJ59c4/l//OMfBaqEfJFlsqyQysvLY9ddd815/pVXXilgNTQ38kyeFZI8o7HJMBnWUg0bNiznuQMPPLCAlQA0D9YU1hRNiftw1Jcsk2VNiSyjoWSaTGsJ7CloGeSZPCsk9+HIF1kmywpJlpEPckyOtVT2FVAfGkUATdLxxx8fq622WtZzV199dZXPb7311vjqq68iIuKEE07IeV1j6tq1a9bjn3zySYPH7tKlS9bjq666apXP582bl/V506dPb3ANdZFt8fnGG28UtIZ8GT16dLzwwgsREbHJJpvEKaecEjvttFODHoMGDcr570fH/OZJnlUnzwpPntFYZFp1Mq152X777aNDhw45z7/33nsFrIZ8kWXVybL82X///XOe++bNKqgreVadPMsfeUZjk2HVybDm7f3334///Oc/Wc+1bt06Dj300AJXBNA8WFNUZ01ReO7D0VCyrDpZVniyjMYi06qTac2LPQUthzyrTp7lj/tw5Issq06W5Y8sIx/kWHVyrHmzr4D60igCaJLat2+fs3vXk08+WflDb9GiRXHDDTdExNJuYeeee25B6vvmwmqZsWPHRkVFRYPGbtWqVbVjXbp0ibXWWqvKsVwLyunTp8ekSZMaVENdrLLKKtWOvfzyywWbP5+GDBlS+fGZZ57ZKGO2b98+TjjhhKzn7rrrrpg9e3ajzEPTIc+qkmfFIc9oLDKtKpnW/LRq1So23HDDnOcL+T0kf2RZVbIsvw4//PAoLy/Pem7EiBExbty4whZEsyLPqpJn+SXPaGwyrCoZ1vzdeuutOc8deuihseaaaxawGoDmw5qiKmuK4nAfjoaSZVXJsuKQZTQWmVaVTGt+7CloOeRZVfIsv9yHI19kWVWyLL9kGfkgx6qSY82ffQXUl0YRQJN15plnZu28m1KK3/72txER8be//S0+++yziIg48MADY6ONNipIbRtvvHHW4wsWLIiPPvqoQWPPmTOn2rEtttii2rFcC8qIiLfeeqtBNdRFt27dqh37+OOPK7vMN9SHH34YixcvbpSx6mLmzJlx1113RURE586d47jjjmu0sX/0ox9FJpOpdvyrr76Ku+++u9HmoemQZ1+TZ/KM0ifTvibTCp9phdCxY8ec57L94pXSJMu+Jsvym2XdunWLww8/POu5lFLlOq3QUkpFmZfGJ8++Js/kGaVHhn1NhjXP95fLTJkyJW6//fas58rKyuL8888vcEUAzYs1xdesKdyHo3TJsq/JMllG6ZNpX5NpzfN3PvYUtBzy7GvyzH04Spcs+5osk2WUJjn2NTnWPN9jLmNfAQ2hUQTQZK266qpx4oknZj33t7/9LSZMmBDXXHNN5bHBgwcXqrT4zne+E126dMl6bvjw4Q0aO9tibu+99652bNVVV4327dtnHeOll15qUA11kW2hGVFzF6u6OPnkk+PSSy9tlLHq4o477qj8Xhx//PHRuXPnRht7o402ij322CPruVtuuaXR5qHpkGdfk2fyjNIn074m0wqfaYUwefLknOd69OhRwErIJ1n2NVmW/yz76U9/mnUjbETE0KFDY/78+XmvYXl33XVX7LzzzrFkyZKCzkt+yLOvyTN5RumRYV+TYc3z/eUyl1xySc6/lHvMMcfE5ptvXuCKAJoXa4qvWVO4D0fpkmVfk2WyjNIn074m05rn73zsKWg55NnX5Jn7cJQuWfY1WSbLKE1y7GtyrHm+x1zGvgIaQqMIoEk799xzs3bYXbRoURx++OHx7rvvRkTEjjvuGNtvv33B6iorK4udd94567lhw4bVe9zFixfHtGnTqh0/4IADqh1r1apV9OvXL+s4d999d1RUVNS7jmx15bLVVltl7c72wAMPxOuvv96geUeNGhUvv/xybLbZZg0ap65SSnHzzTdHREQmk4kzzzyz0ef40Y9+lPX4v//973jllVcafT6KT54tJc/kGc2DTFtKphU20wphzpw5lV2Fs9luu+0KWA35JsuWkmX5z7Itttgivv/972c99/nnn8dNN92U9xqW+c9//hOnn3569O/fP8rK/Gq4uZBnS8kzeUZpkmFLybDm9/5ymVdeeSXnf/zUrVu3KpuWAKg/a4qlrCnch6O0ybKlZJkso3mQaUvJtOb3Ox97CloeebaUPHMfjtImy5aSZbKM0iXHlpJjze895jL2FdBQftIBTdr6668fhxxySNZzyy8UzjvvvEKVVOmEE07Ienz48OExa9aseo358ccfx6JFi6oc69evX87FzC677JL1+Oeffx5///vf61VDNgsXLsx5rnXr1lkX0hUVFXHSSSfFggUL6j3v+eefH61atYpdd9213mPUx1NPPRUffvhhRETsscce0adPn0afY8CAATm7R+uY3zzJM3kmz2hOZJpMK0amFcKwYcNyfm1at24d++67b4ErIp9kmSwrZJZdffXVsdJKK2U99+tf/zrGjx+f9xq+/PLLOPTQQ6NHjx5x0UUX5X0+CkeeyTN5RimTYTKsub6/jIiYNGlSHH300Tn/StGtt94aq6++eoGrAmierCmsKdyHozmQZbJMltGcyDSZ1lx/52NPQcsjz+SZ+3A0B7JMlskySp0ck2PN9T1mhH0FNA6NIoAmb/DgwTWe33jjjWPAgAEFquZrBx54YKy11lrVjs+bNy9uu+22eo05evToasfOOOOMnM/PtdCNiBg0aFDMmTOnXnV807x582o8f+KJJ2Y9/t5778UJJ5xQrw5kf/vb3+Kf//xn7L///rHGGmvU+fqG+N3vflf5cT465UdElJeX53xD8OCDD8bEiRPzMi/FJc/kmTyjOZFpMq3QmZbrF2CNJaUU1113Xc7zhx12WKy55pp5rYHCk2WyrFBZtvbaa8cNN9yQ9dyMGTPiqKOOqrHjdkPNmzcvDjjggPj444/j9ttvj3bt2uVtLopDnskzeUYpk2EyrLm9v4yImDVrVgwYMCAmTJiQ9fyFF15Y4/cXgLqzprCmcB+O5kCWyTJZRnMi02Rac/udjz0FLZc8k2fuw9EcyDJZJssodXJMjjW395gR9hXQeDSKAPJu+Y5RNXWPyqVv3741dn0aNGhQlJXVPc5y1VLbGsvLy+P888/Peu6GG26o15uXYcOGVfm8T58+ccwxx+R8/uabbx577LFH1nOffPJJDBo0qM41ZDNjxowazx9xxBGx9tprZz137733xnHHHVetm1lN3njjjTjttNMiImLgwIG1uialVKtjK/LOO+/Es88+GxERa6yxRuy///51HqO2jj322KzHFy5cGEOGDMnbvNSfPKs9ebaUPJNnTZlMqz2ZtlQxMy0iGtRNtjZuueWW+Ne//pX1XLt27eLyyy/P6/zUjyyrPVm2VDGz7Pjjj49TTz0167nXXnstjj766LzcCF2wYEEceeSR8eqrr8aVV17ZbDtrlzp5VnvybCl5Js+aEhlWezJsqeb+/nLq1Kmx5557xogRI7KeP+WUU+Kyyy7Law0ApciaovasKZZyH859uKZIltWeLFtKlsmypkym1Z5MW6q5/87HnoLSJc9qT54t5T6c+3BNkSyrPVm2lCyTZU2NHKs9ObZUc3+PaV8BjSoB5NmBBx6YIiJFRHrkkUfqNcbjjz9eOcbyj9VXXz3NmzevwXUt/zjwwANrPUZFRUXaZpttso7z+9//vk71zJs3L3Xr1q3KGH//+99XeN3TTz+ddf5lj4suuqhW83/55Zdphx12yDrGww8/vMLrhwwZUmMdm2++eRo5cuQKx7n77rtT586dU0Sk/fffv1a1p5TS97///Wpzbr/99rW+fpkBAwZUXn/qqafW+fq66t27d9avV5cuXdK0adPyPj91I89qR54tJc/kWVMn02pHpi1V7ExLKaUf/vCHWV/DrrvuWq/xlvfoo4+m8vLynF+n66+/vsFzkB+yrHZk2VJNIcsWLlyYdtttt5yv5aCDDkozZ86s19jZzJw5s3K+o446qtHGpfHJs9qRZ0vJM3nW1Miw2pFhSzWFDDvllFOyvobGeH85YsSI1KtXr5xfp3POOSctWbKkwfMANEfWFLVjTbFUsdcU7sORiyyrHVm2lCyTZU2dTKsdmbZUsTMtJXsKyE2e1Y48W6op5Jn7cGQjy2pHli0ly2RZUyTHakeOLdUUcsy+AkqJRhFA3m277baVP6huvvnmeo2xZMmS9K1vfavaD75LL720Uepa/tG3b986jfP222+ntm3bVhunc+fO6cMPP6z1OJdddlmV63/4wx/W+tqTTz65xoXUcccdV+ObqHfeeSdtttlmOa/v379/Wrx4ceXzv/jii2pjLFmyJO2zzz411tGqVau0zz77pHvuuSeNGTMmzZ49O82ZMye9//776bbbbqvyPenUqVP66KOPav012HvvvavNt8kmm9T6+pRSevnll6tc/5e//KVO19fHCSeckPPrNWjQoLzPT93Is9qRZ/JMnpUGmVY7Mq34mbbMnnvumbX+hvzCbfHixemKK65Ibdq0yfn1Ofnkk+s9Pvkny2pHljWdLEsppdmzZ6c99tgj52tZf/310yuvvFLv8Zd588030yabbJIiIh166KFp4cKFDR6T/JFntSPP5Jk8a5pkWO3IsKaTYXvttVfW+hvy/nLGjBlp0KBBqVWrVlnH7tSpU7rnnnvqPT5AS2BNUTvWFMVfU7gPR01kWe3IMlkmy0qDTKsdmVb8TFvGngJykWe1I8+aTp6l5D4c1cmy2pFlskyWNV1yrHbkWNPJMfsKKCUaRQB5tXDhwtSxY8fKH1inn356vcf605/+VOWHX4cOHdLUqVMbpa7lHx07dqzzG4M//vGPWcfaZJNN0pQpU1Z4/csvv5zat29fed0OO+yQ5syZU+v5Z8+enTbeeOMaF1Ldu3dPv/zlL9OoUaPSzJkz0/Tp09NLL72UfvjDH1Z2Ou7bt2/O6zfYYIO07777pl69eqU+ffpkrWPy5MmpR48eNdZR28dDDz1U69efUkrrrrtutTHat29f6+/lvHnzUp8+fapc/9e//rVONdTHj3/845xfg/Ly8vTWW2/lvQZqR57JM3lWM3lWWmSaTCuVTFtmzpw5lZ1hv/nYfvvt06JFi+o03rx589Jf/vKXtNVWW9X4egcNGqQjaxMmy2RZqWXZ8ubNm5eOOuqoGuscMGBAGjFiRJ3HHj9+fDrrrLMqv/bHHHNMnXOSwpJn8kyeZSfPSoMMk2GllmFz5sxJK620Utaa+vXrlxYsWFCn8d577730s5/9LHXp0iXnaz3kkEPSf//73zqNC9DSWFNYU5TKmsJ9OGoiy2SZLKuZLCstMk2mlUqmLWNPAbnIM3lWanm2PPfhWEaWyTJZlp0sKx1yTI6VWo7ZV0Cp0SgCyKsbbrihyg+t1VdfPX355Zf1GmvBggWpe/fulWMNHDiw3nXdeOONNS4k7rjjjjqPee2112Yda/3110+vv/56zuvuvffeKouHHXbYocYOXbl8/PHHaa211qr34unCCy9Md9xxR43PadeuXTrttNNq7GY2evTotMYaazRoIXfllVfW6bU///zzOccaOnToCq9fvHhxOuKII6pdu9tuu+X1jWK2G6/ffPTs2dNCr4mQZ/JMnuUmz0qPTJNppZBpyyxZsiSddtppNdbWtm3btMUWW6Rjjz02XXHFFem2225L999/f/rnP/+Zhg8fnh555JH05z//OV100UVp7733rvEXbRGR1l133fTkk0/W6fVSeLJMlpVSluVy22235bzZtOzRu3fvdOGFF6Z//OMf6bPPPqu22WzOnDlpxIgR6aabbkp77bVX5Q2b9u3bN0qN5J88k2fybCl5VppkmAwrpQyrqKhY4V9RadOmTdp6663Tcccdly6//PJ01113paeeeiq9+OKL6ZlnnkkPPfRQuuaaa9JJJ52UNtxww5zjtGrVKh100EHp5ZdfrtNrBWiprCmsKUphTeE+HCsiy2SZLMtNlpUemSbTSiHTlrGngJrIM3lWSnmWi/twyDJZJsuWkmWlS47JsVLKMfsKKEUaRQB5MWnSpPTLX/4ytWrVqtoPsc022yw9/fTT9bq5dMUVV1T+IKzPjaHJkyeniy++uPINQU0/sK+44oo6dxV78MEHs3aMKisrS9/73vfS0KFD0zPPPJMef/zxdN1116Xtt9++8jmZTCade+65Deq29+mnn6YtttiiTgun8vLydP3116eUUs7FXNeuXdMFF1yQJk+eXKs6xo8fn7bZZps6L+JatWpVp8XX9OnT06OPPprWXHPNFX4vP/zww2odu/773/+moUOHps033zzn9TvssEO6884709ixYxvlhuiSJUvS1KlT0zPPPJN23333Wn1dVlpppXTRRRelt956q07d4Ggc8kyeybPs5FlpkmkyrRQybcKECemTTz5Jo0aNSn/5y1/SDjvsUOea6/MoLy9P/fv3T3/5y190lW7iZJksK4Usq4vPP/88nXTSSamsrKxWr6WsrCytvPLKaY011kgdOnTI+pwDDzwwjRkzpt41URjyTJ7JM3lWymSYDCuFDPvkk0/SmDFj0uuvv57++Mc/pm233bbONdf19e20007pqquuSuPHj6/9NxagBbOmsKYohTWF+3CsiCyTZbIsO1lWmmSaTCuFTLOngNqQZ/KsFPKsLtyHa5lkmSyTZbKs1MkxOVYKOWZfAc2BRhFAo9lrr73Sppv+v/buPD6q6v7/+CcL2UhIgBCUhCCyCkRANgVlFxAVrEBFEZCqtEXBrfrFFZAqIFRRi4hCZbNYFG1RjCirgigIikYLyA6mELawJoQk5/dHfgQmuRNmuTNzz72v5+ORx8PMmbnnk/jxfc7F4UxTlZqaqsLCwi65sMXFxan69eurpk2bqmnTpnk0x7Fjx1R8fLwaMGBAwOq6+CssLEylpaWpJk2aqB49eng0X3Z2tho2bJiKioryeI7evXur77//3uOfqSL5+fnq2WefdXsjVHZjvXbt2tLXlt3M1a5dW7388svq5MmTXtdx7tw5NXnyZFWtWjWPfg/XX3+92rRpk8fX9/bf5fmvYcOGKaWUGj9+vNevDQ8PV++++67Xv4uLmbEpnD17tl814NLIsxLkWQnyzBh5pg8yrQSZVsLqmaaUUnXq1DElY8rmXmxsrEpMTFSXX365ysjIUN27d1dDhw5VEydOVEuWLPH5dGIEB1lWgiwroUOW+WLXrl3qySefVLVq1fJp/ipVqqjBgwer9evX+1UHAos8K0GelSDPyDPdkGElyLASOmRYRX8BypevyMhIlZCQoGrUqKEaN26sunfvroYNG6YmT56sVqxYoXJzc73+PQKAE7GnKMGeooTV9xT8fzi4Q5aVIMtKkGXGyDJ9kGklyLQSVs80pXhPAdwjz0qQZyV0yDNf8P/h7I8sK0GWlSDLyDIdkWMlyLESOuQY7yuAHYQppZQAgAm2bdsmBQUFPr02JSVFUlJSPHru7t27JTExUapWrRrwui4WFRUlDRs29Pj5Bw4ckEWLFsmKFSskKytLsrOzJS8vTypXrizJycnSvHlz6dChgwwYMEDS09P9rq+sI0eOyLx58+Szzz6TH3/8UQ4dOiQRERFSu3Ztadeunfz+97+XW265RcLDw0tfM3v2bBk2bJhkZGTIX/7yF7nzzjulUqVKftWRl5cnixYtkiVLlsimTZtk//79UlBQIDVq1JDU1FTp1KmT/O53v5MOHTp4dd2srCyf6qlataqkpqZKTk6O5OTkeP36tLQ0SUpK8mluEd/rNrMGXBp55oo8K0GeuSLP9EGmuSLTSlg10wB3yDJXZFkJO2fZTz/9JMuXL5cff/xRtm7dKnv37pWTJ0/K6dOnpVKlSpKYmChJSUnSsGFDadGihbRt21a6d+8u0dHRpsyPwCHPXJFnJcgz8kwXZJgrMqyEnTMMABAY7ClcsacoYdU9Bf8fDu6QZa7IshJkmSuyTB9kmisyrYRVMw2oCHnmijwrYec84//D2RNZ5oosK0GWkWU6IcdckWMl7JxjgBVwUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAmwi/9FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFgBB0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABogoMiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMFBEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJrgoAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNcFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAJjgoAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQBMcFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAJDooAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQBAdFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIKDIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTBQREAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACa4KAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATXBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCY4KAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEATHBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgCQ6KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0AQHRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiCgyIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0wUERAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmuCgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1wUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAmIkNdAAAAgTB79mzZvXt36fdjx44NWS2wBnoCgF2QZwAAhAZrMMqiJwAACB3WYQCAVaxatUri4+OldevWoS4FAExFvgGwA7IMgK7ILwB2RLYBsAOyDIAVhSmlVKiLABB8u3fvlo8//li++OIL2bp1qxw6dEhOnz4tycnJkpKSIq1bt5YePXpIz549pUqVKl5f/4cffpBTp075XWd4eLhERkZKpUqVpHLlyhIfHy/Vq1eX6Ohov68N+8rMzJTevXu7PObpcvfTTz/J8ePHA1GWTxITEyUjIyPUZWjP154gyxAIgV6DRcgyOyPPYCXkGcriPhN2xn0mymJfBithXwYj7M1gZ+zNAABWkJmZKWPGjJENGzbI0KFDZfbs2QGfs3v37rJ8+XKfXhseHi7btm2TevXquTxeVFQk69at87u2sLCw0r1ddHS0VK5cWRISEqR69eoSERHh9/UBBI9d8u28NWvW+FOa6dLT0yU9PT3UZQC2R5YFFlkGBI5d8ot7TQAXs0u2ncfeDHAmsiywyDLAPxwUATjMnj17ZNy4cTJv3jwpLCy85POTkpLk0UcflYceesirN4v26dNHfvnlFzlx4oQcPnzY4zfoeSohIUHS0tKkbt26ctVVV8nVV18t1113nTRo0MCU619xxRWyZ88en18fHh4u0dHREh0dLQkJCVKzZk25/PLLS2vt3LmzpKammlIrXB0+fFgyMjLkwIEDLo972oOdO3eW1atXB6I0n3Tq1ElWrVpV+j296T1/eoIsc16/BFKw1mARssyuvUme0TNWQZ6tKv2e3izBfaZn6Bd9cZ9ZMSf2Jvsy+sUq2JetKv2e3ryAvZln6Bl9sTerGL0JAIG3bNkyee6551z+wksw3hT63XffSZs2bXx+/c033yyffPJJucdPnjwpLVu2FKWUHDlyxPQDlcLCwqRatWqSnp4uV155pTRt2lRatmwp7du3l5SUFNPm8Mf59TMmJkYSExOlZs2aUqtWLWnatKk0b95cOnfuLMnJyabUCliZ3fLtPH8zwmxjxoyRsWPHiojI2LFjZdy4cX5dLyoqSqKjoyU2NlZSUlKkZs2aUq9ePcnIyJC2bdtK69atJTw83ITKAT2QZcFBlgHms1t+ca/JvSYgYr9sO4+9GXszOAtZFhxkGeAnBcAxFi9erBITE5WIeP11xRVXqE2bNvk078GDB9ULL7ygoqKifJrbm6/U1FT1pz/9Sa1Zs8aU31lubq5atWqV6t+/v+m1tmjRQr3xxhvq9OnTptSKEn379jX8fXuqU6dOAe9Tb746depkWCe96Tl/e+I8sswZ/RIowV6DyTJ79iZ5Rs9YAXnWybBOJ/cm95nec3K/6Ir7THqzLPZl9IsVsC/rZFin03uTvZn3nN4zOmJvRm8CQKisWrVKdezY0TBbhw4dGvD5+/Xr51f+Z2ZmejTPf//7XzV48OCgrIMZGRnq2WefVdu3b/f791NcXKyOHDmiMjMzVdeuXU2tMzw8XHXo0EHNnz9fFRQU+F0rYDV2z7dg5Jk3X2PGjClXY35+vtqyZYt68cUXVZUqVUydLzk5WY0cOVJt27YtQP8GAWsgy8gyQFd2z6/zuNcs/8W9JuzM7tkWjCzz5ou9GRAYZBlZBugkTCmTP+IHgCXNnDlThg8f7tenesXExMiCBQvktttu8+n1H3zwgQwYMMBwLDIyUjIyMqR169bSunVradasmSQnJ0tycrIkJiZKXl6e5Obmys6dO+Wnn36Sr776SpYuXSq5ublu52vdurVMnDhRunXr5lO9ZY0ePVomTZrkdjw9PV1atmwp9erVkxo1aohSSg4ePCg//PCDrF271u2nt6WmpsrUqVOlf//+ptTpZG+//bYMHz7ccMzT3i/7aWJJSUkyYsQI6dmzp9SrV0+qVq0qMTExhieHufsksotPNisrLy9PDhw4IN9//70sWrRIFi5c6NIrZT9NzAi96Z4ZPVEWWWbffgmUUKzBZNkFdulN8qw8eib4yDPyrCzuM/3npH7RFfeZxpzcm+zLyqNfgo99GVlmhL2Z/5zWMzpib2aM3gSAwPr666/lueeek+XLl7t9TqA/PWzbtm1y1VVXSXFxsU+vb9CggWzdutWrTwh78MEHZdq0aYZj8fHxcs0110jr1q2lVatW0rBhQ6levbpUr15d4uLi5PTp03Lo0CHZsWOHbNy4UVavXi0rV66Uc+fOGV4vLCxM+vfvLy+88II0aNDAp5/xYkopGTRokCxYsMDtfPXq1ZOWLVtKnTp1JDk5WQoLCyU7O1s2btwo69evd7u3aNy4sUyfPl06d+7sd51AqDkl38qO1a9fX0aNGiXt27eX2rVrS2JiokRFRRlew911V65caZgDSik5ffq07N27V9atWydz5syRr776yuU5Fd0/iIhs3rxZ2rZtKwUFBYbjVapUkebNm0uzZs2kRo0akpCQILm5ubJ161ZZtWqVHD582PB1ERERMnLkSBk/frzEx8e7nR/QDVlGlgG6ckp+lcW9JveasDenZBt7sxLszWBXZBlZBmgp0CdRAAi9pUuXqsjISFNOTIqJiVFr1671uZa0tDTD67r7xKSK5Ofnqw8++EC1adOmwppvuukmdeDAAZ9rPu/48eMqIiLCcI4hQ4ZU+NrDhw+rsWPHqri4OLd1jhw5Up07d87vOpVSKjs7W+Xk5JhyLW9s3bpVnTlzJujzKqXUtm3bVOXKld3+fj118aeJtWzZUu3fv9+n1178ZXSymTtfffWVuvzyy736b0On3gwms3rCCFlGlnkqVGswWWafLFOKPHNHp54hz8gzq/amP7jPJMuChftMssxK2JcZ06lf7JBl7MvIMiPszcizYGFvRp4BgJN8++23qmfPnh7toQL96WH33nuvX3u8V1991es5t2/f7vZ63qx95x05ckRNnTrV7X5RRFRkZKR67LHHTPkk1Z9//tntPM8991yFr923b596+OGH3e6xw8PD1YQJE/yuEQgVp+Vb2f1zXl6ex/W5m3flypUeX+ONN95QUVFRXmXogAED3M5dXFzs9nWFhYXqww8/VM2aNXP7+qZNm6odO3Z4XD9gVWQZWUaWQVdOy6+yuNfkXhP25LRsY2/G3gz2RJaRZWQZdMZBEYDNHT9+XKWkpLgsXg0aNFAvvviiWrdunTp06JAqKChQ2dnZavny5WrUqFEqPj6+wg1DjRo11NGjR32qp2/fvobX9OVNohd7//33Va1atdzWfPnll6vVq1f7NYdSyu2mwNNN3q+//qoaNmzots5BgwZVuDnxRE5OjmrSpInKyMhQhw4d8uta3vj5559VSkqK6tmzp8rPzw/avEopde7cOdW2bdsK+9ZT59/omZaW5vXvz4w3iSpV8geh5/879PS/DR16M5jM7AkjZBlZ5olQrsFkmT2yTCny7FJ06BnyjDyzam/6g/tMsixYuM8ky6yEfVnFdOgXO2QZ+zKyzAh7M/IsWNibkWcA4CR5eXkqOTlZ9enTR82dO1dt2LBBzZ49W1WvXt2vPPbFb7/95vJmSW+/4uPj1fHjx32aOzEx0ZS172Jnz55V48ePVzExMW5rvvbaa9XevXt9nuO8hIQEv+pfv369qlmzpts6n3zySb9rBILNifl2/vk33XST13ted3N786Z3pZR67733vMqgKVOm+HXvc/bsWfWnP/3J7TVq1aqldu3a5dXPAFgJWUaWkWXQlRPzywj3mtxrwl6cmG3szdibwX7IMrKMLIPuOCgCsLnHH3+8dMGqXr26mjVr1iUX8OzsbHXbbbdVuHF48MEHfarngQceMLyev28SVUqpo0ePql69ermtOTIyUn388cd+zXHTTTf5vcn73//+V+EbWp966imf6zt69Khq0aJF6bVatGihjhw54vP1PLVlyxZ12WWXlc576623mnLyqqeeffbZ0rkzMjJ83vQpdeGNnh988IHXdZj1JlGllHrrrbe8+m/D6r0ZbGb2hBGyjCzzRCjXYLLMHlmmFHl2KVbvGfKMPLNqb/qL+0yyTMcs8xb3mdbvzWBjX1Yxq/eLXbKMfRlZZoS9GXmmY555i72Z9XsTAOzo5MmT5R775z//6Xcee+uxxx4rnWf58uUBm8dI06ZNTVv7yvrxxx9V/fr13a5LtWrV8vvTu6666iq/6//5558rPGjtrbfe8qtGIBSclm8iomJiYtS+fft8eq3Rl7dveldKqbvuusvjDPrXv/7ldm5vDBs2zO11GjZsqE6dOuX1zwFYBVnm3WvJMsA6nJZfRrjX5F4T9uO0bGNvxt4M9kSWefdasgywFg6KAGwsNze39GTMRo0aqZ07d3r82uLiYjVq1Ci3C19kZKTKycnxuqYnnnjC8HpmvElUKaWKiorU/fff77bumJgYtWLFCp+v//vf/96UTV5mZqbbGiMiItS6deu8ru3EiROGn6jVqlUrdezYMa+v56lt27YZvrGwf//+qrCwMGDznrd27VoVERGhRER17NhRzZo1y69NX6dOnVR6erpPn5xl5ptECwsL1eWXX+7xfxtW7s1gM7snjJBlJcgy90K9BpNl+meZUuSZJ6zcM+QZeWbV3vRXqHvCCFlWgiwzD/eZJazcm8HGvuzSrNwvdsmyUK/BZJk1syzUfWGEPCtBnpmHvVkJK/cmADjJqVOnVFhYmN957KmjR4+WflJpu3btAjJHRYz2Hr6ufUaOHj2q2rRp43Ztqlu3rvrtt99CXv/06dPd1hgfH+/VPhywKjvnm4iou+++2+fXGn358qb3n3/+2eMM+vTTT93O7Y28vDxVp04dt9caMWKE1z8HYGVkmfvXkmWAtdk5v4xwr1mCe03YnZ2zjb0ZezM4B1nm/rVkGWAt4QLAtt5//33Jz8+Xyy67TJYtWyZ169b1+LVhYWEydepUueWWWwzHCwsL5d///rfXNcXExHj9Gm+Eh4fLjBkz5A9/+IPheH5+vtx2222yZ88en64fHR3tT3mlevXqJZ06dTIcKyoqkmeffdbraz788MOyfv36co9v3LhRevbsKSdOnPD6mpeyY8cO6dq1q2RnZ5cb++CDD2Ty5Mmmz3mxkydPyuDBg6WoqEiSkpJk3rx5Eh7u/9J28803S1hYmAkV+i4iIkJ69Ojh8fOt3JvBFKieKIssK0GWuWeFNZgs0zfLRMgzT1m5Z8gz8swMVswzK/REWWRZCbLMHNxnXmDl3gwm9mWesXK/2CXLrLAGk2XWyzIr9EVZ5FkJ8swc7M0usHJvAoCTVK5cWVJSUoI237Rp0+TkyZMiIvLUU08Fbd7zAr23q1q1qixbtkxatGhhOL5r1y7p27evFBYW+nR9s9bP+++/X+rVq2c4durUKXnxxRdNmQcIJbvn26233hrwOS6lSZMmUqdOHY+ea1Z+xcTEyNixY92Oz5gxw+f7Z8CKyLLAI8uAwLB7fpXFvWYJ7jVhd3bPNvZmxtibwW7IssAjywBzcFAEYGPvvfeeiIjMnTtX0tLSvH59WFiYvPPOOxIfH284vnz5cp+uGWhhYWHy5ptvun2j24kTJ2TIkCFSXFzs9bXN/IsAI0aMcDu2bNky2bp1q1fXe+GFF6Rhw4aGY+vXr5devXqVbhjNsHv3bunatavs37/fcLxjx44yatQo0+YzMmrUKNm5c6eIiEyfPl3S09NNuW6rVq1MuY6/2rRp4/FzrdybwRSoniiLLLuALDNmhTWYLNM3y0TIM09ZuWfIsxLkmf+slmdW6AmjawYaWVaeTlnmDe4zL7BybwYT+zLPWLlf7JJlVliDyTLrZZkV+sLomoFGnpWnU555g73ZBVbuTQBwmmrVqgVlnry8PHnttddERCQjIyMkb9gMxt6uSpUqsnjxYqlZs6bh+HfffSfjxo3z6dpmrZ8REREyfPhwt+Pz5s2T48ePmzIXEEp2zjfd7gHM3P/feeedUrVqVcOxoqIiefPNN02bC7ACsizwyDIgMOycX2Vxr1mCe004gZ2zjb0ZezM4B1kWeGQZ4D8OigBsqqioSL755hvp27ev3HjjjT5fJzk5WR544AHDMXdvDrSCSpUqybx58yQxMdFw/MsvvyzdQIXKTTfdJJUqVXI7vmzZMq+ud9lll8mKFSvcni66bt066d27t5w+fdqr6xrZu3evdOnSRfbu3Ws43r59e1myZInExcX5PZc7ixYtktmzZ4uIyODBg2XgwIGmXLdJkybSrFkzU67lr9atW0uTJk2CPq/ZvRksgeqJUCLLytMhy6ywBpNl+maZCHkWKuRZeeSZK/LMGj0RSmRZeTpkmTe4zwwcK2WZN9iXhQZZVp4V1mCyzHpZZoW+CCXyrDwd8swb7M0Cx2p5BgC6iY2NDco8s2bNkkOHDomIyOjRo4PyF2lCpXbt2vLWW2+5HZ8wYYJ89913QayovD59+rgdO3v2rKxZsyaI1QCBYdd8u/baa6V27doBncNTXbt29emgR39ER0dLjx493I6z/4fdkGWBR5YBgWHX/Aol7jWB0LNrtrE3Y28GZyHLAo8sA/zHQRGATW3ZskVOnz4tjz/+uN/X6t+/v+HjOTk5fl87kGrXri1//etf3Y6/8MILcurUqSBW5CohIUEaN27sdnzTpk1eXzM1NVVWrFghV1xxheH4mjVr5Oabb5YzZ854fe3z9u/fL126dJHdu3cbjrdt21YyMzPdfgqdGbKzs0tPUa1bt65MmzbNtGu/8cYb0q5dO9Ou54927drJG2+8EfR5A9GbgRbIngg1sqw8q2eZFdZgskzPLBMhz8gz75FnwUOeWaMnQo0sK8/qWeYp7jMDy0pZ5in2ZWSZt9iXBQ9ZVsIKfRFq5Fl5Vs8zT7E3Cyyr5RkA6CYmJibgcxQWFsrf/vY3ERGpV6+e3HHHHQGfM9T69Okj/fr1MxwrKiqSZ555JsgVuWrcuLFUqVLF7TjrJ+zArvm2bt06iYqKCvg8nvjzn/8s9913X9Dnbdu2rduxH374QYqLi4NYDRBYZFngkWVAYNg1v0KNe00gtOyabezN2JvBWciywCPLAP9xUARgU9HR0fL6669Lhw4d/L7WNddcY/iHEME6Fcsfw4cPd/uGycOHD8vrr78e3ILKuPLKK92O+fom3PT0dFmxYoXbk71Wr14tffr0kby8PK+vnZ2dLV27dpWdO3cajl9zzTWydOnSCv/Qyl9KKbnnnnvk6NGjEhERIe+++64kJCQEbD6nCkRvBooTeoIsK8/KWcYabB06ZZkIeUaekWdwzyp5Rk+UIMvKs3KWecIJa7AVWCXLPOGEniDLyrNylrEGW4eVsoy+KEGelWflPPOEE9ZhK7BSngGAbsLDA/9Wq/fee6/00KacnBzp06ePPP/88/L5559Lbm5uwOcPlfHjx7v9/S5dulTWrVsX5Ipc1a1b1+0Y6yfsgHyzr4r2/4WFhXLs2LEgVgMEFllmX2QZ7I78ChzuNYHQIdvsi70ZnIQssy+yDHbCQRGATdWvX18efPBBU64VHh4utWrVKvf4ZZddZsr1AykqKqrC38Mrr7wihYWFQazIVUWfuOVPXXXr1pUVK1YY/nsTEVm+fLncdtttcvbsWY+veeDAAenatav8+uuvhuPNmzeXL774QpKSknwp2WOvvvqqfPHFFyIi8swzz8h1110X0PmcKlC9GQhO6AmyTK8sYw22Dp2yTIQ8EyHPyDO4Y5U8oydKkGV6ZZknnLAGW4FVsswTTugJskyvLGMNtg4rZRl9UYI80yvPPOGEddgKrJRnAKCbiIiIgM/x0ksvlf7zyZMn5dNPP5UxY8ZIz549JTk5WXr37i3vv/++V2u9Dq666irp3bu32/HJkycHsZryWD9hd+SbfVWUXyJkGOyFLLMvsgx2R34FDveaQOiQbfbF3gxOQpbZF1kGO+GgCAAeqVatWrnHMjIyQlCJ94YOHSqVKlUyHDt06JCsWLEiyBVdcOLECbdjNWvW9Ova9evXlxUrVri9zueffy633367FBQUXPJaOTk50q1bN9m6davheNOmTWXZsmWGfWKmrKwsefLJJ0VE5LrrrpNnn302oPM5WSB700xO6gmyzD5Z5i2d1+BQ0yXLRMiz88gz8gzGdMozb+jcE2SZfbLMSWtwqOmSZU7qCbLMPlnmLZ3X4FDTJct8oXNfkGf2yTMnrcOhZuc8AwDdLVmyRH766Se340VFRZKZmSm///3vpVatWjJ69OgKc103999/v9uxzMxMOXnyZBCrccX6CfjH6fkWShX9HsPDwyU5OTmI1QB6I8tChywD/OP0/OJeE7Anp2dbKLE3A8xDloUOWQY74aAIAB4xOnWqU6dOIajEe8nJydKhQwe34wsXLgxiNa4OHjzoduzyyy/3+/qNGjWS5cuXu92cfPrppzJgwAA5d+6c22scPnxYunXrJr/88ovheOPGjWXFihUB3wCdPXtWBg0aJPn5+ZKQkCDz588PyslsThXo3jSD03qCLLNHlvlC5zU41HTIMhHyrCzyjDxDebrkmbd07gmyzB5Z5rQ1ONR0yDKn9QRZZo8s84XOa3Co6ZBlvtK5L8gze+SZ09bhULNzngGA7iZOnOjxc48ePSqTJk2SRo0ayezZs0UpFcDKguPGG2+U2NhYw7H8/Hz5z3/+E+SKLmD9BPzj9HwLpYryKyUlhXsvwAtkWeiQZYB/nJ5f3GsC9uT0bAsl9maAeciy0CHLYCccFAHAI/v373f5Pi4uTrp16xaiarzXq1cvt2OZmZlBrOSCM2fOyA8//OB2/IYbbjBlnkt90tfixYtl4MCBUlhYWG7s6NGj0r17d8nKyjJ8bYMGDWTFihWSkpJiSq0Veeqpp+THH38UEZG///3vcuWVVwZ8TqcKVm/6y4k9QZbpn2W+0H0NDhVdskyEPCuLPCPP4EqnPPOW7j1BlumfZU5cg0NFlyxzYk+QZfpnmS90X4NDRZcs85XufUGe6Z9nTlyHQ8XueQYAOvv6669lzZo1Xr/uwIEDMmzYMOncubMcPnw4AJUFT2xsbIUHloVqb7d9+3bJyclxO876CVSMfAuttWvXuh0jvwDPkWWhRZYBviO/uNcE7IhsCy32ZoA5yLLQIstgJxwUAeCSDh8+XO6UpDvvvFPi4uJCVJH3Wrdu7XYsOztbDh06FMRqSnz++edSUFBgOBYbGytdunQxba7mzZvL559/LklJSYbjH374odx1111SVFRU+lhubq7ceOONsnnzZsPXXHnllbJy5cqgnFa6fPlyeeWVV0REZODAgTJkyJCAz+lkwexNXzm1J8gyvbPMF3ZYg0NFhywTIc+MkGfkGVzpkmfeskNPkGV6Z5lT1+BQ0SHLnNoTZJneWeYLO6zBoaJDlvnKDn1BnumdZ05dh0PFznkGALqbMGGCX6//8ssv5dprr5WtW7eaVFFoVLS3q+iwo0D65JNP3I5dccUV0qRJkyBWA+iHfAuds2fPyhdffOF2vHfv3kGsBtAbWRY6ZBngH/KrBPeagL2QbaHD3gwwD1kWOmQZ7CYy1AUAsL4vv/zS5fuwsDB56KGHQlSNb1q0aFHh+A8//CA33nhjcIr5/yZOnOh2bNiwYRIbG2vqfK1atZLPPvtMevToISdOnCg3/v7770tkZKTMnz9fTp48KT169JBNmzYZXqtOnTqycuVKSU1NNbVGI8eOHZOhQ4eKUkrS09PlzTffDPicThfs3vSWk3uCLNM3y3xlhzU4VKyeZSLkWUXIM/IMF+iQZ76wQ0+QZfpmmZPX4FCxepY5uSfIMn2zzFd2WINDxepZ5g879AV5pm+eOXkdDhU75xkA6G7mzJly5swZyc/Pl8OHD8v+/ftlz549snHjRlm/fr3s3bv3ktfYsWOHXHfddfLJJ59I+/btg1C1+Sra223dulXy8/MlJiYmaPUUFBTIyy+/7HZ8xIgRQasF0BX5FjrvvPOO20+pTklJkf79+we5IkBfZFnokGWAf8ivEtxrAvZCtoUOezPAPGRZ6JBlsBsOigBwSf/+979dvr/zzjslIyMjNMX4qHr16lK5cmU5ffq04fiWLVuC+ibRadOmybfffms4Fh8fL88991xA5m3Xrp18+umn0qtXLzl16lS58QULFkh4eLjs2LFDNmzYYHiN2rVry8qVKyU9PT0gNZb1pz/9SX777TcJDw+X+fPnS2JiYlDmdapQ9aY3nNwTZFkJHbPMV3ZYg0NBhywTIc/IM/KMPLs0XfLMF3boCbKshI5Z5uQ1OBR0yDIn9wRZVkLHLPOVHdbgUNAhy/xhh74gz0romGdOXodDwe55BgC6q1mzZoXjmzdvlgULFsiMGTMkNzfX7fOOHTsmt9xyi3z99dfSuHFjk6sMvIr2IUVFRfLrr78Gdb/69NNPy759+wzHateuLSNHjgxaLYCuyLfQ2Lt3rzzzzDNux8eMGSPx8fFBrAjQG1kWGmQZ4D/yqwT3moC9kG2hwd4MMBdZFhpkGewoPNQFALC2U6dOyX/+85/S7yMjI+X5558PYUW+q+iTr44dOxa0Oj777DN59NFH3Y5Pnz79kps9f3To0EE++eQTiYuLMxx/99135ZtvvjEcq1WrlqxYsULq1q0bsPouNnfuXFm4cKGIiIwePVpuuOGGoMzrVKHuTU/QE2TZeTplma/stAYHU6h701PkGXl2HnkGd0Ldm4Fkp54gy0rolGWswcEV6t70BD1Blp2nU5b5yk5rcDCFujcDzU59QZ6V0CnPWIeDK9S9CQDwX/PmzWXixImye/duGTt2rMTGxrp97rFjx2TAgAGSl5cXxArNkZaWVuF4MPd2s2bNkilTphiOVapUSebMmRPUT5wF7Mop+RZMhw8flttuu02OHDliON6rVy/54x//GOSqAHsjy8xHlgHB4ZT84l4TcBanZFswsTcDgo8sMx9ZBrvioAgAFZo7d66cOHGi9PvHH39c6tWrF8KKfJeQkOB27Pjx4wGfv6ioSF599VW59dZbpaCgwPA5zz//vNx9990Br6VTp06yePFir/4Q6bLLLpMVK1ZI/fr1A1jZBbt37y49DbVNmzYybty4oMzrRFbqzYrQEyXIsgt0yDJ/2GkNDgYr9ealkGclyLMLyDNczEq9GSh26gmy7AIdsow1OHis1JsVoSdKkGUX6JBl/rDTGhwMVurNQLJTX5BnF+iQZ6zDwWOl3gQAmCMxMVHGjBkjmzdvlvbt27t9XlZWlvz1r38NYmXmqGhfJxKcvV1+fr489dRTct999xmOh4WFydtvvy1dunQJeC2Ak9g934Jl48aN0r59e/n+++8Nx5s3by4LFy6UiIiIIFcGOANZZg6yDAg+u+cX95qAM9k924KFvRkQWmSZOcgy2FlkqAsAYF0FBQUyefLk0u8bNWokY8aMCWFF/qno5KyL3wjri7Vr18rYsWOladOm0rBhQ0lNTZWkpCTJz8+X/fv3y+effy5vv/22ZGVlGb4+Li5Opk2bJvfcc49fdXijW7du8tFHH8ltt90mZ8+erfC5NWrUkOXLl0ujRo2CUltxcbEMHjxYTpw4IZUrV5Z3331XIiNZsnyhY28aoScuIMtcWTnL/GG3NdhfOvamO+TZBeSZK/LMGXTsTbPZrSfIMldWzjLWYPPo2JtG6IkLyDJXVs4yf9htDfaXjr0ZCHbrC/LMlZXzjHXYPDr2JgDAPA0aNJDVq1fLfffdJ3PmzDF8zt/+9jcZMWKEpKamBrk631W0rxPxf2+3ePFiiYqKkiZNmkiDBg2kVq1aUqVKFTl16pTs2bNHlixZIm+99Zbs3r3b8PXJyckyd+5cuemmm/yqA4B7ds03Mzz00EOSkZEhjRo1kiuuuEJq1KghERERkpOTIxs2bJD33ntPFi5cKEopw9cPHDhQ3nrrrUv+RUkA/iPL3CPLAGuza35xrwk4m12zzQzszQB9kGXukWVwOt5xA8Cti/8wIiIiQmbOnCnR0dGhLcoPxcXFbsf8fQPi9u3bffq0q4iICOnXr5+MGzdOGjdu7FcNvujVq5fMnz9fBgwY4PY5UVFRsmzZMmnSpEnQ6powYYKsWbNGREReffVVadCgQdDmthtde7MseuICsqw8q2aZP+y2BvtL1940Qp5dQJ6VR57Zn669aSa79QRZVp5Vs4w12Dy69mZZ9MQFZFl5Vs0yf9htDfaXrr1pNrv1BXlWnlXzjHXYPLr2JgDAPJGRkTJ79mypUqWKvP766+XGz549K6+99ppMmjQpBNX5pqJ9nYj/e7vvv//e7SeGVSQmJkbuvvtuGTt2rOPeZAuEgh3zzQyvvfaaT69r1qyZPPnkk3LXXXeZXBGAipBlxsgywPrsmF/cawKwY7aZgb0ZoBeyzBhZBqfjoAgAho4cOeLyyWHjxo2T66+/PoQV+S8vL8/tWFxcnF/X7tq1q9xyyy2yceNG+fnnn2Xbtm1y5swZw+cmJSXJddddJ9dff70MGjRI6tSp49fc/igoKJB33nnHo+e88sorQanpu+++K31T4+233y733ntvUOa1K11782L0hCuyrDwrZpk/7LgG+0vX3iyLPHNFnpVHntmfrr1pFjv2BFlWnhWzjDXYXLr25sXoCVdkWXlWzDJ/2HEN9peuvWkmO/YFeVaeFfOMddhcuvYmAMB8U6dOlZ07d8qSJUvKjf3zn/+UiRMnSlhYWAgq815F+zoR//d2d9xxh7Ro0UI2bdokv/zyi/z6669SUFBg+NyUlBRp3769dOzYUe6++26pUaOGX3MD8J6d8s0Mc+bMkY0bN8rmzZtly5YtcvDgQcPnRURESPPmzeX666+XW2+9Vbp37x7kSgFcjCxzRZYB+rBTfnGvCeA8O2WbGdibAXoiy1yRZXA6DooAYOiRRx6Ro0ePikjJJ0499dRTIa7If7m5uW7Hatas6de1a9euLY888ojLY4cPH5aDBw/KqVOnJCIiQqpWrVr6ZYXN1rlz52TAgAHy6aefXvK5U6dOlcjISJk8eXJAazpz5owMGjRIzp07J6mpqfL2228HdD4n0LE3L0ZPlEeWubJilvnLjmuwv3TszbLIs/LIM1fkmTPo2JtmsmNPkGWurJhlrMHm07E3L0ZPlEeWubJilvnLjmuwv3TsTbPZsS/IM1dWzDPWYfPp2JsAgMAIDw+Xd999Vxo3biwHDhxwGdu/f79kZWVJRkZGiKrzTkX7OhH/93aNGzeW0aNHl36vlJKcnBzJycmRM2fOSKVKlUrXzqSkJL/mAuA/O+WbGYYMGSJDhgwp/f7MmTOSnZ0tx48fl3PnzkmVKlWkatWqUr16dYmKigphpQAuRpa5IssAfdgpv7jXBHCenbLNDOzNAD2RZa7IMjgdB0UAKGfx4sUyb948ERGpW7euzJ8/X/s3jiml5LfffnM7HohPTUpOTpbk5GTTr2uGwsJCGThwoCxevNjj10yZMkUqVaokL774YsDqevTRR2Xbtm0SFhYmc+bMkWrVqgVsLiezcm+WRU+4IstcWTXL/GHHNThQrNybRsgzV+SZK/LM2azcm2ayY0+QZa6smmWswcFh5d4si55wRZa5smqW+cOOa3CgWLk3zWbHviDPXFk1z1iHg8PKvQkACKzExESZOnWqDBw4sNzY+vXrtXlT6L59+yocN3tvFxYWJjVr1vT7LwUBCBy75FsgxMXFSf369UNdBgAPkGXukWWAtdklv7jXBHAxu2RbILA3A/RBlrlHlsFpwkNdAABr2b9/v/zhD38QEZFq1apJZmamVK9ePcRV+W/fvn1SUFDgdrxx48ZBrCa0ioqKZNCgQfLhhx8ajletWlUiI43PEZowYYI899xzAanrk08+kRkzZoiIyGOPPSbdunULyDzQBz1RHll2gVWzzB92XYNBnhkhzy4gz+AEdu0JsuwCq2YZazDKoifKI8susGqW+cOuazD8Y9e+IM8usGqesQ4DABAcd9xxhzRt2rTc4zt27AhBNb6pqNaqVavyl2wAh7JDvgEAWQZAV3bIL+41AZRlh2wDALIMgAgHRQC4yLlz52TgwIFy5MgRiYqKko8++kgaNWoU6rJMsWnTJrdjcXFx0qxZsyBWEzrFxcUyZMgQWbhwoeF41apVZfny5bJgwQK3bxQdP368PP/886bXdu+995b+85QpUyQsLMynr2HDhhle393zYV30RHlkWQkrZ5mv7LwGgzwzQp6VIM/gBHbuCbKshJWzjDUYZdET5ZFlJaycZb6y8xoM39m5L8izElbOM9ZhAACC58EHHyz32NGjR0NQiW8q2tu1adMmiJUAsBrd8w0ARMgyAPrSPb+41wRgRPdsAwARsgwAB0UAuMjIkSNl7dq1Eh4eLnPnzpWOHTuGuiTTfPPNN27HOnToIBEREUGsJjSKi4tl2LBh8s9//tNwPDExUT7//HNp2bKl9O/fX+bNm+f29zJmzBiZMGGCqfXl5OSYej3oj54ojyyzfpb5ys5rMMgzI+QZeQbnsHNPkGXWzzLWYJRFT5RHllk/y3xl5zUYvrNzX5Bn1s8z1mEAAIKnT58+5R4rLi4OQSW+qWhv16lTpyBWAsBqdM83ABAhywDoS/f84l4TgBHdsw0ARMgyABwUAeD/mzZtmsyYMUNERF5//XW54447QlyRuZYsWeJ2rG/fvkGsJDSUUjJ8+HCZO3eu4XiVKlVk6dKl0rp169LHBg4cKHPmzJHwcOOl4qmnnpLJkycHpF4Axsgye2aZ3ddgwAh5Rp7BGezeE2SZPbMMcBqyzJ5ZZvc1GL6xe1+QZ/bMMwAA4JtatWpJvXr1XB5LSEgIUTXeOXTokGzYsMHtuBP2dgDc0znfAOA8sgyArnTOL+41Abijc7YBwHlkGQAOigAgH3/8sTz00EMiIjJu3DgZMWJEiCsy15YtWyQrK8twrFKlStKvX78gVxRcSin585//LLNmzTIcj4+Pl8zMTGnXrl25sUGDBsk//vEPCQsLM3ztE088IVOnTjWzXABukGX2zDK7r8GAEfKMPIMz2L0nyDJ7ZhngNGSZPbPM7mswfGP3viDP7JlnAADAP3Xr1nX5Pj09PUSVeGfRokVuP+ksIyNDmjZtGuSKAFiNrvkGABcjywDoStf84l4TQEV0zTYAuBhZBjgbB0UADvfNN9/IwIEDpaioSB566CF57rnnQl2S6c5/SpqRfv36yWWXXRbEaoJv1KhRbn8HlStXlk8//VTat2/v9vVDhw6Vt99+2+0bRR955BH5+9//bkqtANwjy+yXZU5YgwEj5Bl5BvtzQk+QZfbLMsCJyDL7ZZkT1mB4zwl9QZ7ZL88AAID/kpOTXb5v1qxZiCrxzltvveV27IEHHghiJQCsStd8A4CLkWUAdKVrfnGvCaAiumYbAFyMLAOcjYMiAAfLysqS3r17y5kzZ2To0KHyyiuvhLok0x06dEhmzpxpOBYeHi6jR48OckXBVdEbOGNjY+Xjjz+WG2644ZLXuffee2X69Olu3yg6cuRIefPNN/2qVSllytc777zj1fVhXfTEBWSZPlnmKSeswbiAPLuAPCPPYH9O6AmyTJ8sYw1GWfTEBWSZPlnmKSeswfCeE/qCPNMnz1iHAQAIrry8vNJ/jomJqfDgKKvIzMyU77//3nAsNTVVhgwZEuSKAFiRjvkGAGWRZQB0pWN+ca8J4FJ0zDYAKIssA5yNgyIAh9qxY4f07NlTjh07Jr/73e9k1qxZbt8AqLNx48bJqVOnDMcGDRokzZs3D3JFwfPEE0/I1KlTDcdiYmJk8eLF0qVLF4+v98c//lFef/11t+MjRoxw+4ZcAP4hy6YajumaZU5ZgwEj5NlUwzHyDHbhlJ4gy6YajumaZYBTkWVTDcd0zTKnrMHwjlP6gjybajima54BAADzHDx4sPSfe/fuLbGxsSGs5tKKiorkySefdDv+/PPPW/5nABAcuuUbABghywDoSrf84l4TgCd0yzYAMEKWAc7GQRGAA+3Zs0e6du0q2dnZ0qNHD1mwYIFERESEuizTrVmzRqZPn244lpycLFOmTAlyRcHz9NNPy+TJkw3HoqOj5d///rd0797d6+s+8MADbj91Tiklw4cPl9mzZ3t9XQDukWX2yjKnrMGAEfKMPIO9OaUnyDJ7ZRngVGSZvbLMKWswvOOUviDP7JVnAADAPPn5+bJ58+bS70eMGBHCajwzadIkl5ov1qlTJxk2bFiQKwJgRTrmGwCURZYB0JWO+cW9JoBL0THbAKAssgwAB0UADrNv3z7p2rWr7N27V2644Qb56KOPJDo62q9rTpo0SZYtW2ZSheY4cOCA3HXXXVJcXGw4PmPGDElJSQlyVcExduxYefHFFw3HoqKiZNGiRdKzZ0+fr//www+7fQOqUkruvfdemT9/vs/XB3ABWWavLHPKGgwYIc/Is0shz/TmlJ4gy+yVZYBTkWX2yjKnrMHwjlP6gjyzV54BAABzrVy5UvLy8kREpEePHtKtW7cQV1Sx1atXy9ixYw3HkpKS5B//+IeEhYUFtygAlqRbvgGAEbIMgK50yy/uNQF4QrdsAwAjZBkADooAHGTPnj3SqVMn2blzp7Rt21aWLFkicXFxfl1zxowZMnr0aKlevbpHz3f3pk0znThxQvr06SP79u0zHH/66afl9ttv9+naSimvHg+2F154QcaNG2c4VqlSJVm4cKHcfPPNfs/zl7/8RSZMmGA4VlxcLPfcc48sWLDA73ngOav3pt2QZYFlxyyzwhqsA6v3ph2RZ4FFnnmGPNObFXqCLAssO2YZPGP13rQbsiyw7JhlVliDdWD13jSbFfqCPAssO+YZPGP13gQAWMtLL70kIiKRkZHyyiuv+HydYOztsrKy5Pbbb5dz586VG4uIiJD33ntPrrzySp+uzfoJ2I9Z+WZ1FeUUGQbojywjywBdca9ZgntNwF7Ym5FfgB2QZWQZwEERgEPs3r1bOnfuLLt27ZLWrVvL0qVLJSEhwefrFRcXy8svvywjRoyQpk2bSsuWLT163dmzZ32e0xOHDx+W7t27y4YNGwzH77//fhk/frzP1y8oKPDq8WD629/+Js8884zhWGRkpCxYsED69u1r2nyjR4+W559/3nCsqKhIBg8eLIsWLTJtPh246+9g9IeVe9OOyLLAsWOWWWUN9hRZ5izkWeCQZ5dGnunPKj1BlgWOHbNMN2SZc5BlgWPHLLPKGuwpsiw4rNIX5Fng2DHPdEOeAQBERAoLC8s9Foy/5OKp//znP7Jq1SoREXn00UelSZMmPl8r0Hu7jRs3SpcuXeTo0aPlxsLDw2XWrFnSs2dPn6/P+gl4x0n55omKMjDQOVLR9ckwoGJkmSuyDNCHk/KLe03AOZyUbZ5gbwboiSxzRZYB1hQZ6gIABN62bdukW7dusn//frn22mslMzNTkpKSPHqtUkqKiookPz9fjh8/Lr/99pt89dVXMnv2bMnKyhIRkbvvvtvjWo4dO+bLj+CR7777Tvr37y979uwxHH/44Yfl5ZdflrCwMJ/nOHPmjOHjp06d8vmaZqlfv75ERkaW24RGRETI/PnzpV+/fqbP+eyzz0phYaHhm0Xj4+PliiuuMH1OKzt9+rRXj5vJyr1pR2RZ4Ngty6y0BnuKLHMW8ixwyLMLyLMLrNCbZrFST5BlgWO3LNMRWeYcZFng2C3LrLQGe4osCzwr9QV5Fjh2yzMdkWcAABEx/DRSM96AWFxcLKtXr5aDBw/KNddcIw0bNvT6Gtu2bZOhQ4eKiEjv3r3lxRdf9KumQO7t5syZI3/+858lLy+v3Fh0dLTMmTNH7rjjDr/mYP0EvOOkfPNERfv8QN8DuMsvkZIMi46ODuj8gM7IMldkGaAPJ+UX95qAczgp2zzB3gzQE1nmiiwDrImDIgCb+/HHH+XGG2+UnJwcERH55ptvpGrVqqZdPywsTAYNGuTx8929gdMfx48fl/Hjx8vUqVOlqKio3Hh8fLzMmDFD7rrrLr/nOnjwoOHj+/bt8/va/urbt6/Mnz9fBg0aVPp7CA8PN+UPtSoybtw4OXfunEyYMKH0sfj4eMnMzJRWrVoFbF4r+t///mf4eHZ2dsDntnJv2hFZFjh2yjKrrcGeIsuchTwLHPLMc+SZfqzWE2RZ4Ngpy3RFljkHWRY4dsoyq63BniLLAstqfUGeBY6d8kxX5BkAQETk5MmT5R47ceKEX9fMy8uT7t27y9dffy0iF/ZgU6dOlerVq3t0jaysLLn55pvl+PHj0rx5c3nvvfckIiLC55qKiopk//79Pr/ene3bt8vDDz8sS5YsMRyvV6+eLFy4UK655hq/52L9BLzjlHzzlLv9v0jg7wHc5ZdISYZ5+rsDnIgsc0WWAfpwSn5xrwk4i1OyzVPszQA9kWWuyDLAohQA21q3bp2qWrWqEpGAfXXu3Nnjek6fPq2qVKlieJ127dqps2fPevXz/fLLL+r//u//VGJiotv6br/9drVz505vf3WGCgoKVHx8vOE8UVFR6vTp06bM46/Zs2ersLAwFR4erubMmRO0eR9//HElIiouLk6tXr06aPOW9c477xj+Owq0vXv3uu3D+vXrB3RuXXozVMzuCbIsOHTPMqutwZ4iy6yNPHOlS8+QZ+SZVXvTV1brCbIsOHTPMn9xn2nd3gwV9mWudOkX3bPMamuwp8iywLJaX5BnwaF7nvmLvZl1exMAnMJob3L11Vf7dc13333XMOdr1qyp/vWvf1X42qKiIjVr1qzSunr27Klyc3P9qkcppb766iu3a9+jjz6qiouLPb5WcXGxWrlypRo0aJCKiIgwvGZ0dLR64okn1IkTJ/yuXSmlsrOz3daflpZmyhyA3Tgl3zw1d+5ctzly3333BXTu4cOHu5175syZAZ0b0B1Z5oosA/ThlPziXhNwFqdkm6fYmwF6IstckWWANUUKAFtaunSp3H777XLmzJmAzjN48GCPnldcXCyjRo1ye2rWt99+KwkJCZKRkSFNmzaVRo0aSXp6utSoUUNiY2OloKBATpw4Ibt27ZJffvlFvvzyS9m+fbvhtSIiIuTWW2+Vxx57TK6//nqff7aypk2bJqdOnTIcKygokBkzZsgjjzxi2ny+Gjp0qOTl5UmlSpVkyJAhQZv3pZdekvDwcOnevbt07NgxaPNaxZQpU9yObd++XVatWiWdO3cOyNy69KYdkGXBo3OWWW0N9gZZ5hzkWfCQZ5dGnunDaj1BlgWPzlmmM7LMGciy4NE5y6y2BnuDLAscq/UFeRY8OueZzsgzAICIyGeffSbHjx8v93hWVpb8+OOPcvXVV/t03djYWMPHDx48KHfccYdMmTJFhg8fLl26dJG0tDQ5c+aM7Nu3T5YuXSrz5s2Tn376ScLCwuSRRx6RyZMn+/2pYcePH5eRI0e6HX/55Zdl5syZ0rJlS7nqqqukQYMGkpaWJtWqVZOoqCjJy8uTo0ePyo4dO2Tz5s2yevVqOXTokOG1EhISZMiQIfLYY49J3bp1/ar7YpMmTXI7tn//fvnoo4/kd7/7nWnzAbpzSr556uzZs/L666+7Hf/oo49k4sSJAfmUwt27d8vChQvdjr/55psyePBgiYqKMn1uQHdkmSuyDNCHU/KLe03AWZySbZ5ibwboiSxzRZYBFhbqkyoAmO/DDz9UlSpVcntKkllfMTEx6vjx44Y17Nq1S/33v/9V3377rZo1a5Zq27ZtQGuJiIhQ119/vZo0aZLas2ePqb/PAwcOqKeeesrtaaPnv8LDw9XTTz+tDhw4YOr88E6wP01s165dFZ5Kdv6rSpUqavr06aadSqsUvekpf3qCLIO3rLAG+4Is0wN5VoKeCQ7yzHt2700r9ARZhlDhPpPeLIt9WQn6JTissAb7giwLLCv0BXmGUGFvRm8CQLCdPHlSbdmyRb322msqISHBbR6npKSomTNnqm3btqnTp097NUdBQYFq3ry5z3ulNm3aqPXr1/v08xUVFan//ve/6pdfflFfffWVmjRpkkpNTQ3o3i4uLk717dtX/eMf/zB17VSqZO2+//77Pdrrvvzyy+rYsWOmzg/oxO755ovi4mL17bffqo4dO16ytsaNG6slS5aogoICU+Y+e/asWrRokUpPT7/k3B07dlTffvutV5+4DdgVWVYeWQbowe75xb3mMVPnB3Rh92zzBXszQD9kWXlkGWB9YUopJQBs5Z577pE5c+YEfJ4BAwa4PY2pRYsWsnnzZtPmioyMlNjYWImJiZHq1atLWlqa1K5dW5o0aSKtWrWSa665RhITE02br2fPnvLbb79Jbm6u/O9//5Pi4mKPXxsWFiapqaml9WRlZZlWFy5t9uzZMmzYsHKPm7ncNWvWTJRScvToUTlw4IBXr42IiJC0tDSJj4+XNm3ayDvvvOPV6+lN7/nTE2SZ8/rFX1ZYgz1FlumHPKNngok884yTetMKPUGW6dMvdsN9pntO7U32ZfRLMFlhDfYUWRY8VugL8kyvnrET9mbu0ZsAYK65c+fK0KFD/brGqlWrpFOnTh499/wnha1evdrj63fs2FFGjhwp/fr1k7CwMJ9qzM3NlapVq/r0WneioqIkNjZW4uLiJCUlRdLS0qROnTpy9dVXS6tWreTqq6829VO9zFq7U1NTZenSpabVBViVU/LNUxs2bJBhw4ZJYWGhHDx4UHJzc716fWxsrNSqVUtiYmJkxIgRMmLECI9f+8Ybb8gbb7wh+fn5kp2dLXl5eV7NnZSUJDVr1pTIyEh54YUXpG/fvl69HtAZWeaKLAP04ZT84l6Te004i1OyzVPszQA9kWWuyDJALxwUAQAGtm3bJgUFBaZcq1mzZqZcB9Zh1psrK1euLHXr1vXqNfQmvEG/oCJkGXRCz6Ai5Bl0Qb+gImQZdEG/oCJkGXRCz6Ai5BkAQKTkL7Xs37/fr2vUrVtXKleu7NVrli5dKh9++KFs3LhRdu/eLSdPnhSllFSpUkVSU1OlWbNm0qFDB7nlllskPT3dr/rswqy1OyoqSho2bGjKtQArI99cnT59Wnbt2mXKtVJSUiQlJcXj5+fk5EhOTo4pc6elpUlSUpIp1wJ0QJa5IssAfZBf+uBeE/Ac2eaKvRmgJ7LMFVkG6IWDIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQRHuoCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4BkOigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAEB0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABogoMiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMFBEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJrgoAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNcFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAJjgoAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQBMcFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAJDooAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQBAdFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIKDIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTBQREAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACa4KAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATXBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCY4KAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEATHBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgCQ6KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0AQHRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiCgyIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0wUERAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmuCgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE1wUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAmOCgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAExwUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoAkOigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAEB0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABogoMiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMFBEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJrgoAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNcFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAJjgoAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQBMcFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKAJDooAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQBAdFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaIKDIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADTBQREAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACa4KAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATXBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgCY4KAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEATHBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACgCQ6KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0MT/A4Ba5Uua36U+AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAEIoAAAbKCAYAAAC3+Sn5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs3XVYVMv/B/D30iDYnSgqeu266rXjGohdiC1idzd4rWtjAgaIXlHEbq8B1sXu7i6Ukq79/cGP/bLuOcsW/X49j88jM+fMzIHdUzPzGYlUKpWCiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgyPb2MbgAREREREREREREREREREREREREREREREREREREREREREamGgSKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLIIBoogIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIsoiGCiCiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCiLYKAIIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqIsgoEiiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiyCAaKICIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLKIhgogoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgoi2CgCCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKiLIKBIoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIsggGiiAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiyiIYKIKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIKItgoAgiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIioiyCgSKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLIIBoogIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIsoiGCiCiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCiLYKAIIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqIsgoEiiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiyCAaKICIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLKIhgogoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgoi2CgCCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKiLIKBIoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIsggGiiAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiyiIYKIKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIKItgoAgiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIioiyCgSKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLIIBoogIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIsoiGCiCiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCiLYKAIIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqIsgoEiiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiyCAaKICIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLKIhgogoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgoi2CgCCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKiLIKBIoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIsggGiiAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiyiIYKIKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIKItgoAgiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIioiyCgSKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLIIBoogIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIsoiGCiCiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCiLYKAIIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqIsgoEiiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiyCAaKICIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLKIhgogoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgoi2CgCCIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKiLIKBIoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIsggGiiAiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiyiIYKIKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIKItgoAgiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIioiyCgSKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLIIBoogIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIsoiGCiCiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCiLYKAIIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqIsgoEiiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiyCAaKICIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLKIhgogoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgoi2CgCCIiIiIiIiIiIiIiIiIiIiIiIiIiIiKi/xcXF4ddu3ahcePGkEgkcHZ2zugmERFlG+fPn0fdunVhbGyMSpUqYf/+/RndpBzl3r17aN68OUxMTGBpaQk3N7eMbhIREREREWnIIKMbQERERERERERERERERJnPsWPHULVqVZQpUyajm0JERERERERERJTp/Pz5E58+fUJERARiY2Nhbm6OfPnyoXjx4pBIJBndPNLQx48f4e7ujs2bN+PLly8Z3RzSUFBQEEJCQhASEoLExETkyZMHBQsWRL58+VQu4+bNm9DX10fNmjXTrqFEOdCLFy/Qvn17REVFAQCePn2Knj174uLFi/jjjz8yuHXZX1BQEP788098+/YNAPD27VuMHDkSefPmhZ2dXQa3joiIiIiI1MVAEURERESUqc1YsQc/I6J1Xm7LhpXRvU09hfR9/17HuYDHOq8vrWT34zjqfwe2zWumf4OIiIiI0lHb7oMRHBya0c2gDJIvXx6c2ueZ0c0gUnDv3j3Y2trCzs4Ou3btyujmUA4VO2UK8PNnRjeDMoqFBYxWrMjoVqS5O3fuIDw8XOty9PT0YGBgAENDQ+TKlQvm5uYoUKAAjI2NddDKrOvSpUta7a+vrw9DQ0MYGhrC2NgY+fLlQ758+WBkZKSjFhIREaW/L1++IDExMaObQRlET08PRYsWzehmEGVZN2/exNGjR3H58mXcvn0b379/F9zOzMwMlStXRosWLdCuXTu0aNECenp66dxaUtf58+exYcMGHDhwAPHx8RndHFKDVCrFpUuXcOzYMdy8eRM3b95EcHCw4LbFihVD9erV0apVK3Tq1AnW1taC2339+hX169dH1apVcefOnTRsPVHOs3btWlmQiGSJiYlYunQpDh06lEGtyjm2bdsmCxKR0pIlSxgogoiIiIgoC2KgCCIiIiLK1H5GRKdJoIhDZ24jJjYe9rYN5dK7t6mHmNh4nLxwX+d1poXsfhw5IUiEpaUl3r59q/L2VlZWePbsWYYMIpFKpahcuTKePn2q8j5lypTBmzdv0q5RRCRq27ZtGDx4sM7KGzhwILZt26az8gCeA4mSBQeHIiiEgSIoe3NwcICXl5fOymvWrBnOnj2rdJvz58+jVatWGtfh4eGBAQMGwNnZGfPnz9e4nF85OTnB2dlZZ+WllfXr1wMA9u/fj69fv6JIkSIZ3CLKkX7+ZKAIyvbmzZuHR48eISwsDN+/f4dUKtVp+RYWFihZsiTKli2LypUro3r16mjYsCEqVKigddlZ4Ro5aNAgSKVShISEICgoSGfl5s2bF1ZWVqhQoQLq16+PFi1aoEaNGjorn0gVul6hWtfnHyLKvBITExkogrKlvHnzIjRU9fesK1aswOTJk3VWv7+/P1q0aKHx/q9fv4alpaXO2kO6ExYWhs2bN2Pjxo149eqVSvtERkbKJquvWLECJUqUgKOjIyZMmIA8efKkcYtJXXv27MHChQtx/37WGGND//P582e4uLjA29sbHz58UHmfz58/49SpU5g2bRpq1qyJ0aNHo2/fvjA1NZVtt3DhQiQkJKRV04lyNLHr6cuXL9O5JTkTf/9ERERERNkLw9MSERERUY518sJ9eB8NUEi3t22Idk2rZUCLNJPdjyO7e/nyJUJCQnD37l24uLigRIkSqW6/b9++dGqdvMOHD6c6Qbpz5844ffo0fvz4gcTERE6QJspAyZNhYmNj8ebNG2zatAllypRRad8qVapgzZo1uHr1Kj5//oyoqCh4eup+tXueA4mIcg4nJyecPXsWbm5u6NevH8zMzJCQkKDWv0aNGsHNzQ3+/v5wd3dPtc66devixo0b8Pf3x+bNm1GpUiWl5evr66Nv377Yvn07/P390bFjRwBJk2ClUimio6Px7NkzrFy5EgULFlTpuBs2bIhNmzbh1q1b+PbtG6KiouDk5KTV7zI9BAcHY+fOnQCA2NhYbN26NYNbRESUfR0+fBgvXrzAt2/f8OXLFyxatAhGRkY6K//nz594/Pgxjh8/jpUrV2LgwIGoWLEiSpYsiZEjR+Ly5csal50VrpEvXrzAy5cv8ePHD7x+/RoTJkzQyeT6kJAQ3Lx5E7t378bEiRNRs2ZN1KhRA//88w8n21O6kUqlSExMRFBQEE6fPg1bW1uV9suVKxcmT56MEydO4NWrV/j58yfi4uLSuLVERERpLzAwEEFBQQgICMCsWbNQvHhxpdtPnz4d//77r87qb968uaxf5v3799i+fbvoKvXVq1eHj48PPn36hPj4eEilUgaJyITi4uKwatUqlClTBlOmTJFNqjQ2NkbPnj3h6emJO3fuICQkBPHx8YiIiMC7d+9w5swZODs7o2bNmrKyPn78CGdnZ1haWmL16tUM2JPJ/Pz5E3Xq1IG7uzuWLFnCYB5ZQGBgICZNmgQrKyssW7ZMLkiEpaUlJk+ejD179uDp06f48eMH4uLi8OPHDzx79gwnTpzAzJkzUa9ePQDAnTt34OjoiJIlS2L69OnYu3cvRo0aJQumTES6JxbEtmLFiunckpyJv38iIiIiouxFIuUoBSIiIiLKxEbP346fEdFpWke7ptVgb9tQId37aABOXsg6qwVk9+PIKYKDg/Hnn3/i5s2botvUq1cP165dS8dWJWnSpAkuXbokmj9hwgSsXr06HVtEROr6/v076tevr3S1o3HjxmHFihUwNDRMx5Yl4TmQcqrfW3ZDUIjqK91R9pI/bx5cO7c/o5uR7iIjI7Fy5Ur8/fffiIyMTHX7Ll26YP/+/VpN7AwLC0PNmjXx+vVrwfJXrVqFsmXLqlTW69evUbt2bYSEhIhus3TpUkydOlXnKz2nh5UrV2LKlCmyn8uUKYNXr15BT4/xxyl9xQ4fDvz8mdHNoIxiYQEjFQIDZUd79+5Fz549BfMMDAxQrVo11K1bF3Xr1kXVqlVRsGBBFCxYEHny5EFUVBRCQkLw6tUr3L9/HxcvXsSpU6eUXrPq1q2Lv//+G61atdK67VnhGrl8+XJMmzZNMM/a2hqDBg1ClSpVUL58eRQvXhzm5ub4+fMnvn37hitXruDYsWPYt2+f6Kqi9evXh4+Pj8rBGol0acKECVizZo1ofuXKlXHs2DGV73uJKHv69OkTJyjnYHp6eqkGUMguYmJisHr1ajg5OSE2NlZwm3z58uH69euwsrJKkzaEhYWhYcOGePTokSztjz/+wNmzZ2FiYpImdZJu3L9/H3379sX9+/8ba6Gnp4fRo0djzpw5KFy4sErlBAQEYNq0aQp9TPXq1cPu3btRrlw5nbabdMPd3R0jRoxQSHdycoKzs3P6N4jk7Nu3DyNGjMD379/l0hs1aoQFCxagefPmKr9zuH79OlauXAkfHx/RbWrUqIE7d+5o02Qi+sWbN29QtWpVREREyNL09PQQEBCA33//PQNbljOEhobit99+w6dPn+TS9+7di+7du2dQq4iIiIiISFMc0UdEREREOd7JC/fhfTRAId3etiHaNa2WAS3STHY/jpwiX7582Lx5s9Jtrl+/Dj8/v3RqUZJr164pnSBtaGiIv/76Kx1bRNo6fPgw/P39M7oZlM4KFiyI8ePHi+b//vvvWL16dYYEiQB4DiQiyknMzMwwd+5c/PfffypNohw6dKjWk0lz586Ndu3ayaUZGBhg3bp1OHDggFqT5cqWLYvBgweL5vfo0QPTpk3LkkEiEhMT4erqKpf29u1bHD16NINaRESU8/To0QMlS5YUzGvUqBFu3bqFTZs2YdiwYfjjjz9QsWJF5M+fH/r6+jA3N0fJkiXRtGlTjB49Grt378aXL1+wd+9e2UqZv7px4wZat24NGxsbfP36Vau2Z4Vr5OjRo2FkZCSY16BBA8yYMQMdO3ZE5cqVkSdPHujr6yNv3ryoWLEiBgwYAB8fHzx+/BitW7cWLOPq1auoXbs2bty4kZaHQSTIyclJaXCvPXv2MEgEERHlGMbGxpgxYwZOnDgBMzMzwW2Cg4PRuXNn/EyjIIW5c+fG2LFj5dLmz5/PIBGZnJeXF+rVqycXJKJw4cLw9/fH2rVrVQ4SAQANGzbEhQsXsGzZMrn7tOvXr6Nu3bo4deqUTttOutGhQ4eMbgIJiImJwYABA9CjRw+5IBEWFhbYtWsXLl26hBYtWqj1ziE5aMuJEydE38UQke5ZWlri1KlTqFu3LgwNDWFtbY19+/YxSIQatm/frnEQmzx58uD06dNo0aIFjI2NUaZMGbi7uzNIBBERERFRFsVAEUREREREyP5BFrLLceQUtWrVSrUDetmyZenUmiTLly9Xml+lShVYWFikU2tIW/Hx8Rg5ciQDReRQDRs2FM2ztbXN8JXCeQ4kIspZatSogQsXLqQaLOLNmzc6qe/du3ey/+vr62PXrl0YM2aMRmUpu6Z26tRJozIzgxMnTuDly5cK6Rs3bsyA1hAR5Vx16tTRWVnGxsbo3r07rl27Bl9fX9EVpE+cOIFatWrhwoULWtWX2a+RZmZmqFy5slZlVKhQASdPnhRcYRYAgoKC0KZNG7mVo4nSQ758+VCpUiXBvHLlyqFq1arp3CIiIqKM17JlS+zfv180SPbDhw/Rv39/SKXSNKm/fv36Sn+mzMXJyQmDBg1CTEyMLK1YsWK4fPkymjRpolGZEokEU6dOhbe3t1w/XHBwMGxtbbF7926t2026VaJEiQzvMyV5YWFhaNu2LXbs2CGXXq5cOdy4cQN2dnZald+uXTvcvHkT1aplnbFVRFldo0aNcP36dcTGxuLJkyfo0qVLRjcpywgKCsLw4cM1DhQBAL/99hvOnTuH6OhovHnzBsOGDdNdA4mIiIiIKF3xLRYRERER0f/L7kEWsuJx7Pv3ekY3I8NYW1srzT958qTcCiZp6dWrVzhw4IDSbUqVKpUubSHdOHLkCD59+pTRzaAMUrp0adG8zLKiJM+BREQ5S+nSpXH27FkUKFBAdBs3NzetB+vfvXsXJ0+elP3s6uqKHj16aFxeVrimamLdunWC6f/++69gAAkiIkobabWKZY8ePfDgwQO0a9dOMP/z589o1aoVjh49qnEdWeEaqYvfr76+PjZs2AAbGxvB/ODgYPTp00dughlRehD7DmaW7x8REVFGaNu2LVasWCGaf+jQITg7O6dJ3SnvPXPnzs3A05nY3Llz8ddff8mlmZiY4NixYyhfvrzW5ffu3VvhcxgfH4++ffvC29tb6/JJdyQSCb+rmUhoaCiaN2+O8+fPy6UXLVoUp0+fRsWKFXVST+HCheHn58dgEUSU6Xl5eSE6Ojqjm0FERERERJkEA0UQEREREaWQnYIsZIfjOBfwOKObkGEKFiwo+79EIhHcZtmyZenSltWrVyMhIUFpW8zNzdOlLaQba9asyegmUAZSNqgpX7586dgScTwHEhHlPFZWVtizZw8MDAwE8x88eIAtW7ZoXH5UVBT69esnO6dPmTIFjo6OGpcHZI1rqrqeP3+Of//9VzBPKpXCzc0tnVtERJRz5cqVK83KzpcvH44dOyZ6LYyPj0fPnj3h5+enUflZ4Rqpq9+vnp4etmzZAlNTU8H8e/fuwd3dXSd1EalK7DuYWb5/REREGaV69epK8xcsWID9+/frvN6UfQjsT8i8XFxcsHDhQoX0ZcuWoVatWjqrZ8KECWjTpo1cWmJiIgYPHgx/f3+d1UPaMzIyyugmEJK+H3369MHt27fl0vX09LB//36UK1dOp/UVKFAAvr6+MDMz02m5RES6kpCQgA0bNmR0M4iIiIiIKBNhoAgiIiIiol9klyAL2eU4cipjY2PZ/9u3by+4ze7du/H+/fs0bUdQUBA8PT0BJA2EaN26teB2HCSRdVy5ckVhpQ3KWUxMTETzUp57MhLPgUREOVPLli2xePFi0fxp06bh06dPGpU9YsQIPHjwAEDSCpJLly7VqJyUssI1VV0bNmyAVCoVzff09OQKRURE6UTZdUYX9PT04O7ujiFDhgjmR0dHo0uXLnj79q3aZWeFa6Quf7/FihWDg4ODaP7q1at1VheRKsQ+35nl+0dERJRZSaVSDBw4UPYOSVdSXpsNDQ11Wjbphr+/P6ZOnaqQXqdOHYwZM0andUkkEmzcuFHhsxAbG4uePXtq/P6TdI/9f5nD9OnTceLECYX0yZMno2HDhmlSp7W1NVatWpUmZRMRacvX1xcvX77M6GYQEREREVEmwkARREREREQCskuQhexyHDlRylXrhw8fjty5cytsEx8fn+ad066uroiIiAAA9OnTB8WLF0/T+ihtJSQkYOLEiRndDMpgenrir4PEVnFPbzwHEhHlXFOmTBENzBMSEoLhw4erXeaGDRuwfft2AEDZsmWxa9cupddDVWWFa6o6IiIisG3bNqXb/PjxAz4+PunTICKiHC7lc1Fa1uHm5oZmzZoJ5oeFhWHAgAFITExUq9yscI3U9e+3c+fOonlv3rzB48ePdVofkTJi38HM8v0jIiLKzMLDw9G5c2cEBQXprMz0uLcnzYWGhsLe3h7x8fEKeX///Xea/P2srKzg6OiokP79+3f0799faSBXSj+6eIdM2rl06RJWrlypkF6kSBHMnz8/TeseNmwYqlevnqZ1EBGpKzw8HLNmzcroZhARERERUSbDt1hERERERCKyS5CF7HIcOVnu3LkxbNgwwbwtW7YgODg4TeqNiYnBunXrZD9PmTIlTeqh9PP333/jypUrGd0MIrXwHEhElLNIJBJ4eXmhQIECgvlHjx6Fl5eXyuUFBATIAmWZmJhg7969yJcvn07amt1s374doaGhAIC2bduibt26gtu5urqmZ7OIiCiNGRoaYseOHciTJ49g/oULF7B27dp0blXW06hRI6X5N27cSKeWEBEREZEq6tevDwsLC8G8V69eoVevXkhISEjnVlFGmDFjBj5//qyQXr16ddGAtrowfvx4wSAU586dw86dO9OsXlIdA0VkrLi4OIwYMUIwcMrkyZNhamqapvVLJBLMmzcvTesgIlLXxIkT8fr164xuBhERERERZTJ8i0VEREREpER2CbKQXY4jJxs/fjwMDQ0V0sPDw7Fx48Y0qXPHjh34+vUrAKB9+/aoWrVqmtRD6SMgICDNV9UgSis8BxIR5SzFixfHhg0bRPMnTJiAjx8/plrOly9f0KNHD8TFxQEA1q1bh9q1a+usndlNyt/52LFjMXr0aMHtrl69itu3b6dXs4iIKB2UKlUKCxcuFM1ftGgRwsPD07FFWY+pqSly584tmv/t27d0bA0RERERpaZSpUr4559/BCfqA8DZs2cZQDoHePToEdzd3QXzhg8fnqZ1V6xYEc2aNRPMmzlzJqKiotK0fqLMbv369Xj48KFCurm5OUaOHJkubejWrRuqVKmSLnUREaVm79692LJlS0Y3g4iIiIiIMiEGiiAiIiIiSkV2CbKQXY4jpypZsiT69OkjmLdu3TpER0frtD6pVIpVq1bJfp46dapOy6f09ejRI9ja2somSRJlNTwHEhHlPL1790bPnj0F80JCQjBs2DCl+8fHx6NXr1749OkTAGDw4MEYOnSoztuZXfj5+ckG3ZYvXx42Njaws7ND/vz5BbdXFsiDiIiypmHDhsHS0lIw7/v371i3bl36NigLMjMzE83jatREREREmU+nTp2wYMEC0XwXFxds3749HVtE6W3JkiWQSqUK6Xp6eujWrVua1y9Wx4cPH/jZoxwtLi4OK1euFMzr1KkTzM3N06UdEokEAwcOTJe6iIiU8ff3R79+/TK6GURERERElEkxUAQRERERkQqyS5CF7HIcOZXYqjVfv36Fl5eXTus6duwYHj9+DACoU6cOWrRoodPyKf08ffoUbdq0QVBQUEY3hUgrPAcSEeU8GzduRJEiRQTzjh8/Dk9PT9F9J0+ejIsXLwIAatasiY0bN6ZJG7OLlJN/R48eDYlEAhMTEwwZMkRw+127diE0NDS9mkdEROnAyMgIY8aMEc1fvXo14uPj07FFWUtiYiICAwNF8wsXLpyOrSEiIiIiVc2ePRu9evUSzR82bBiuXbuWji2i9PL161fs3r1bMK927dooWrRomrehY8eOonkuLi5pXj9RZuXt7Y2PHz8K5tnZ2aVrW/r06QM9PU63IKKMExAQgM6dOyMmJiajm0JERERERJkU31wQEREREakouwRZyC7HkRNVq1YN7dq1E8xbsWIFEhMTdVbXihUrZP8Xm5ydFgIDA+Hq6oqePXuiUqVKyJ07NwwNDVGkSBFUq1YNgwcPhq+vLyIjI3Va7+XLlzFv3jw0bdoUZcuWhYWFBYyNjVGkSBHUqVMHjo6O2LNnD6KionRaLwDcuHEDTk5OaN++PcqVK4f8+fPDwMAA5ubmKFGiBJo1a4aJEyfi1KlTav+NT506hUaNGokOonj37h0uXbok+O/bt29Ky7527RpGjx6NAgUKQCKRKORHRERg6dKlqF69OkxMTFCwYEH07t0bz58/V+sYAODly5dYsmQJOnbsCEtLS5ibm8PQ0BD58+dH7dq1MWjQIOzcuRM/f/5Uu2whsbGx8Pb2RtOmTSGRSODs7Cy4XXR0NLy8vNChQwcUKVIEhoaGKFSoENq0aQMvLy+uFqpjOeEcSERE8goWLAh3d3fR/IkTJ+LDhw8K6d7e3li7di0AIG/evNi3bx9MTEzSrJ1Z3fv373H48GEAgLm5OQYPHizLGzlypOC9XmRkJLZt25ZeTSQionQycOBAGBoaCuYFBgbi3Llz6dyirOPly5dK3wNUq6b7967379/HvHnz0KZNG5QsWRJmZmYwNjZGoUKFUL9+fQwfPhz79+9XexD5y5cv8eTJE7X/xcXFKS33+/fvKpWj7nu/GzduYM6cOWjRogVKliwJU1NTmJqaokyZMmjUqBHmzp2Lq1evqlXmr968eYMFCxagQoUKkEgk8Pf3l8uXSqXYtWsXmjVrBgsLC5ibm6N58+Y4ffq0VvVmNZaWlpBIJGr/S82bN29UKmfQoEFKy/H394ednR2MjY3RvHlz0e1Onz6Nfv36wdLSEsbGxsiTJw/q16+PxYsXIyQkRL1fChERZQmenp6oVauWYF5MTAy6du2Kz58/p3OrlEtMTMSZM2cwbtw4NGzYEEWKFIGRkRHMzMxQokQJtGjRAjNmzJAFUtWFDx8+wMnJCSVKlIBEIsGbN28Et3v79i3mzJmDOnXqwMLCAiYmJrCysoKDgwNu3ryps/Zoa/fu3aLB8Bo3bpwubbC0tESxYsUE8548eYJbt27JpYWGhmp0r67K51eVct69e6fW8YWFhcHLywv9+vVDtWrVkDdvXhgaGqJgwYL47bffYGdnBy8vLwQHB6tVbkpxcXE4fPgwevToIXqf9/79e4wdOxaWlpYwMjJCmTJlMGnSJISFhWlcryZiYmLg4+OD0aNH4/fff0fJkiVl/d558+aFtbU1OnXqhOXLl+PZs2da1/fo0SMMGzYMpqamovfKHz9+hJOTE37//XfkyZMHZmZmsLKyQocOHeDh4ZFhwYLFAj8bGBigVatW6dqWkiVLpvqskZrPnz9jzZo16N69O6ysrGTjYPLmzYtq1aqhT58+2Lx5M75//66bRgP477//0Ldv31Sffx49eoRZs2ahdu3ayJ8/P0xNTVGuXDn0798fFy5cUKkuqVSKEydOYNCgQbC2toaZmRlMTU1RsWJFDBs2DHfu3NHqWOLj4+Hr64vmzZsrHb8BAGfPnsWwYcNgbW2NXLlywcLCAtWqVcPEiRPx4sULleqLioqCp6cnOnfujFKlSsHY2BgWFhaoXbs25s6diy9fvmh1PJlBZhoTEx4eDnd3d9SsWRMSiUQnfU9SqRR+fn6YPHkyGjVqhMKFC8vuk0qVKoWWLVti7ty5ePjwodZ1AYCfnx9mzJiBli1bwtLSEnnz5oWBgQEsLCxQpkwZtG7dGjNnzsSlS5fULnv79u1o1aqV6DXr+fPnouO+VDmHq/pZUFd6n/cSEhJw5MgRdOjQAfr6+qLn7YSEBOzfvx/du3dHiRIlYGRkhPz586Np06ZYt25dmowLJCIiIiJKDwYZ3QAiIiIioqzk5IX7AJKCKqSU/HNyfmaXXY4jJ5o6dSpOnjypkP7ixQvs378fPXr00LqOmzdv4vz58wCSBqf07NlT6zJT8/nzZzg5OWHbtm2Cg8q/ffuGb9++4cGDB9i2bRuKFi0KJycnODo6Ql9fX+N6T5w4AScnJ1y/fl2WZm5ujkKFCuH79++yem/duoUtW7bAwsICEyZMwJQpU5A7d26N6wWAixcvYtKkSbhx44ZgfkREBCIiIvDp0ydcuHABLi4uKFeuHBYtWpTqKhlv377F/PnzsW3bNkilUtHtPD09RVfi9vT0VOg4+/DhA/755x94eXnhyZMnouXeuXMHPXr0wMuXL2VpMTEx2LNnD06dOoVLly6hatWqSo8BSIqK7+TkJDqoPjg4GMHBwbh9+za8vLxgbm4OR0dHzJ07F/ny5Uu1/F+9fPkS7u7u8PT0TLUzct++fZg0aZLCgKjv37/j9OnTOH36NNauXYtDhw6hZMmSareFhGXXcyAREYnr3Lkz+vfvjx07dijkhYaGwtHRESdOnJCl3b9/H46OjgAAiUSC7du3o1y5cunW3qzI1dVVNphvwIAByJMnjyyvXLlyaNu2reD1183NDePHj0+3dhIRUdorWLAgGjVqpDAJPtmePXvQpk2b9G1UFnHw4EHRvEKFCqF27do6q+vEiRNwdnYWXdn6+/fv+P79O65du4ZNmzahQIECmDBhAiZPngxTU9NUy2/VqhXevn2rdrtev34NS0tL0fz169dj/vz5qZbj5+endBJLsjNnzmDWrFly7/VSevfuHd69e4f//vsPCxcuRIsWLbBs2TLUrVs31bIB4OfPn9i7dy+8vLxw4cIF0XdsQUFBsLOzU3h/df78eVy4cAHbtm3DgAEDVKozq7tw4QL27duHlStXigauBQB9fX0sXrwYffv2RfHixVMt19LSElFRUXj79i1mz56Nffv2yeU3adIE8+fPR/369RX2DQ4OhpeXF9zd3ZW+zwSAu3fvYtSoUfjvv//k0mNjY3Ht2jVcu3YNLi4u8PX1RbNmzVJtsy6+R87Ozip9bwYOHMhAbkREWjAzM8OhQ4dQr149fP36VSH/06dP6N69O/z9/WFkZJQBLfyf2NhYbN26FUuWLMH79+8V8uPi4hAVFYVPnz7B398fS5cuhbW1NZycnGBnZ6dSkKaUEhMTcerUKbi5ueHYsWNKJ4RGRERgzpw52LBhg0J/76tXr/Dq1St4enpiypQpWLp0qdpt0TVfX1/RvAYNGqRbOxo0aIADBw4I5u3du1fuWeLAgQNyQV5Vpcq9QuXKlVMtp1mzZqLPiymFhoZi0aJF2LhxIyIiIhTyf/z4gR8/fuDx48fw8fFBnjx5MH36dEyYMEGlZxYAsv5hb29vBAYGim7n7e2N4cOHIzw8XJb27t07rF69GmfPnsV///2HXLlyqVSnpuLj47F8+XKsWrVKtA86NDQUoaGhePbsGY4cOYLp06fDxsYGa9asgZWVlVr1nTp1CqtXr8apU6dEt0lMTMSiRYuwePFiREdHy+Ulf1+PHz+OGTNmYOXKlejfv79abdDGx48fRZ/zqlWrBjMzs3RrS7Jx48ZptN+jR4/g7OyMffv2CS56kPx3f/DgAXbv3o0xY8agb9++WLBgAUqUKKF2fZGRkdi5cyc2bNiAu3fvKt3269evmDhxInx8fBTa9vr1a7x+/Rr//PMPevXqha1bt8Lc3FywnMuXL2PkyJG4f19xnNnz58/x/PlzbNmyBZMmTcLSpUvVGt/z6dMnbNq0CZs3b8anT5+Ubnvjxg2MHTsWV65cUch78OABHjx4gA0bNsDZ2RmzZs0SLcfDwwMzZsxQOK/Exsbi9u3buH37NlxcXODu7g57e3vRcqZMmYKVK1emcoRAmTJlRAMvqVOOqs+EmWlMzIMHD+Dq6oodO3bobFEYANi5cyfmz58vuIhNXFwcPnz4gA8fPsDPzw8LFy5Eu3btsGHDBo36Eg8cOIBZs2aJvm8IDw9HeHg43r17h7Nnz+Lvv/9GtWrVsGrVKrRu3Vpp2Q8fPsSsWbNkgd7FLF68GIsXLxbMU/aO7fXr13B3d4eHh4fS66i60vu89/nzZ2zZsgWbN28WvDdOyd/fH2PGjFEIEBIcHIyLFy/i4sWLcHFxwaFDh1Qa00ZERERElJnoZXQDiIiIiIiympMX7sP7aIBCur1tQ7RrqvuV4dJKdjmOnKZly5aiA8uXL1+ukzpSljNx4kStAjGoYs+ePfjtt9+wefNmSKVS9OzZEx4eHjh9+jSOHDmCuXPnolSpUnL7fPnyBSNHjkTHjh016jCMi4vDuHHjYGNjIxtk8Pvvv8PPzw+hoaF49eoVQkNDcenSJblBvz9//sSCBQuQJ08e0ZXrDAwMYGNjo7T+OXPmoHnz5rIgEXp6erCzs8POnTtx7tw5HDhwADNnzkSRIkXk9nv16hX69OmDOXPmKC3fyckJnp6eSoNEqCoyMhL//PMP/vzzT5QpUwYzZ85UOqj6ypUraNasmVyQiJRCQ0Mxc+bMVOscOXIk/vjjD9kg+woVKmD+/Pk4duwYTp48iU2bNqFbt25yK52Gh4dj9erVsLa2xvHjx1U6vvj4eBw4cABt27ZFhQoVsHz5cqUd4rGxsXBwcECPHj1SXTXn1q1baNOmjU47tXO67HgOJCKi1K1du1Z0cNDJkyexdetWAEBISAi6du0qW4V6xowZ6NixY7q1MyuKiYnB5s2bZT+PGTNGYZvRo0cL7vvkyROcPXs2zdpGREQZo127dqJ5KYMz0f/ExsbKXU9/NWrUKJ1Mgvvx4we6d+8OGxsbWZCImjVrYtmyZTh58iSOHTuGDRs2oE2bNtDT05Pbb+7cuahatSquXr2aaj23bt3CsWPH0KFDh1S3nTZtGj5+/AipVKo0SASQNOE9JiYGz549Q6dOneTyChYsCE9PT3z8+DHVCfjR0dFwcHDAn3/+ievXr6N48eKYMmUK9u7di3PnzuGff/5Bv379FCZx+vn5oWHDhnBzcxMtOzExEadPn0b//v1RtGhRDBkyBOfPnxd9x/b9+3c0adJENMipVCrFhAkTBAPjZkelS5fGxIkTcefOHVhbW4tuN2zYMEybNk22GrkqTExMYG1tjSVLlsilN2nSBGfOnEGLFi3kJoxdvXoVgwcPRokSJTBx4sRUg0Rs2LABv//+u0KQiF8FBgbCxsYm1UlXDx48wL179zB//nwUKFBA6bZ6enrYtGkTgoKCFL5Hc+fOxdOnT9G2bVuF/XLnzg0nJyc8efIEmzZtUloHERGlrlSpUti/f79oIIiAgACMHDkynVsl7969e6hTpw5GjRqF9+/fQyKRoEOHDti0aRPOnDmDffv2YcmSJahevbrcfk+fPoW9vT3atGmj8iro3759w99//43y5cvDxsYGhw8fVhok4uHDh6hduzZcXFyU3vtIpVIsX74cc+fOVe2g00hUVJRo4DUAqFSpUrq1RVmABj8/P7mf+/fvjwcPHmD58uXInz+/0nLLly8Pf39/REZGqjR5OCEhAcHBwfDx8VGYiN+rVy9cu3ZNpWdCPz8//Pbbb1i+fDkiIyNhY2MDV1dXnDp1CidOnMDixYsVfr+hoaGYNWsWmjZtis+fP4uW/fnzZ6xYsQLVqlVD7dq1sWbNGqWTWzds2IB+/frJBYlI6d69e0qfD3Thy5cvaNiwIWbNmiXrgy5UqBDmzJmDI0eO4MyZM/Dy8oKdnZ3cc5xUKsWxY8dQt25d0YUnUoqOjsaWLVtQtWpVtGvXTmmQiOjoaHTs2BHz5s1TCBLxq8DAQAwYMAAjR47UydgDVRw6dEi0rvQM4qKN+Ph4ODs7o3r16vD19UViYiKKFy+OGTNm4NChQzh9+jQ8PT0xYMAAue9bbGwsPD09UalSJbUCwT179gwTJ05EiRIlMGzYsFSfV/z8/FCjRg3s2rVLcCJ3Snv27EH79u0RGxurkLdixQo0bdpUMEhESlKpFCtXrlQ54Mb58+fRq1cvlClTBvPnz081SMSaNWvwxx9/CAaJSCkuLg6zZ8/GtGnTFPKioqLQu3dvODg4pDppPjw8HP369YOPj4/oNsnnwBcvXsDNzQ2FChVSWqaycn7+/In79+9j2bJlcoG+VZWZxsTExsbC29sbTZo0QbVq1bBx40adjaf5/PkzWrdujX79+uH58+cwNjaWBTo5deoU9u3bh0WLFin0N548eRI1atQQDdokJD4+HoMHD0a3bt1k7xuMjIzg6OiIPXv24Ny5c/D19cX48eMVFiG6f/8+2rRpk+pz/OjRo1MNEqGuhIQEHDlyBDY2NihfvjyWLl2qsyAR6Xnek0qlOHPmDHr06IHSpUtj3rx5SoNESKVSzJkzB61atVIIEvGrV69eoXXr1koDoBIRERERZUYGGd0AIiIiIqKs6OSFpE4ue9uGcunJPyfnZ3bZ5ThymqlTp6JPnz4K6deuXYO/v79KK+6JefPmDfbu3QsAyJcvHxwcHDQuSxWLFy/G7NmzASQFatixYwcqVqwot42trS1mz56NGTNmwMXFRS7vxIkTaNKkCS5duiS6gsGv4uPj0alTJ7lVkbt27QofHx+5oAMSiQSNGjWCn58fHBwc4OnpqVL5CQkJoitcAMDkyZOxatUq2c9GRkbYt28fbG1t5bbr0qULZs6ciZ49eyoM5Fi0aBHq168vOvFx27ZtCh1oQqvYOTk5wdnZWbStDx48QMOGDUUHz/zq1atX6NixI8LCwpRu9/r1a9G8Hz9+oE2bNrh16xaApN/P8uXLMXr0aIUJ+46Ojnj58iX69u0rN9EhMDAQtra2WLt2reBkx2Rr167F0qVLUx1YkCw0NBQdO3bExYsXVdoeAB4/fox58+Zh9erVKu9DymWncyAREakmb9682LJlC9q3by+YP2nSJLRu3RqjR4+WBatq2bIlFixYkJ7NzJJ2794tGxDYunVrwYHpNjY2sLS0FFzVytXVFa1atUrrZhIRUTqqW7euaN6nT58QGBio8eD27Grp0qWCqxQCQOHChTFhwgSt63j9+jVatmwpux7nzp0bbm5ugs/Ho0aNwq1bt2Bvb4+nT5/K0l+9eoVmzZrB29sb3bp1E60rf/78sLGxgY2NDVxcXDBx4kTB7erUqYOlS5eqdRxGRkaoUKEC1qxZIxvsbmBggCNHjqg04SckJARt27bFtWvXIJFIMH36dMybN09h1eG+ffvCyckJ3bp1k5uwEh8fj5EjRyIwMFBhcmJiYiIqVKiAV69eqXQssbGx6NixIx49eqR0u+DgYISGhqJgwYIqlZsdFCxYEHv37kXdunURExOjkP/bb79pXHbKCSQGBgbw8vKSm9B75swZTJ06FXfu3FGpPKlUiokTJ2LNmjUqtyEyMhIODg64du2a3GS+lMzNzVGtWjVUq1YNQ4cORZs2bUQnI9SoUQOOjo6Cefr6+qhYsSIWLlwo9464WLFiOH36NKpUqaJyu4mIKHV//PEHXF1dRfsGPDw8ULNmTYwdOzadW5bUJ9qtWzfZpG5ra2vs3LkTderUUdh2xowZ8Pb2xqhRoxAaGipLP3PmDH7//Xf8+++/ooEQgoODMXLkSBw4cEBwUrAQf39/dOnSRa6u1CxZsgTdu3dHrVq1VN5Hl65evao0oEWFChXSrS2/9o2ndOvWLcTExMDY2BhA0r1BlSpVUKVKFdjb26N169Z4/Pix4L6rV69ONQhbSnp6esibNy969eqF48ePw8vLCwDQqVMn7N69W6UAX9u3b4eDgwPi4+NRoUIF7Ny5E/Xq1ZPbpl27dpg+fTpWrFiBmTNnyk1Sv3HjBurXr48rV66gePHicvtt3boVw4cPVxqwJKWDBw9i3LhxqQY3UNZvra3AwEA0b95c7rmsZs2aOHXqFAoXLiy37YABAzB+/Hh06NABQUFBsvSQkBB0794djx49Qq5cuRTq+Pr1KzZu3AhXV1eVJvsmJCTAzs5O5UUXkiUH1HB1dVVrP02IBeID0jeIi6aioqLQtWtX2f27RCLBzJkzMXfuXJiYmMhtO2jQICxfvhyDBw+W+5uEh4dj8ODBePToEZYtWyZaV0BAAJycnHDmzBmVA3kcPnwYPXv2VPkcDwCXLl3C/PnzsWjRIlna+PHjsXbtWpXLAICNGzeiY8eOokFKd+zYgaVLl6Y6kTulGTNmqP1uYvny5fjzzz/x559/Akh6zmzfvj0uX76schlSqRTDhw9Hs2bNULRoUYV8iUQCU1NTWFlZwcrKCo0bN0adOnUEn5GVkUgkMDc3R9WqVVG1alVUrFgRXbp0UXn/zDImJjExEbNmzYKHh4fOAhOkdO/ePbRv3152nPXr18eOHTsEr+cTJ05E27Zt5Y4xPDwcvXr1go+Pj9J3ZkDS375Pnz6ycSVAUj/mv//+q3DN69GjB2bMmAEbGxvcvn1browxY8agbt26ogul+Pv7K6QJXYs9PT0xaNAgpW0GgJUrV2Lt2rWpBv/QRHqe93bv3o25c+fixYsXKrUtNjYWffv2lft7pebr168YM2aMWsFDiIiIiIgymnCPJRERERERperkhfvwPhqgkG5v2xDtmlbLgBZpJrscR07Ss2dPlClTRjBPWWeJKlavXi0bXDFy5EjBwQa6sn79elmQiLZt2+LChQuiA2GMjY2xevVqweO7e/cuhgwZonK9w4cPlwsSUbJkSXh5eckFiUhJIpHA3d0dVatWFW1byn9mZmZo2LCh4LYHDx6UCxIBANOnT1cIEpHMwsICe/bsEexYnjVrluA+ulSxYkX4+PggMDAQ4eHhWLdunei2cXFx6N27N6KiorBnzx4EBwdj8eLFgisvNWnSRLCMnz9/omXLlrIgERKJBLt27cK4ceMUgkQks7KywoULF9CyZUu5dKlUirFjxypd0VMikcDOzg7btm3DkiVLFCL5/9q2du3a4eLFi8iXLx+mTZuGgIAAhIWFITIyEjdv3kS/fv0E91V1YA6pJrucA4mISD3t2rUTnTwVFhaGevXq4dixYwCAEiVKYPfu3aL3D/Q/GzZskP1fbJKDnp4eRowYIZh36NAhlQcYEhFR1lCzZk2l+apOvs4pdu/eLRqEU09PD//88w/y5s2rVR0fP35E06ZNZUEijI2NcfLkScEgEclq166NK1euKLzPiomJQe/evVVaCRgAJkyYgL59+wrmlStXTrUDEJByJevRo0erFCQiLi4O7du3l6387OHhgSVLligEiUhWvnx5XL58WbBsJycnHDlyRC5NT08P7u7uePfuHaKionD27Fnky5dPtD1Tp07FlStXMHfuXISEhMDX1xfFihVT2K5SpUo5KkhEsqpVq4p+N1ILrqFMytWUO3fujLJly8rlGxsbo3r16ti0aRPc3d1hbW2ttLwxY8ZgzZo1MDAwQL9+/XDixAkEBgYiJiYGL168wPz58wXfb968eRNHjx5Vqc3FixfHyZMnBT8fAPDu3btUJwulXPE8T548+PfffxkkgogojQwZMkTpiueTJk2Cn59fOrYoadJ0ly5dZEEirKyscPHiRcEgEcns7e3h5+cHCwsLufT379+jZcuWopME8+TJA6lUigULFmD79u2wt7dX2jZ/f3906NABoaGhqF27Ntzd3fHixQvExMTgx48f2Ldvn2D/b2JiYoYGeVV2P5I7d265la7TmlifF5A0ufHZs2eCecWLF4evr6/gvQqgm/t1MzMzuLq6qhQk4tChQxg8eDDi4+NRs2ZNXLt2TWHCbDI9PT1MmzYNu3fvVsh7//49evbsqRDIo3Xr1rh06RLCwsLw7ds3DBw4ULQtb968waBBg1C+fHncuHED7969E+3HFeu31gVHR0e5IBF6enrw9fVVCBKRrEGDBrKADCm9e/dOMB1IClzo4eGBWrVqiY5nSGn+/Pk4dOiQikcgz83NTa2Jtpq6e/euaJ6y70tmEB8fj86dO8sFeVu5ciUWLVqkMFk6WeHChXH06FHBz+jy5ctlY2qEhISEQCKRYP78+Zg/f75CgJVfHThwAD169EB8fDw6dOiA/fv34/Xr14iKisKLFy/w999/iy7QsmbNGlkQk+QgERKJBO3atcOuXbvw4sULREdH49OnT9ixYwesrKwEy1F2PK9evUKNGjXw999/Y/z48aK/s2RTp07F0qVLkStXLgwdOhT+/v748uULIiIicOvWLYwYMUL0/DVv3jwAQEREBNq1a4fLly/DzMwMAwcOxL///osPHz4gOjoaz58/x9KlSwV/L6GhoSqPT6hSpYosMIU2OnbsiDx58qi8fWYZE6Onp4d3797B3t4e69atw8iRI0UDL6rrwYMHaNGihVyQiDNnzogGfTI1NcX27dsVPhvx8fEYNGhQqgGE1qxZo3AuXLlypeg1r2jRojhw4IDC+6u4uDg4OTkprUuXPn78CBsbG6xZswZTp05N9fulqvQ+7+np6aF169bw8PDAmjVrRN+1AEm/4169emHv3r0wNTXFqFGj4Ofnh+DgYERHR+Phw4cYP3684Hni4MGDuHfvnrJDJyIiIiLKVBgogoiIiIhIC9klyEJ2OY6cQl9fX3QlvxMnTuDBgwcalRscHAwPDw8ASQNq03I1nNu3b2Py5MkAAEtLS+zZs0e2EooyU6ZMQYsWLRTSfX19BQeS/Or48eOyY0w2atQohUFSvzI0NBRcDUEikeDkyZOIjo6W/YuIiJCtiPiradOmKaT16NFDad25c+fGsGHDFNIfPHggWzE7rRgZGcHGxgYFCxZErly5MGbMGLRu3Vpw2yVLluD27ds4ePAgevbsibx582LmzJm4cuWK3EC15s2bY8mSJYJlODo6ynW0DR06NNVo/cntPHDggMLAcCBpsv+VK1cE9xs7dixWrlyJgQMHYsaMGXIrYKQUFxeHbt264cqVKxg6dChevXqFpUuXokGDBrCwsICpqSlq166NHTt2YNSoUQr7x8TEYPv27akeB6kmO5wDiYhIMytXrhQdCJo8AM3Q0BC+vr5c6VwFV69exfXr1wEAZcuWFQ1eBgAODg6C9+vx8fHYtGlTmrWRiIjSX4ECBZQGzXvy5Ek6tibzSkxMhIuLC/r37y+3Am4yAwMDbN26VetJAPHx8ejduzc+fPggS5s3b55okNKU8ubNixMnTihMIIiPj0evXr1UXjl38eLFMDAwUEh/9eqVSvsLSV4x0NDQENOnT1dpn9mzZ8ve8UyaNEml1RItLCywbds2hYHpUqkUgwcPRnh4uFx669atUapUKZiYmKBly5ay95e/On/+PNatW4d58+bhr7/+Qp48edCjRw/cvXsXvXr1kg0wt7S0xK5du1Q6vuxo8uTJKF++vEL6oUOHBL83qkg5GUPonWmTJk3g5eUFR0dHDBs2TOlENmdnZ2zcuBGNGjXCgwcPsGPHDrRr1w4FCxaEkZERrKysMG/ePPzzzz+C+ysLUPurkiVLwsfHRzCY3Y8fP7BmzRrRfcPDw2XvU/X09LBr1y6VJgESEZHmVq1aJdoflnwvlRzEK619+PAB9vb2ciu/e3l5qfTuq1atWti5c6dC+ufPn9G5c2eFifhA0rXGx8cH06ZNQ//+/fHPP/+gbt26guXfu3cPnTt3hrGxMXbs2IGbN29i2LBhsLKygpGREfLnz49u3bohICAApUqVUtj/8OHD+PbtW6rHkRaU9bGKTeJPK6n9LZV91qpUqSIaMEHT+/WIiAjZKutDhgxJdeI5kPQ5HTJkCBITE5E7d24cOXJEpYB5PXv2FLyv/++//7By5Uq5tDJlysj6ZgsVKgQ3NzfRPv6hQ4fCzMwM586dQ506dVCqVCns2LEDu3btkk0olUgkGD9+PHr37p1qOzVx+fJlhYAMNWrUELw/TkksYP7BgwcFt1+0aBHev3+PU6dO4f79+1i+fLnSNiX3h9eqVQuurq54/vw5oqKi8PHjR+zZsyfVwBkjRoyQC/yna+Hh4Uo/86VLl06zunVh9uzZOH36tOznNm3aiPZrpySRSODh4YH69esr5C1evFj0uaZ9+/Y4deoU5s6di3nz5il9/jl48CB69+6N+vXrywLfde3aFZaWljAxMYGVlRWmT5+OK1euCH5/IyIisG/fPixevBhr165FpUqVEBAQgBMnTsDOzg5WVlYwNjZGsWLF0K9fP9y+fVvwueXWrVtygfBScnJyws6dOzF9+nS4uLjIgjkImTZtGlasWIEhQ4bg1atX2Lx5M5o1a4YiRYrAzMxM9hnfsWOH4CTwK1eu4PHjx+jVqxf+++8/2Nra4unTp9i2bRv+/PNPlChRAsbGxihfvjymTZuG//77TzBYhIeHh+D1VIjYwjnq0NPTS/U8klJmGhPj7e0NFxcXjBkzBhs3bhR8plfX9+/fYWtrKwtiYmZmBm9vb9GAJ8ksLS3x22+/KaT//PkTS5cuFd0vMjJSMChmauO+ypQpg549eyqknzp1ClFRUUr31ZVVq1bB1dUV48aNw7Jly0SDe6orvc97vXr1gqurKwYPHoxx48Yp7aMcNmwYDh06hE6dOuHFixfYsGEDmjdvjrx588LY2Bi//fYbXFxcRP/m6rz3ISIiIiLKaAwUQURERESkpewSZCG7HEdO4eDgILqinaoR63/l5uYmGxzdv39/FC1aVOP2KRMdHY0+ffrIBjQtWrRIadT6lCQSiWhE9UWLFkEqlYruK5VKBQd3K5sQl1KLFi0UVqCTSqUqTya/desWnj9/rpCuyrHb2NgIpmuz+p6mfv/9d8H0xYsXY968eQoD52rVqoUbN27g8ePHeP78Ofz8/AQHFuzevRs+Pj6yn42MjNTqmMydOzdWrVqlkJ6QkIAhQ4akuiofkLT6gpD169fj/Pnz2L59OzZv3qx0YNOCBQsEV7I8c+ZMqvWT6rLyOZCIiDRnYWEBDw8PpSvYOTk5qTRxkoB169bJ/j969GilqzcVLFgQvXr1EszbvHkz4uPjdd4+IiLKOCVKlBDNCw4OTseWZD6JiYk4deoUmjZtiokTJwpeA4sXL44jR46oFMggNStWrMDly5dlPxcqVEilwdbJSpYsKfh+JTw8HEOHDlX6Li1Z6dKlBQez37p1Sy6AhTqSA752795d6cp/yc6dO4cVK1YASApmos6Ki9bW1rCzs1NI//HjB1xdXZXuK/YebMmSJWjZsqXC77ZQoULw8fHBhw8fcO/ePTx79gw1a9ZUua3ZjaGhIebOnauQ/unTJ41WMX7z5o3sHZulpaVKgViqVq0KS0tLhfRbt25h/vz5GDNmDPz9/RXe+6bUs2dPwYkLfn5+agW8aNKkCWbNmiWY5+zsLDphdc6cObLvmrOzM9q3b69ynUREpBl9fX3s2bNHdCLm9+/f0aVLF0RERKR5W4YOHYrv37/Lfra1tUWjRo1U3r9jx47o3LmzQvqdO3dEA7unJJFIRPtS+/fvjxIlSihdYRwA8ufPL3gNTEhIgJ+fX6ptSAvJq44LUbXfWlcKFiyoNP/jx49K8ydPniz4vlRsYYPUHDhwAJGRkQCS3hmqon///rJJutOnT0fJkiVVrk+sP3jVqlWydggxMTFBtWqK41iuXLmCc+fOwdvbW+HZ1s7ODm/fvsWtW7fw+fNnuLi4qNxOdaXs906m6mdL6H5PbFzAr/3SEyZMEJwgHRcXh+HDh0MqlWL+/Pm4ceMGRowYgfLly8PExATFixdHz549cf78eaxYsUL0HfyPHz807otVxfPnz5U+p6Z3IBd1BAQEKATqEJuUL8TQ0BAbNmwQfE8/evRouWuBmIYNGwr+jh49egQ7Ozs4Ozvj/PnzSp9Tq1SpgtWrVwvmLVq0CLNnz0bPnj1x8+ZNweekZBYWFqKTrFUdOyF0/QKALVu2YPPmzTh27Bi2bt2q9HPRt29fDBgwQDDPxsYGJ0+exNKlS3HkyBGl565q1aph9uzZCumhoaGygNypURaYVR3alJOZxsR07dpVre2FjBgxAm/fvpX9PHv2bJQrV06lfevVqyeYnhzcVMjJkycRGhqqkK7puK+4uDi8ePEi1X3Tgi5+/5nhvNemTRsYGRkppB84cABeXl5YsmQJDh06pDTw1cSJEwXfh3OcFxERERFlJQwUQURERESkA9klyEJ2OY6cwNzcHCNHjhTM2717N96/f69WebGxsbKJYhKJRHS1PF3YuXMnnj59CgDIly+f4EBzZX7//XfBgQkPHjzA+fPnRfe7ceOGwqqXhoaGqFy5ssp1C02Oe/DggdyAfTFiA32VTXRMJtbGtFytQ0z+/PkF08uXL4+ZM2eK7lepUiXRAXVRUVEKq0fa2tqqtEJNSl26dEGbNm0U0h8/fozFixenun+pUqUEOyCjoqKwf/9+9O/fP9Uy8ufPj+bNmyukP3jwINV9SXVZ+RxIRETaadmypdIByqdPn1ZpwmNO9+3bN/j6+gJIWmHJwcEh1X2EVokCNJ/oR0REmZfYqqwABAdDZ0eJiYkIDQ3F+/fvcfPmTWzduhWjRo1C2bJl0a5dO8F3QRYWFpg8eTIeP36Mdu3aad2GL1++KLzP6N+/v+BgfGXGjBmDKlWqKKSfO3cO27ZtU6kMofsvqVSa6mqRQvz8/GTBVEeMGKHSPk5OTrJ7PDs7O7Un74lNXtmwYYPS/cTeg0kkEmzatEn0vV7x4sVRrVo1GBoaqtXO7KhPnz6CK4grW+lYzNatW2Wfg6FDh6r0XhWA4IrMP3/+xMyZM7Fu3ToYGBikWka3bt0U0iIiIvD69WuV2pBs3rx5qFOnjkJ6VFQUhg8frpB+/vx5rF27FkDSs5DQxCQiIkob+fLlw+HDh0XvO+7evYvBgwenaRuOHTuGU6dOyaVpsvr26tWrYWJiopC+cOFCWZ+tMkLX0uT0ixcvomzZsqmWIXQtBTKu/yw5cLgQY2PjdGxJ0rs5ZVILSGJtbY1WrVoppPv6+ioNtCAmeWJ38+bNUalSpVS3P3v2LPz9/QEkBVlR5T1jSmXKlEGRIkUU0gMDA7Fnzx6l+wrdr8fExGDo0KGC/bVA0viAWrVqCdapS0JjA1S9fxUaGxAUFIS4uLhU9zUwMBD8zh48eBBPnjzB1q1bMW/ePNGgwcn9pMmB+oR4eHgo/Q5pI7XglOo+D6cXqVSKCRMmyPVN1K5dG3Xr1lWrnDp16sDR0VEh/du3byr3Xwudk3/8+AFPT0/MmjVLacDoZPb29oLBCN6+fYvJkyfDx8cn1XMXADRo0AClS5dWSFf13C824T8mJgaXLl0SXXDlV2LXzk+fPsHHxwfTpk1TqZzevXsLpqt6PKr87lWh6rlESGYaEyMU1FEdZ86cwb59+2Q/GxsbCz5Xi6latapgurLzkNi4L1VkpnFfgPj9naoyy3nPyMhIMAhtWFgY3NzcMGPGjFTLMDAwQKdOnRTSnz9/LlsEi4iIiIgos2OgCCIiIiLK1Fo2VH0Cd0bLLkEWsstx5ARjx44VHKgSFxcnGuFfzM6dO/H582cASRP0VRn0oak1a9bI/v/nn3+qPWDa1NRUNHq9smjeR48eVUjLkyePSgOBk4l1aKmy2o3YQLJChQqptK/Qyh8ZMTlDbPDFihUrNB78vnXrVrx7904uTWx1iNSIdeKvW7cu1YFUenp6ggMexo8fL7pakhChyQefP39Wa4VBSl1WPQcSEZH2li5dKhqA6vz586lO+CNg06ZNssFN/fv3V7o6VLIGDRqgVq1agnkbN27UZfOIiCiDKZt4ERYWlo4tSX9eXl6QSCTQ19dH3rx5Ubp0adStWxdDhw6Fq6urwvsLIyMjNG/eHOvXr8fHjx+xYsUKna1AvGLFCvz8+VMuTZP3JQYGBpg4caJg3rJly1QKstWoUSPUqFFDIX3Tpk1qv+9wd3cHkDRAvlmzZqluf+vWLVy6dEn2c4cOHdSqD4BoMNK3b98qXblR7Lswfvx4lVeozOkMDQ0xadIkhfSAgAClQX9/lZCQAA8PDwBJn+khQ4aovK/Qd7Ju3boqBZZNJhZs5MOHDyqXASS1fdu2bYKrXZ49exb//POP7OewsDAMHDgQUqkUBQsWxD///KOziUVERKSaypUrY+fOnaLnX19fX7VWTVaXk5OT3M8mJiZo27at2uWULVsWPXr0UEiPi4vDqlWrUt1f7P52165dKFCggEptKFy4sOCEUHWvpbqiLIBCegf7ErovSEmVYA9CAV5DQkLg7e2tVluePHmCCxcuAFA9qJuLi4vs/3Xq1NEoAIPY/XpqK3kL3a9bWFhg4cKFardB14S+N6qMCwAguKo5oPrYAKG6o6Ki4OHhoXKAm4kTJ4oG2wgNDcXOnTtVKkddqR1jZg0UcezYMVy7dk0uTdPxDlOmTBFM9/b2VmmxBKEAKo0bN0afPn1UboORkZHgM1CpUqWwYsUKtQIV1K5dWyHt48ePKu1rYmIi+DcfNWqUYEBMMfXr1xc81/bu3Vvw+iimbNmygn0pqh5PZpCZxsTky5dP5W2FODs7y/3csWNHle9LgKQgVkLjTZo2bSq6T0ae23XN2NhYpYAvYjLTeU/o79KjRw+1AqwJfaYTEhJk44iIiIiIiDI79iASERERUabWvU29LBWcILsEWcgux5HdFS1aVDSa++bNmxESEqJyWStXrpT9f+rUqdo2TdSlS5dw//592c9iEdpTI9RxCUA2cEXIq1evFNLUXRFGrL0PHz5Mdd8GDRoodHQ2aNBA5Y43oWPOiMjlYoOjNF0pUyqVYt26dQrpDRo00Ki8Fi1aCHawBgcHw8vLK9X9hQYaiH3exAgNdEtISFDrO0mpy4rnQCIi0g0zMzOMGTNGNH/GjBlqr+ybk8THx8PNzU32s7Lf5a+EVhMHklYkV2UFSiIiyhqUDepWJ+Bmdle5cmX8+PEDfn5+GD16NCwsLHRWdkREBLZu3SqXpq+vr/aqfMl69OghuIr0kydPcOLECZXKGDlypELa27dvBYOzigkMDMSBAwcAQOVVHn8NSKXJ+0Rl73aUvU/U9XuwnMrR0VFwstKSJUtULuPYsWP49OkTgKQgn0KrRYpJq/d9QNLKvOqqWrWqwoSWZFOmTJFNEhk7dizevn0LAPD09FTrmImISHdsbW2VBoOYN2+eWvdDqrp8+TJu3rwpl1arVq1UgwqIEetP2bFjR6rXM7GJ2bq4nmpyLdUFZc81cXFx6diS1ANTqNKf3alTJ5QsWVIh3dXVVa22bNq0CUBSYI9u3bqluv27d+9w/Phx2c/p2fcPCP/uateujcKFC2vUDl2ysbFRSGvVqpVK+4r9PlQdGyD0e+nVqxcGDBig0v4AIJFIsHnzZujr6wvmnz17VuWy1BEeHq40X93xHekl5WIpyTQd71C+fHk0bNhQIT0+Pl5wXMWvhM7Z6gR2SGZlZaWQpkngOqFzU1BQkMr76+J49PX1UaZMGYX0jDiezCCzjInRJvDLgwcPcPnyZbm0Jk2aqFVG2bJlcezYMfz2228Akj4nrVq1kus/+1Xr1q0VzrHpdW5PC9r8DTL7eS8j3/sQEREREWUEBoogIiIiokwvqwUnyC5BFrLLcWR3kydPFuwEDQ8PV3lV3xMnTsgCHdSvX1/tzjN1/DpgYN68eZBIJGr/E1tdRlmk/m/fvimk/boqY2rEVloODg5Odd88efJg165dsgG9NWvWlK2CpwqhwfzpPVAJgOhgEE1dunQJz549k0szMDAQXSU8NXp6eujbt69gno+PT6r762KVILFVCqKjo7Uum+RltXMgERHpxsuXL0UnVgFJEysdHBxUWh07Jzpw4IDsvrlFixZqDeDu06eP6D2xqtdeIiLK/KKiokTztFlpLisoVKgQLl26hIsXL8r+9e7dW3Dbx48fY/v27WnSjv379ysMri9durTGv/88efKgU6dOgnmqvC8BgH79+gmu0KfO5LNt27YhNjYWpqamGDhwoEr7/Po+sXTp0mq/S2zdurVo+creJ+r6PVhOlStXLsHgZKdOncKdO3dUKmPz5s2y/6uzIiSQOd/3TZs2DfXq1VNI//r1K2bNmoW9e/fKzi9jx45Va2VXIiLSvRkzZsDe3l4wLzExEX379sWTJ090WqdQH2KlSpU0Lq9Vq1aCQYeioqJw+PBhpfvq4loKCF9PM6rvTNl9dXpP2Eytv1eViY76+vqC90i3bt3C1atXVWpHTEyMLOj+kCFDVPq7+/n5yQUa9PDw0Kjv/9KlS4Llf/r0Sek73sx8v963b1+MGzcOxsbGMDIygqOjIxwcHFTaV2hcAKD62AChvlOxMpUpX7482rdvL5j36wRtXUntcxcTE5Mm9Wrj/fv3OHPmjEK6NudsseA+qjy/a/K3FiLWD6Auc3NzhTR1/o7Z7Xgyg8zyjKxN4Jd9+/YppNWvX1/tclq1aoWHDx8iLCwMkZGROHPmDEqVKiW6vZWVFbZs2YK8efNCIpGgWbNmcouSKKPtuT0taPo3yGznvczymSYiIiIiykgMFEFEREREWUJWC06QXYIsZJfjyM4qVaqEjh07CuatXbtWpQ6LFStWyP4/ZcoUnbVNyH///Zem5X///l00T2iFnZ8/fyI+Pl7l8oUGwwOqR1lv27YtPn36hPDwcNy+fRuVK1dOdZ/w8HBs27ZNcBWCjJj8qMlqE8ocOnRIIa1YsWIard6QrHnz5oLpV69eTfU7oYsBRWKfh4zs4M2usto5kIiItBcZGYlu3brJJk6KDazy8/NTe8W8nGL9+vWy/48bN06tfc3MzDB48GDBvO3btyMyMlKrthERUeagbPW/IkWKpF9DMoCRkREaNWqExo0by/5t2rQJZcuWFdx+6tSpePr0qc7bIfS+RGjVSnWIvS85f/68SvvnypVLMLjDqVOn8OrVq1T3l0qlssn+vXv3VmmSxufPn/HmzRuV2qcpZe8Tdf0eLCcbO3as4ITMJUuWpLrvhw8fcOLECQBAmTJl0LZtW7Xqzozv+/T19eHl5SU4KcPNzQ1Dhw4FAFSvXh3Lly/XqA4iItKtrVu3om7duoJ5YWFh6Ny5s1qraCuTmJiIo0ePKqRrcz+or68vGijb398/1X11Qeh6mlF9Z8ruRcPDw9OvIUh9grHYxMVfOTo6Ck6UVDW46969exEUFAQ9PT2VA3Oldd9/aqvTZ+b7dT09PaxZswY/f/5EeHg4Nm3aBAMDg1T3e/HiBby9vQXzMmJsgKOjo2D6p0+fRBf30EZqwREz4/tnoed3iUSC4sWLa1ym2PP7u3fv8Pr1a6X7ajPOIiVVx8CkRuiZR51zf3Y7nswgszwja/O3FQpSUKJECY3Ls7CwEBxTJmTAgAEICgpCeHg4/P39VfquBwUFyfXNpZSRQe81/RtktvNeZvlMExERERFlpNTfOhERERERZRL2tg0BJAUvyAqS25nc7mQ8DtK1qVOnCq708vXrV3h5eWH48OGi+966dQvnzp0DkBT5vFu3bmnWTqlUiitXrsilTZ06VXQ1Q00oGwwiNKBfKpXi4cOHqFGjhkrli62oqW6Hoyorv1y5cgWbN2/Gnj170n1AkjK6HnCT/PlLycLCQqsya9WqJZgeExOD69eviw6E0xWxTkiuap42sso5kIiIdGPYsGG4d+8eAMDe3h7du3dH9+7dBbedPn06bGxsYGlpmY4tzNzu37+PCxcuAEiaZCcWcEmZkSNHwsXFReHeJiQkBN7e3rJJbURElDVJpVJ8/PhRNL9MmTLp2JrMIXfu3Ni5cyeaNm2qEHA0MjIS/fr1Q0BAgEqTflSVnu9L3r59i/fv3ytdMTHZqFGjsG7dOrk0qVQKV1fXVCez+/n54fnz5wCS7idUERCgGMTYz89Pp7/rokWLiuZl5olnWU3BggXh4OCg8PnZu3cvXrx4gfLly4vu6+HhgYSEBACAg4ODziYKqSMt3vdVrlwZf/31F6ZPny6XnpiYiNDQUJiammLXrl1arbJKRES6Y2JigoMHD6Ju3br48uWLQv6zZ89gb2+Po0ePan2tevDgAb59+6aQrov7wT179iikX7p0SatyVSV0Pc2ovrPSpUuL5gn97tNSav3Aqr7bLFq0KLp166aw8vaePXuwatWqVANOuLu7A0ha+EAsUN6vfr1f79+/v8pBJlSlrF89K9yvq7LKeVRUFHx9fbFlyxZcvHgxHVqluj///BP6+vqy+/GUPn/+rHVAw18pez4DkgLzqBo8Jb0IPb+bmppq9dxqbW0NMzMzwcAYly5dUvod1VVwn7T8fqlz7s9ux5Nd6OIZWdO/rVQqxe3btxXSVQlIqisSiSTVwDZSqRRnzpzBli1bcPDgQcTGxqZT61Sn6d8gs533dIHjvIiIiIgoq2OgCCIiIiLKUrJacILsEmQhuxxHdtW4cWM0aNBAIQgDAKxcuRKOjo6iA5JWrFgh+/+kSZPSdJBtWFgYwsLC5NIKFy6Mxo0bp1mdKTVq1EhhIDIAXLt2TeVAEWIrDDZt2lSrtiWLiIjAP//8g40bN8omQBoYGKB79+44d+4cgoODdVJPZhEXF4eHDx8qpGs7+Llo0aIoWrSo4EC91FY2yagBRf7+/mjRooVWZQwcOBDbtm3TTYOykKxyDiQiIu2tW7cOO3fuBABUrVoVmzdvhpmZGXr16iU4yD08PBxDhw7F6dOns8Sg4fSQ8n541KhRGg0Cq1ChAv7880/8+++/Cnmurq4MFEFElMW9f/9e6cDlSpUqpWNrMo+GDRti3rx5mDdvnkLejRs34OzsjIULF+qkrrdv3wq+A9L2fUn16tWhp6eHxMREhbwPHz6oFCiiUqVKaNGiBfz8/OTSPT09sWDBApiYmIjuu2nTJgBA7dq18fvvv6vU5vfv3yukVa1aFQULFlRp/8zE0tISb9++1aqMrD44ffLkyXB1dZULuJKYmIhly5bJPh+/SkxMhIeHB4CkQfsODg5q15uZnwUmT56M/fv34+rVqwp5vXr1wm+//ZYBrSIiIjElSpTAgQMH0Lx5c8TExCjknzhxAjNnzsTSpUu1qkdo8iOg/f2gWOAwZYHigIy9lg4aNAheXl5aleHn56ewSrWyyYYhISGIjY1VeWVxbQUGBirNVxZQ61ejRo1SCBQRHR0NDw8PTJ06VXS/J0+eyAIUjBgxQuX6fr1fz507d7r1/WcHz58/x8aNG+Hl5SV7BixatCgaNmyIAwcOZHDrkpiamuK3337D/fuKY4KCgoJ0Xp+yIC5A0vNyWk8WVpfQOVvb87Wenh6qV68u2P+d2ngHotRk5mdkVXz58gUREREK6creSaWn4OBgbN26FW5ubnj58iWApHPpoEGDss14nsx23svqn2kiIiIiIl3g6HciIiIiytT2/XtdIc3etiHaNa2WAa3RzMkL9+F9VHHlMx4H6ZLYwI7nz5+LDiJ49+4dfH19ASSt6DZ48OA0ax8AwQHuoaGhaVpnSra2toIr7ezatUvlMpKDN6Rkbm6ODh06aNW2b9++YdasWShVqhRGjBiBe/fuoUSJEliwYAHev3+PvXv3Infu3FrVkRm9fftWcPJJVFSU1mVbW1sLposF+6CsLSucA4mISDuXL1/G5MmTASQNON63b59stZ7169ejUKFCgvudPXtWthpeThcSEiILtAEA06dPh0Qi0eifUJAIALh165bgJDciIso6bt26JZpnZmaGqlWrpmNrMpdZs2aJTnr6+++/8d9//+mknufPnwuma/u+xMzMTDQYhDrvS0aNGqWQ9uPHD4UJaSkFBgbKns+HDx+ucl0Z/T6RdKtMmTLo3bu3QrqXlxc+ffokuM+pU6dkATY6dOiA4sWLp2kb05u+vj68vLwEJ7R4e3vj7t27GdAqIiJSpkGDBkrfNS1btkytvkchaXU/KNZ3FhMTg58/f2pVdlYjFjQDSArOlTyxMz0IBb5PVrZsWbWCpDVt2lTwmc3NzU1p0LHkz3SpUqVU7vdOTExUuDfnvbpqLl26hM6dO8Pa2houLi4IDg5Gs2bNsGfPHrx79w7jxo3L6CbKqV27tmB6WixyUbRoUaWf+fT8bqoiLi4Ob968UUjneAeitCN23czoa9Dr168xevRolCxZElOnTsXLly9RsWJFuLi44NOnT/D09MzQ9ukKz3tERERERJkTA0UQERERUaZ2LuBxtghOkF2CLGSX48iOunTpIrqayPLlywXTXVxcZKu3jRo1CqampmnWPkB4oEBqK6ToUq5cuTBp0iSFdH9/f8EVMIQcOnRIIW327NnIlSuXRm368eMHJk+eDEtLSyxZsgTBwcGoUaMGdu7ciTdv3mDOnDkoWrSoRmVnBSEhIYLp4eHhWpedJ08ewfSwsDCty6bMJyucA4mISHNfvnxBz549ERcXBwDw8PBAxYoVZfmFChXC+vXrRfefOnWq1qs3ZwceHh6IjIxM83o2btyY5nUQEVHaEVq1LVmjRo2gr6+fjq3JXPT19bFz507kzZtXIS8hIQH9+/fXyQS7zP6+pEuXLoKT9ZXdA2zbtg2xsbGwsLCAvb29ynVl9PtE0r3p06crpMXGxmLVqlWC22/evFn2/2HDhqVZuzKStbU1/vrrL4X0uLg4DBw4UPYcREREmcfAgQMF+xyTOTg4KA3Alpq0uh8UuxcEcl7/WdWqVWVBaIU8ffo03dry4sUL0bw//vhD7fKEAru9evUKJ0+eFNw+Ojoa27dvBwAMHTpU5We+0NBQheATvFdXLiAgAC1btkSTJk1w+PBh6OnpoV+/frh79y78/f3Rs2dPGBoaZnQzFYgFa1MWfEQbderUEc17+PBhmtSpKbGJ6dHR0UhISNCqbI53IBIm1s8ldv+U1t6/fw8HBwdUrFgRGzduRGRkJJo0aYKjR4/iyZMnGD9+vOC7xKyK5z0iIiIiosyJgSKIiIiIKNPLLsEJeByUlvT09GQrLP/q6tWrOH/+vFxaaGgotmzZAgAwMTHBmDFj0ryNQp11t2/fTvN6U5oxYwaqVZP/nEqlUjg6OiIxMVHpvi9fvsTu3bvl0urVq6d0IJgyW7duRYUKFbBq1SpERUWhSJEi2LFjB27fvg17e3sYGBhoVG5WEhsbK5iui06+3LlzC6ZbWFhoXTZlPlnhHEhERJqJi4tDz5498fnzZwDAlClT0L17d4XtevXqJZgOJA2id3BwSNN2ZnaJiYmyyZsSiQQHDx7ExYsXtfo3evRowbr27NmDHz9+pOfhERGRDh07dkw0r3PnzunYksypdOnScHNzE8x79eoVxo8fr3Udmf19iYGBgeCE/WvXrglOiJRKpdi0aRMAoF+/fjA3N1e5rszwPpF0q1q1arCxsVFId3d3VwgM8uXLFxw5cgRA0urW7du3T5c2ZgSxQMZ3797FwoUL07k1RESkimXLlqFdu3aCeVFRUejatSu+ffumUdlpdT8odi8I5Lz+M319fbRs2VI0X5tAH+p69uyZaJ6tra3a5fXv31/w7ykW2G3v3r0ICgqCgYEBhg4dqnI9Qvfqd+7cUXn/nCQoKAgDBw7EH3/8AT8/PwBAy5Ytcf/+fezYsQPVq1fP4BYqJzZxN62C8Ldq1Uo079KlS2lSp6bEztdA2p2zc9r5muhXYgGNlAVeSgsJCQn4+++/YW1tDQ8PD8THx8PKygrHjx/HhQsX0KFDB0gkknRtU3rgeY+IiIiIKHNioAgiIiIiyhKyS3ACHgelpYEDB6JQoUKCecuWLZP72d3dXbbC4aBBg0T30yWhDp27d+8q7UTSNRMTExw5cgSWlpZy6VevXsWQIUMQHx8vuF9gYCB69OiBqKgoWVrFihVx/PhxGBkZqdWGkJAQ2NraYujQobLBz+3atcODBw/Qr1+/bNlRKCZfvnyC6WFhYQgKCtKqbLEBKwUKFNCqXMq8Mvs5kIiINDNlyhTZ4M+mTZtiyZIlottu3LhR9Fp/9uxZuLu7p0kbs4ITJ07g5cuXAIC2bduic+fOaNy4sVb/Zs6cKTggLzo6Gh4eHul9iEREpANPnjzBgwcPBPMMDQ1FgzLlNL1798bAgQMF8zw9PXHgwAGtyhd7X/LmzRutygV0975k2LBhgkFON2zYoJB27tw52WD9ESNGqFWP0PvEa9euqVUGZT7Tp09XSAsPD8f69evl0rZt2yZ7X+vg4AA9vew5xGnHjh3YsWMHAOEJL4sXL2aAFCKiTEhfXx+7du1CxYoVBfPfvXuHHj16IC4uTu2yxe4HX79+rXZZKenr6yNXrlwK6UZGRjlyAl7Xrl1F89JzMrrY/a2JiQk6dOigdnnm5ubo37+/Qvrx48fx9u1bhfTkd6YdO3ZE8eLFVa5H6F7969evgnXkZBcvXkSVKlWwfft2AEnfQxcXF5w9exaVK1fO4NapJm/evILpRYoUSZP6lAVIuX37tqyPNzMQO18D2p+zOd6BSJjY9+7mzZvp1oYPHz6gUaNGmDlzpmwc2YABA3Dv3r1sHeQS4HmPiIiIiCizyp69qERERESULWWX4AQ8DkorpqamGDNmjGDeiRMnZAP94+LisHbtWgCAnp4eJk2alC7ty58/v0JaTEwMrl69mi71JytTpgwCAgIUVonx8vJCvXr14OPjg2/fviE2NhZv3rzBunXrUL16dbkVUDp16oSAgAAULFhQrbq/fPmChg0byq3O2b17dxw5ckTtsrIDZZ15jx490qpssVUEfvvtN63KTSvNmzeHVCrV6t+2bdsy+jAyVGY/BxIRkfq8vb1l5+xixYrBx8dHcEJissKFC2PdunWi+VOnTsW7d+903s6sIOWkO7HrpbpKlCiBTp06Cea5u7tDKpXqpB4iIko/yoIqde/eHUWLFk3H1mRu69evh5WVlWDesGHD8PnzZ43LFntfEhYWhg8fPmhcLqC79yXFihVDly5dFNJ3796NkJAQubRNmzYBABo2bKj2SrlC7xMvXryoVhmZxZs3b7R+95NdNG3aFA0aNFBIX7t2rWxlaqlUii1btgBI+tw6ODikaxvTy/PnzzFq1CgAQK9evRSCnQJAfHw8Bg4cmK4Bl4mISDV58+bF4cOHRSe1Xbx4EePGjVO7XLH7QW37zgDh+8FKlSpl2kD227Zt0/oeqnnz5oJld+vWTTBwBgBcuXJFdl+SlqKjo0UDQtnZ2WkcwCP5/iKlxMREuLm5yaU9fvxYFhRD3aBuFhYWMDQ0VEi/cOGCWuVkZ76+vmjVqhW+fPkCIKlf0sfHB+PHj8/glqlH7FmkdOnSaVJf5cqVUbNmTcG8+Ph47N+/P03q1YSpqSlMTU0F83LaeAei9CL0rggALl++nC71P3nyBPXq1ZMb6zZ+/Hh4eXnBzMwsXdqQkXjeIyIiIiLKnBgogoiIiIiylOwSnIDHQWll9OjRgh1PUqkUy5cvBwDs2rULHz9+BAB07twZFSpUSJe2iQ1q2rp1q07Kj4qKUjk6edGiRXH27Fn89ddfcul37tyBnZ0dihQpAmNjY5QtWxbjxo2TDd6oU6cOdu/ejUOHDol2PiprX9u2bfHkyRNZmqWlJbZv3650wmN2VqhQIdFo8w8fPtSq7IiICIU0Y2PjLLMyS3Y1f/58HDp0KM3Kz8znQCIiUs/9+/fh6OgIADAwMICPj49Kk1P79OmDzp07C+b9/PkTQ4cO1Wk7M8ro0aMREKD4LCbk+fPnOHXqFADAyspKp6sZCQ06B4CXL1/K6iQioqwhMDBQNin7V3p6epgxY0Y6t0gz6lwjtWFubg5vb2/Bdzrfv3/HkCFDNC67QoUKohP10uJ9SZkyZZSuBihm9OjRCmmRkZFygSwDAwNx8OBBAMDIkSPVrkMosOrLly/h7++vdllCnj9/jvj4eJ2URUBAQIDg50LI9OnTFdK+f/+OzZs3AwDOnTuHly9fAgDat2+PkiVL6q6hmURsbCzs7OwQHh6O0qVLw93dHRMmTECjRo0Utr1//z7mz5+fAa0kIqLUWFtbY9euXdDTEx6K6+bmJgucpaqKFSsKpr9+/Vq2arWmhO4Ha9WqpVWZWVXevHnRr18/wbyoqCicPHkyzdtw9uxZxMTECOZNmDBB43KrVKmCZs2aKaR7eHjIBZ9KDhZYvnx5/Pnnn2rXI9T/r6u+fyApkEVW5e/vD3t7e8TFxcnSpkyZgu7du2dgqzQTGhqqkFagQAGUKFEizepU9vy4ffv2NKtXGbGAGWLn7LR4fgdy7jmbKFm+fPkEAxWdPn0aQUFBWpd/8+ZN0WC6gYGBcgGAAKBBgwZYtWqV1vVmJTzvERERERFlPgwUQURERERZTnYJTsDjoLRQoEABDB48WDBv165deP/+PVasWCFLmzp1ano1DSYmJqhUqZJC+p49exAcHKx1+bt27RIc8CLGz88Pq1evRrFixXDx4kV4e3tjxIgRaNu2LWrXro2aNWuiZcuW6NOnD1xcXHDnzh3cuHEDvXv31qh9f/31F+7duyeXNmPGjBwRUV6MRCIRHPgMJA0G14ZQB2KzZs1gYmKiVbmkucDAQCxZskRwkoeuZOZzIBERqS4kJARdu3aVrdq3dOlSNGnSROX93dzcRCc7nj59Wjb5LKu6f/8+XF1dUapUKZW237Bhg2wQ68iRI0UnLmiiVatWokGXNm7cqLN6iIgo7c2fPx/h4eGCeX379kWNGjXSuUXqU/caqa3ff/9dIQhpspMnT2LDhg0alZsvXz5UqVJFMC8t3pe0bdtWo7KaN28uuKKfm5ub7N7D09MTsbGxKFCgAHr27Kl2HWKryIoN2FeXg4OD6N+Q1LdixQq5iYfKdO7cWfBd8cqVKxEXFyd3zz5s2DCdtTEzmTFjBm7dugV9fX3s3LkTefPmhZ6eHjw9PQVX51y2bBlu3LiRAS0lIqLUtG/fHkuXLhXNHzNmjFrlNW7cWDBwWGJiolYBs2JiYpCQkKCQrun9YHYwdepUwcmmAODt7Z3m9e/bt08wvWfPnlo/gwkFeP327Rv27t0LAIiOjsaOHTsAJN1viQWrU0bofv38+fNyCydo6ty5c6hVq5bWwVEyQlxcHAYOHCgXlM7U1BQzZ87MwFZpLiQkRCGtQYMGaVrngAEDRANH+/n54e7du2la/68eP34Ma2trvHnzRiFPrO8iLZ7fK1asCEtLS63KpYyjy76ZnMzAwEDwGhkXFwcfHx+ty1+8eDEuX74smDdu3Dh8+vRJLs3Z2TnH/W153iMiIiIiynxy1lMJEREREWUb2SU4AY+D0sKkSZOgr6+vkB4XF4eePXvi/v37AIBGjRqhYcOG6do2oc6iqKgozJ07V6typVIp1q1bh6pVq6q0/YEDB9CuXTvExMTg9OnTaNy4Mfr06QNXV1ecPHkSN2/exO3bt3H27Fl4e3tj/PjxWg3GiYyMhJubm0K6jY2NxmVmF82bNxdM//fff7Va0TFlBP9knTp10rg80t7atWtRoEAB/PHHH2laT2Y+BxIRUeqkUin69+8vWz24R48emDRpklplFC1aFGvWrBHNnzJlCt69e6dVOzPSsmXLUL9+fZVWVY6IiJCt6m1mZqbV6uZCJBIJRowYIZh37NixLP17JiLKSS5dugRXV1fBvIIFC8oF3MvM1LlG6sr06dNFA5dOnTpV4wlSYu9Ljh07plF5yXT9vkRoldenT5/i7NmzkEqlssn+AwcO1Ch4Z+3atQWDrPr6+uLq1avqNziFO3fu4OLFiyq/TyTlnj17hkOHDqFHjx4qbS+RSDBt2jSF9Pfv38PFxQUHDhwAAJQsWTJbvkM9fvw4XFxcAACzZ89G48aNZXkVKlTA4sWLFfaJj4/HoEGDRFcdJyKijDVlyhQMGDBAMC8uLk6tsgoWLCgaOEyb+0Ghe0EjI6McHSjCyspKMKACABw8eBDv379Ps7qDg4Oxe/duhXRjY2OlgUdU1bVrVxQrVkwhPTm4q6+vL4KCgmBsbCwahD01YhNFdRGofe3atShXrpxgAK3MztfXV+G9aMOGDZE3b96MaRCSAs1oSui5tn379to0J1UmJiaYP3++YJ5UKsWcOXPStP6UIiIi0L17dxQtWhRlypRRyBd7fr9+/Tq+ffumcb0c75D9CAUm0mZMTErafMezIrEFaZYtW6ZyAEshd+/excGDB/Hnn38q5L1//x6+vr5yacbGxmjZsqXG9WVVPO8REREREWU+DBRBRERERFlWdglOwOMgXStXrhy6desmmJdyAPWUKVPSq0kyTZs2FUzfuHEjzp8/r3G5Pj4+uHPnDlq1apXqtkeOHEGvXr0QGxsLJycn0YFWuuTv7y+40obQ4Bx1JK/OqCmhVYPSW9++fQU7xENCQuDn56dxub8OWDE1NYW9vb3G5ZF2fvz4gTVr1qBr164arUikjsx8DiQiotQtWLAAR48eBQBYW1vDw8NDo3L69+8PW1tbwbywsDAMGTJE63upjPD48WN4e3uje/fuKm2/fft2hIaGAgDs7e2RL18+nbdp0KBBghM/ExMTdbbaNxERpZ0vX77A3t5edEC5u7s7ChcunM6tUp+610hd0dPTwz///CN4jY2KikLfvn01GqA+aNAgwfSHDx/i+fPnapeX3J5fJyuVKFEC7dq106g8IGmVV3Nzc4X0jRs34ty5c3jx4gUkEgmGDx+uUfmGhoaCQR4TEhIwZMgQrSbMz5gxA/r6+qKBPkg9zs7OyJ07t1oTJPr27YsSJUoopM+YMUP2vRkyZIhgQNCs7PPnzxg0aBCkUin++OMPzJs3T2Gb8ePHC068fPjwIZycnNKjmUREpIFNmzahfv36OilL7H7w8OHDGk8GFZrs3bVrV+TPn1+j8rKL+fPno3Tp0grpCQkJOgnYIGbNmjWIiopSSP/7779RtmxZrcs3NDTE0KFDFdIvX76Me/fuYdOmTQCA7t27o2DBghrVIdb3f/ToUezYsUOjMgEgICAAhw4dUqnvPzM6ePCgQpq24wIA7cYGaPPsdOPGDbmfDQwM0uXZ28HBAfXq1RPMO3r0qODvWdekUikGDx6Mly9fws3NTbCf29bWVvA7JJVKcejQIY3rFjpnOzg4aFweZTyhQJgRERE6KVvdoFRZndi7nDdv3mjVLzVx4kRIJBLBQBFHjhxRGGNVsGBBwfFO6siK47543iMiIiIiynwYKIKIiIiIsrTsEpyAx0G6ltoqHRUrVsyQqNtdunQRXClDKpXC3t4eL168ULvM79+/Y8qUKTA0NET//v2VbvvkyRPY2dnJovL37dtX7fo08ebNG8F0oeAR6lCnw09oQPXPnz+1qj8lTQelFS1aVHRSv7KVwJUJCgpSiDRvZ2eXJhMjs6KMmBQ7c+ZM/Pz5U+VVJbWVWc+BRESk3MGDB+Hs7AwAyJUrF/bv3w8LCwuNy3N3dxddpe3s2bOyFXw1lRHX1AkTJiAxMVGlgbhSqVTuGEePHp0mbcqfP7/o/dymTZsQHR2dJvUSEWV36bESYFhYGDp16iS6Su7s2bNFz/HKZPZrJCDeRk3aXrJkSWzevFkw79atW5g+fbraZdapU0d0kqGm70seP36s8LkaNmyYVpPwc+fOjX79+imkHz58GH/99RcAoEWLFqhYsaLGdYitbvzo0SMMGjRIowHxu3btwqlTp2Bra4siRYqovX9mX6kzvb+Dly9fxu7du9GpUye1JkgYGRlh4sSJCunJv189PT3ByY1ZWWJiIvr164fAwEDkyZMH3t7egt9BiUQCT09PwYlEK1askAuGSkREmYexsTEOHDiA4sWLa13W4MGDYWpqqpD+/v177N+/X6MyHz58qJA2atQojcrKTvLkyYPt27dDT09xOLW7uzuePn2q8zrfv3+PFStWKKS3a9cO48eP11k9w4cPh4GBgUL6hAkTcOnSJQDAiBEjNC6/UaNGovf6o0ePxpUrV9QuMzo6WtYmTSaHZoZ7daGxAdqOCwC0mwwcFham0X6vXr3Chw8f5NK6dOmCokWLatwWVenr68PLy0vwXAgkfT7E3mfoypQpU+Dr64t58+bht99+E9zG2NhY9LO6bt06jepNTExUmDDdokULVKpUSaPyKHMQmlgfGhqKyMhItcoJDw9XSMtp/TAdOnQQPQ/NmTNHdIyWMmvWrIGfn5/oOU6ozORA7dpQ59wudK+iy3FfquJ5j4iIiIgo82GgCCIiIiLK8rJLcAIeB6WUcqVBTVYdrFevntLV8CZPnizYgaROu1RJ/5W5ubnoCoKfPn1C8+bN8ezZM5XbExkZiV69euHjx4/o3bt3qitcTps2Ta6TNa0HDiQT6xzUZHBMSup8NoQGUIj9rr98+QJHR0eFYAuAeCelUGe0qpJXcPzV8ePH8fjxY7XLO3bsmNzPRkZGmDt3rkr7ZsWVxdWlbMWYtFhp4syZM9iyZQsKFSokuBKikOx6DiQiInHXr19Hv379ZNdiNzc30YGXqipevDhWrlwpmj9z5kzcuXNH4/LT+5rq4eGBf//9F7Vr11ZpVcHDhw/L7vdq166NmjVr6rxNycQCtn3//l2r1QOJiHIybVb7VMX379/RunVrXL9+XTDf0dERCxYs0KjszH6NBHT/fNe9e3fRAdIuLi44cOCA2mXOmTNHMN3T0xNBQUFql/fr+5ICBQpgwoQJapfzK6HJhQkJCbhw4QIA7SaeAUCvXr1QsmRJwbzdu3djwIABan2url27Jns/OWbMGKXbpsV7sPQg9h1Mi+9fREQEHB0dIZVKNVpVePjw4aLBXdu1a4dSpUpp28RM9b5vyZIlOHfuHICkZ54yZcqIbmtlZYUlS5YopCckJGDQoEE5biIQEZEuaNv3oIpixYrh4MGDMDEx0aqc/PnziwZxUPa+S5lf7wdbt26Npk2bprpfZrqWppVmzZph9erVCunx8fEYPHiwTlfrTkhIQL9+/RRWka9atSp2794NiUSis7pKlCghGDjdz88PAFClShWV++6ESCQSwcBfQNLE1bZt2yIgQHHsiJiEhAQ4ODjg3r17aNy4carvM4X+Lrq8Vxf67KvyfRAaG3D9+nWtg1hoc976NdiDqjw9PeV+lkgkos+qaaFy5crYsmWLYF5QUBDatm0rOKZBF5YsWYJVq1ahY8eOmDVrltJtx40bJxj0+v79+zh16pTadV++fFkhuIiq72iy2zk7Ox2P0POtVCrF3bt3VdpfKpVi7NixuHnzpkKeOue+zPI71aYdRkZGou+bwsLC0LFjR/z48UPl8vbu3YspU6YAAMaOHSu4jdC5PTw8HA8ePFC5HiFpNe7rwYMHGD58uNL3tNr8DXjeIyIiIiLKXBgogoiIiIiyhewSnIDHQclSBjNQN3p8sqlTpwqmFy5cGAMGDNC6XaqkCxk3bhxy584tmPfx40fUrl0b69evT7Uj5/nz52jZsiX8/PxgZmaGRYsWKd3+48ePOHLkiFxajx49sGHDBjx69AghISGIjY1Nk1VG8ufPL5i+du3aVPeNiYnB1KlTBYNa/DqACIDoBA+hiPfnz5/H9+/f5dISExMxbtw4BAQECO4j1omoSUT+ZDVr1sS4ceMU0qVSKWbPnq12eXv27JH7ecyYMSpPFImKilJIi4+PV7sNQjJLMAFlKwroYjWblJ4+fQp7e3tIpVJ06dJF5VVKs/M5kIiIFD18+BAdOnSQ3dvY2dkJrkytiSFDhqBx48aCeTExMejVq5fGq6ml5zX18uXLsomMqkzAk0qlcHZ2lv3co0cPnbbnV61atYK5ublg3t9//50mkxKJiLK74ODgNCv7xo0bqFu3rug7hAkTJsDd3V3jCUqZ+RqZTOidirJ0VaxZs0Z0Nd3+/furPPA/ma2tLbp27aqQHhkZiYULF6pVllQqha+vr1yak5OT6Ds6dVSrVk30fqto0aLo0qWLVuUbGhpixowZovne3t6oV68ebt++nWpZO3fuROvWrfHz50/Y2tqidevWSrdPi/dg6UHsO6jr719CQgIGDBiAx48fw8LCAm3atFG7DHNzc9FJsMOGDdO2iQAyz/u+8+fPw8nJCQDQt29f2NnZpbrPmDFj0LBhQ4X0J0+eKP1eEBGRMF30PaiiXr16ohOb1eHs7Cw4qfTKlSs4fPiwWmV9+fJFFsgLAAwMDLBs2TKV9hW6lgK6uZ5mlr4zIKkPW6hvKSAgQKP+SjGjRo2S+1sAQLly5XD8+HHkyZNHZ/WkrE+MtkHdAGDgwIEoXbq0YF5YWBiaNWsGJyenVN8Pfv78GZ06dYK3tzckEglWrVqVat1C9+u6vFcX+nyq8p5TaGzAt2/fsHv37lT3ffr0qeh93q/Pqx8/fsSnT59SLRMAHj16hK9fv6q0bcr6PDw85NIGDx6MGjVqqFWOtuzt7UW/g48fP0aLFi3w/PlzndUnlUoxdepUzJo1C5UqVcKOHTtSfT9SvHhx0ef02bNnqz0G5dfxDt26dUOjRo1U2lfTz+2vhAKxaHLeFzp2ddqTnY6ncuXKgum//r2FREdHo0+fPtiwYYPguxx1FsnJLM/IYtuq+vscNWoUChQoIJj34MED/PHHH6m+K4qKisL06dPRq1cvxMfHo3379qILkmgz7is0NBQDBw4UzPv13B4XFyca5F5oDNfRo0cVfpfR0dEYOXIkPn78CGNjY9F2afP9ykznvczymSYiIiIiykgMFEFERERE2UZ2CU7A4yAgaSCE0P/VYWNjI7gK85gxYzRexUasLaoOQACSOovc3d1F8yMiIjB27FhUrFgRCxcuxI0bN/Dt2zfExcXhy5cvOHbsGAYPHoxq1arh6tWrAJIGtosNQEkmNDjg48ePGDNmDKpUqYJ8+fLB2NgY+vr6kEgkkEgk0NPTg4GBAYyNjWFubo78+fOjZMmSqFy5Mpo1a4ZRo0Zh9+7dogOkklWvXl0w/fTp00oHYZ04cQK1atXCihUrBDvR3r59K/u/VCrFqFGjsHPnTsGyKlWqpJAWGRmJtm3b4tq1a4iIiMC1a9dga2sLX19fzJ07V7Ccjx8/CqafPXtW9DhU8ddff6FcuXIK6QcOHICPj4/K5Vy6dAlHjx6V/VytWrVUg4gkS0hIEFyRU9kEF3VostpnWlC2YozYagOauHbtGlq0aIHAwEAA6k1Qzc7nQCIikvfr9QJICiygS0IBqZI9f/4c/fr10yhYWHpdU48fP4727dvL7jlVuabu3LlTbiCZ2ORNXTE0NETdunUF8169eqX0/p+IiISlfObXldDQUEyZMgUNGjQQLN/c3Bw7d+7E6tWrtVrFNjNfI5OJPcdFRUVpHKQjV65c8Pb2hqGhoUJeREQEbGxs8OLFC7XKXLduHfLlyyeYfvnyZZXL2blzJ+7fvy/7uU2bNrIAG7ogNvnMwcFB8PehSfnt2rUTzb979y7q1auH9u3bw9vbG0+ePEFERAQiIyPx9OlTbN68GfXr10e/fv3w8+dPmJubw8XFJdV60+o9WFoT+w7q8vsXHh6OHj16YP/+/QCSApsom3ygzLhx4xRWxSxevDhsbW21bieQNCnvV+n9vu/z58/o06cPEhISUKRIEZUmkgCAnp4eXF1dBYOvrl27FqdPn1arvUREOZ0u+h5U1bdvX0ybNk2rMszNzeHm5iZ4bz569Gi1VsqeM2eO3IQ5Z2dn1KpVS6V9ha6lgG6up5ml7yzZsmXLMGvWLIX0pUuXqhS4QJmEhAQMHz4cmzZtkkuvVKkSLly4IBgURBdatWoFa2trhfRcuXKhf//+WpdvamqKnTt3igaLj4uLw19//YWyZctixowZ+O+///Dp0yfExcXh+/fvOHv2LMaNGwdra2scP34cQFIAi3r16qVat9D9enBwsEpB5FQhFGhNleBrYmMDxo0bh8ePHwvmRUREYMGCBahZs6ZsDMSvUj7Hf/jwAS1atBD9fv4qMTERK1asUGnbZHPnzpV7di5ZsqTaZejKwoULRQNoPHnyBLVr18bWrVu1XlX+69ev6Ny5M1asWIFKlSrh3LlzKgdwEQvydvPmTSxfvlzlNrx8+VLuPFGsWDG13q8LvdMIDQ1Vef9kQoFYNAmuKVSOOu9dhL5zWfV4ChUqJDhuZ+PGjbh06ZLofnfu3EH9+vXh4+OD1atXC16/nz59iidPnqTahsw0JkZsW3V+n79eU1N69uwZ6tWrB3t7exw7dgxfv35FfHw8goODce3aNcyfPx/lypXDsmXLIJVKYWZmho0bN4qWJ3Zu37Jli+iYJqlUCm9vb1StWhXbt28X3CbluT02NhY9evSAv7+/4LZCn5/379/D1tYWDx48QHh4OM6dO4cWLVrg0qVLmDNnjujxSKVSwd+1Ot/PzHLeywzvfYiIiIiIMhoDRRARERFRtpJdghPwOHK2uLg4PHz4UPbzvXv3NCpHIpFgypQpcmlmZmZKVw1Rp10pPXr0SK2o/XZ2dhg6dKjSbV68eIG5c+eiXr16KFKkCIyMjFCsWDHY2tpi27Ztsg7Yzp07C67u8qsqVarAzMxM5TYCSR1jCQkJiI2NRUREBIKDg/Hx40c8efIEFy5cgKurK/r06YPixYtjzZo1ogMP6tWrh8KFCwvmTZ8+HQMHDsS9e/cQExODd+/ewdPTE40aNYKNjQ0eP36Mnj17okSJEgr7njt3Dnfu3MG7d+9gZ2cHV1dXtGjRQrAeGxsbwfRbt26hfv36MDc3R/369XHixAm0bt0avXr1Utg2LCwMXl5eguUsXbpU6USQ1Jibm+PAgQPIlSuXQt7QoUNFB8Sk9OXLFwwePFj2c+HChbF3716VgwI8efJEcCUJdSfniA1MePr0qVrlpJWAAMXzcjJvb+9UA5+kJjAwEDNmzEDjxo1lAy3z5csn+tn8VU44BxIRUdJ91rp169CsWTO5IBG5c+dGmTJldFpX2bJlleYfOXIEEyZMULtcZddUT09PjYJPpPT27Vs4OjrC1tZWNqCpatWqoiuVJwsMDMSkSZPk0gwMDLRqiyqUrUg+e/Zsre4ViYhymsjISFy5ckUwLzo6Wu2VzB4/fowZM2agTJkyWLlypeCzb7du3XDv3j3Y29tr1OaUMus1Mll0dLTo8x0A0VX7VFGnTh3R1fQ+ffqEFi1aqFV+iRIlsHv3boVJV/Hx8ejRo4dKgSeePHmCiRMnyn6uWLGiSiuiqqN79+4oUqSIXJqenh6GDRumk/IlEgm8vLxQvHhx0W0SEhJw8uRJ9O3bF5UrV4a5uTly5cqFSpUqYdiwYbh27ZpsWy8vL1hZWSmtUyqVYv369YJ5R48exalTpzQ7mDQWGhoqOvnsxYsXCqtXqyshIQF79uxBtWrVcPDgQVl69+7dNS6zcOHCcu/0AGDIkCGikw3V9ejRI4W0d+/eqTWJTJv3fTExMejevbvsPdn8+fNFVyIVUqNGDcHfr1QqRb9+/RjAlIhIDSknjz969EhnKw2LWbJkiWj/nKpsbGwEJ/l9+PAB3bp1U6lPx9fXF56enrKfu3XrhpkzZ6rcBrF7Z130n7158ybTrdS8aNEibN68WSEI1uTJkzFmzBhER0erXea7d+/QqlUrhQmtHTp0QEBAgGA/sC4J9Y3Z2dmpPAE+NY0bN8b8+fOVbvPx40csXboUjRo1QokSJWBkZIRChQqhdevWWLdunezZrl69eli9enWqdd64cUP02XPy5Mlaf67evn0r+LdWJfiaWMCzHz9+oFGjRli3bh2+fv2KyMhI3L59G3PmzIGVlRXmzZsHiUQi+hy1adMmhISEwM/PD3/88Qfi4uJSffed0qpVq3DkyBGVtj1y5IhccDMTExPs27dPMJBhelmyZAlWrlwp+K47PDwcQ4cORa1atXDw4EHB9x7KhIeHY+XKlahatSqOHDmCGjVqwN/fH8WKFVO5DD09Pfj6+qJo0aIKeXPmzMGhQ4dSLSMiIgL9+vWTfX5z5coFX19fFCxYUOV2CH1G3759q/a7mPfv3yukhYSEIDw8XK1yhAK6REVFqRSw6d27d4Lfw1evXqnVBqlUKtgOdfsspFKp4PPXy5cvVS5D6L1bbGwsWrVqhWnTpuH+/fuIiYnBly9fcPToUXTt2hV169bFvXv3sHjxYowfP1607O7du2P37t3w8fHBqFGjcPLkSYVtMtOYGKFndUB4ESAx3bp1g6Ojo2h+QkICdu3aBVtbWxQtWhSGhobInz8/6tevD2dnZ3z58gVA0vd327ZtsLS0FC2rdevWggEypVIp+vbti0mTJuHZs2eIiYnBy5cvsW7dOtSoUQN9+/bFhw8fMGbMGMH3HPv27cObN2/w9OlTtG3bFidPnkSjRo0E2yB2X3n69GlUq1YNFhYWaNWqFa5cuQIHBwc0aNBA9HhevXolGPhEnd9/ZjjvhYWFCX6Xs9s4LyIiIiKi1Eik2obPJCIiIiJKQzNW7MHPCPU72ls2rIzubRRXGNj373WcCxAeJJkZ5fTjsMhlgr+nKE5Wz+7WrVsnt+px4cKF8fTpU+TNm1ftsmJjY2FpaSnrZB0zZgzWrVunUbvWr1+PsWPHiuZ7enpi0KBBKpcXHx+P3r17y1ad08Tvv/+O06dPK52UltKuXbswcODANJvQ3bt3b9EVU5YtW4bp06erVZ6JiQlWrVqFkSNHol69erhx44bS7efPn4958+aJ5rds2RJ+fn5Ky6hYsSIuXrwoC2whlUrx7ds3XL58GX/99Rfu3r0rum+hQoUwc+ZMdOjQASVKlBAM+pCaCxcuoEOHDgoDDHLlyoWNGzdiwIABgvvdvn0b9vb2slUSihYtitOnT6Nq1aoq1z137lzByRxmZmZ4+PCh0k7hZFKpFO3btxecLNCsWTPRyP/p5du3b/j999+VdopWrVoVgwYNQunSpZE7d26YmJhAT09PbgKJVCpFfHw8YmJiEBISgu/fv+Ply5e4desWAgICFL5jAwcOxLZt21RqY045BxKl1Lb7YAQHq7/6DWUP+fLlwal9nqlvmI3cunULU6dOxblz5wTz7927h2rVdBdYbtGiRUpXzUnm4OCAtWvXqhRc7OnTp2jQoIHSFeQaNWqE3r17o0SJEjA3N4exsbHCfaJUKkVcXBxiYmIQHByMb9++4cWLF7h+/Tpu3LihMHjTyckJzs7OonVGRkaibdu2CqtP9e/fX3S1Il34/v07KleujO/fv4tuU7NmTZw+fVqtQa1EsVOmADpa+YmyIAsLGGXQSpUZKTExEcOGDcPWrVtFtzEyMkK1atVQpUoVWFtbo3Tp0ihUqBBMTU0RGxuLsLAwvH79Go8ePcKFCxdEgwno6+ujY8eOmDx5Mho3bqyT9mfWa2RKCxcuxNy5c0Xze/XqJboSoCqkUin+/PNPnD17VjDf1NQUzs7OGDdunMrBLffs2YO+ffsqTGYsVKgQvLy80L59e8H9zp07h/79+8smMlhbW+Ps2bNpMhFtzpw5WLRokeznDh064OjRozqt49GjR2jZsiW+fv2qcRl///230nd0oaGhuHPnDtauXav0vaWhoSHGjRsHOzs7lC9fXqP3Fmlh5MiRcHNzE83PlSsXRowYgRo1aiB//vwwMzODvr4+9PTk15lJDp4bHh6OoKAgvHv3Do8fP4a/v79coDcg6d1ZYGCg2kF6U3r9+jUqVKiAhIQE6Onp4dWrVzoJIHf27Fm0bt1aMM/Hx0cwWK6QJUuWCK4unj9/fjx79gwFChQQ3C8hIQF2dnbYu3evLO3w4cP4P/buOzyK6nv8+NlUEgiEEnrvHWnSpHekSpeuiBRREcQCX0FBVBAQFUILvSO9F+ldilTpIfQSIJQkkHZ/f/BLPgm7M9nd7GY34f16nn0emNm598xmZ3Z37plzW7RoYVa/ifUv8qpAzc6dO8XHx8eiNvFmu3v3bpILNyHlcnFxMXkzV2p348YNKVu2bILvqQsXLrRJoTQ9T58+lSpVqsSNX+XLl0+uXbtmcTuff/65TJo0yWh5xYoVZeHChVKsWDGjdbGFrwYPHhw3btOmTRtZunSpuLu7m9VvZGSkFC9e3ORNuU2bNpWNGzea1c61a9ekWLFiJm/enzVrllHRKGdw/Phx6dWrl1FB80KFCsmoUaOkXbt2ib6ON2/elMmTJ8ukSZMSFPXw9vaW77//XgYPHmzTAm5anjx5Irly5ZLQ0NC4Zf/8849UqlTJpv18+umnVo/DiYgULlxYdu7cKblz5za5PioqSq5fvy6bN2+WESNGJHotcsiQIVKnTh3x8/MTDw8Pi2IZOXKkyeIX7u7ucvz4cd0x6JiYGClbtqxugUJTSpYsKcuWLRMRSXSMO0OGDLJnzx6TM9zXqVNHdu/ebXI7d3d3+fXXX+WTTz4x+g0g8uq84e/vL4MGDYo7Xj08PGTFihWaBTCS24EDB6RLly6651I/Pz9p27at1K5dW8qXLy+FCxdOcN0hKipKLl26JCdOnJANGzbIhg0b4m4S7tevn0yYMMHs3+uv+++//6RevXpxN6DHcnNzk59++kkGDRpkMp/k6tWr0rVr17gCKD4+PrJmzRqzJ2MQsd3vn8DAQClRooTJm8gnT55s9sQMN27ckOLFi0tYWJjRup9++km+/vpr3e218je8vLzkv//+M/s34+LFi01+3ru5ucmxY8dMHkemrFixQtq1a2dy3YEDB6RatWqJthESEiJFihTRPX+ZMmHChLgioHrHeKyKFSvKmDFjpFGjRgmWO1NOTKdOnUxef8ucObNcvHjR7AKLUVFR0r59+wTFLC1hMBhkypQp0rdv30Sf279/f/H397eofV9fX5k1a5a0adNG/Pz8Ev3bz5kzR3r06GFy3cuXL6VcuXKJFi+oXr26bN++Xby8vDSf8/XXX8svv/xitNzDw0POnDkjRYoU0e0jPkee9wICAkxOVGUwGOTgwYNSpUoVs9r5+OOPjQp6ibzKoTt16pTJIiEAAACAU1EAAAAAAKdw9+5d9d133ylXV1clIgkepUuXVlu3blWRkZEWt/vTTz8pEVGurq7q6tWrFm9/7949NXLkSOXm5mYUV/yHh4eH+umnn1RwcLDZbUdHR6uhQ4cqg8Gg27apR+PGjdXz588t3p9Dhw6pEiVKWNyfuY9vv/3WZL+RkZGqVq1aZrdTunRpdfr06bjtP/roI93nf/nll4nu+61bt1SFChU026hXr566e/dugm2S8lrs2rXL4r+PUkqdPn1aFS1a1GSb5cuXV7/88ovauHGj2rp1qwoICFBt2rRJ8P5s2LCh0X5oiY6OVjdu3FA///yz7nu8UKFCat26der+/fsqOjraqJ0XL16okydPqu7du+u+Jh07dlTHjx9XYWFhVr021oiJiVF3795Vs2fPVnny5LHbe1/vsW7dukTjfBPPgQDwJrl//75asWKFatmyZaKfGwUKFFDLly9Xd+7cMfm5a47Q0FB17tw59f3335v8bNF65MmTR/3000/qxIkTRt81o6Oj1fXr19WkSZNUpkyZHPKZGv/7YayYmBh17tw5NX78eFWwYEHNbZs1a6aWLVumAgMDrX5dX3897t69q9asWaPeeusts+LPli2b+uWXX9SZM2dUeHh4kmMAgNQgMDBQ/ffff+rw4cMqICBAvf3223b9LHF1dVXvvPOO+uWXX1RQUJBN9sFZPyNfd+PGDTVo0CCzrkP16NFDXb9+3erX5NatWypz5sy6fWTJkkV99tlnavPmzerJkyeJtrl7926VI0cOk23VqlVLTZo0SW3ZskVt3rxZ+fv7q4YNGybY1/fff189ffrU6n1KzPXr1xN87zLnWoA1goKCVKVKlax670+dOlW37Tp16lj9Hhw5cqRd9tccoaGhavfu3apFixYOOf7atm2b5H24evVq3Pu1SZMmSW7v0aNHavHixSp79uyacadNm1ZNmTJFXbt2zeQ1p6ioKBUYGKh++eUX3d8Ub731ltq+fbt6/Phxgu2vXLmimjRpYvT8IkWKqJMnT5q9L7t27dI89mMfZcuWVRs2bFAxMTFJfekAINV5+fKlWrVqlcqfP7/R+dPT01P98ssv6uHDh3aN4eLFiypjxoxKRFS+fPmsbuePP/5QHh4eRvvh7u6uOnbsqGbPnq3+/vtvtWbNGvXTTz+p0qVLJ3jOzz//bPZnxcuXL9U///yjmjZtqvsZ1KVLF3X8+HHNMdvHjx+r9evXa477iYjy9vZWf/zxh7p+/bqKioqy+vWxh8jISDV+/HiVNWtWo7izZs2qunfvrn7//Xe1fv16tWvXLrV161a1cOFCNXz4cPXOO+8YfYdwcXFRHTp0UFeuXEn2fYk/1lyxYkW79TNx4kST79PEHhUqVFD37t3TbHfXrl1J+s5qjujoaHXz5k01YcIE5e7urtlW9uzZ1aJFi9StW7c0r7P++++/ysvLy+z4+vXrFzd+/PLlS5U2bVrN52bIkEHt379fcz9q165ttE2jRo1UqVKl4v5fqFAh9e2336oVK1aoHTt2qJUrV6pRo0YleE7svu7Zs8es1y85hYeHqx9//FH5+PiY/RqnS5dOZc+eXaVPn165uLiY/F6/adMmm8R3/fp1VaVKFZNxFClSRI0cOVKtW7dObd++Xc2bN0917do1wfulQoUK6tKlS2b1FRMTo+7du6cWLlyoex3Cx8dHTZ8+XQUFBWn+/rlx44ZatGiRbk6Bm5ub+uabb9Tp06dN5jxERkaqoKAgNX36dJOfvfHPh9988406f/68ioiISLD91atXEx3bKVq0qNqwYYNu/saFCxfUuHHjlKenp2Y7mTNnVtOmTVOBgYEJ4ogVFham/vvvP/Xdd98pb29vzXYyZsyoZsyYoW7evJno+MumTZsSzT2IfXh6eqr58+cn2N7UMS4iysvLS/Xs2VMdPnw4wfOdKSfm5cuX6uLFi+rzzz/XbaNSpUpq165dZl0vU+rV+/fTTz81+3wQ+/D19VVr1641qw+llHr69KkqVqyY2e3XqlUrwfXFhg0baj7XYDCoP/74I9EYzp07pzsW2LFjR/Xs2TOT20ZGRqrAwED1448/6h5fhQoVUhs3blSPHj0y+7VxxHlv2rRpKl26dJr7kTVr1rjPa1PfMSMjI9X58+fVl19+qft3rF+/vjpw4IBdr6sCAAAASUWhCAAAAABwoNgB+Vy5cpmVpO7t7a0KFy6sSpUqpSZPnmxWH48fP1bp0qVT7du3t1tcrw9e5c6dW5UsWVI1atTIrP727NmjOWD0+iNLlixq2rRpVt/cFhMTo7p27apEXiUvDRkyRHXq1EnVr19fVahQQRUqVEjlyJFD+fr6Ki8vL+Xu7m4yUUBvoPbWrVsm+3727Jlq3ry57vbu7u7qm2++US9evEiw7ZEjR0zGkSZNGrPfC0q9GsieNGmSqlixokqXLp3y9fVVjRo1UsuWLTOZHHb69GmrH9YU8ogVHh6uRo0alehNFfEfZcqUUStXrjS7j7lz51pVpERE1Ny5c+PaseTm0/iPunXrWv36mGPevHnK09PT6vhs9fDx8TF6P8fiHAgAb4bRo0cn6bPk2rVrFvU3cuRIm32OzZkzR40aNUp5enpa9J3QHo+iRYua3N8PP/zQ4rZcXV3Vvn37rP6bXrt2zSb7ZG1hMQBITcqVK2fTzws3Nzfl4+Oj/Pz8VPHixVWDBg1Ur1691Lhx49SOHTtUSEiIzWJ39s9IpZQqVaqUKlmypMqRI4dV1wBy5cqlSpUqZdXvu1WrVlnUV/78+RNtMyQkRH3xxRe6Nw29/qhRo4bauXOnxfFbo1WrVkpEVN68eW1SmEpLZGSkGjdunNmFSd555x11/PjxRNu9evWq1dfB9G5qsxdPT0+rbsKz9WPRokVJ3pdvvvkmrj1Lru+97tq1a1afk3r16hXXTr169axqw2AwKKWUGjx4cKLPzZYtm+Z1ZKWUOnz4sMXFdzw9PVWnTp2sfv0AILWYPHmyKlWqlCpYsKBZN2obDAaVJ08eq7/3mWPr1q3K1dU1SYUilHpVdKJNmzZmf965ubmpzp07q8uXL5vdR1I/B5Wy3RicswgLC1NTpkyxurBf5syZ1SeffKLOnTvnsH04ceJEXDwzZsywa1+nTp1SjRo1Muu1SZcunRozZozmWGKs58+fJ2ncOjFJKUSh9Z49cOCAbuEykVfFYzZv3my07cCBA00+v3jx4urMmTO6+2LqJvIePXqoJ0+eqM6dO5u1T+7u7qpv375OXyD/yZMn6o8//lBly5a16m/n5uamGjdurJYvX27zomtRUVFq8uTJKleuXGbHU6BAARUQEGB20ZykXKeP//tn7ty5VrcTP+chKef+OXPmJCmO+Mdhr169rG7n+++/j2vngw8+sLqdxMa11q9fn+jvvdKlS6ujR48abfv6MV6kSBE1fvx4kzf1O1NOjLV/lwIFCiRyJPzPpk2bzJo4yMXFRXXp0sXi8UellLpz506i+W1p06ZVEyZMMLo2tmLFCpPPz5Ahg1qxYoXZMTx69EiNGjVKlS5dWnl5eaksWbKoVq1aqa1bt2pu8/3331v1+sf/fpeY5Djv7dq1y+rrPvGP70KFCtn9/QgAAAAkJ4NSSgkAAAAAwCEuXrwoERERVm2bNWtWyZo1q1nPvXbtmmTIkEEyZsxo97ji8/DwkKJFi5r9/IMHD8pff/0l+/btk8uXL8vTp08lXbp0kiNHDilTpoy0bt1amjdvLj4+PlbHNGDAAJkyZYq0bt1aVq5cKQaDwexto6OjJSIiQsLDw+Xhw4dy69YtOX36tKxdu1a2b98e9zx/f3/p27evZjvr1q2T2bNny6FDhyQ4OFgyZswoBQoUkHfffVe6du0qBQoU0Nxu2LBhcv78efHz85N3331XvvrqKylUqJD5L0AKEx4eLmvXrpXNmzfLv//+K9euXZPnz5+Lh4eHZMqUSYoXLy5VqlSR1q1bS6VKlSxqOyQkRG7evGlVXLlz5xZfX18RETlz5oxVbaRNm1bzb/2m4BwIAG+G+/fvy/37963evlixYuLu7p5s/cUX/zPfWd26dUseP35s8XYFChSQtGnTWtVnZGSkXLhwwaptbRUDAADmsPY3++us/X134cIFiYyMNOu5Li4uUrJkSbOeGxISIqtWrZJt27bJyZMn5ebNmxIaGipeXl6SOXNmKV26tFStWlXat28vxYoVszhua23btk0aNWoko0aNkuHDh9u9v/DwcFmxYoVs2LBBjh8/Ljdv3pSIiAjx8/OTXLlySe3ataVNmzZSo0YNu8cC60VFRUmePHnk7t27kiNHDrl+/bq4ublZ1VZSvqdmzJhRcuXKJSIigYGBEhoaalU7pUuXNvs7ut5vndDQUAkMDLS4f645AkDSrg3Z87r+rFmz5OjRozJlypQktxUYGCgrVqyQ3bt3y9mzZ+X+/fvy4sUL8fHxkWzZskn58uWlZs2a0r59e/Hz87O47aR8DorYbgzOGQUFBcnOnTvlwIEDcuHCBbl69ao8efJEwsLCxM3NTXx8fCR79uxSpEgRKV++vNSpU0eqVq1q0fVNe6lRo4acOXNGbt++nSzX5M6cOSNLliyR3bt3y4ULF+Tx48fi5eUlOXLkkGLFikmrVq2kdevWkjlzZrvHkhhrv3uJ6L9nnz17JpMnT5ZVq1bJxYsX5cWLF5I9e3YpV66ctGvXTtq1aydp0qQx2i4iIkK+/fZbmT9/vjx58kRKlCghPXr0kH79+omnp6duPHXq1JHdu3cnWNajRw+ZM2eOiIgcO3ZMVqxYIdu3b5ebN29KcHCwuLq6SrZs2aRMmTJSv3596dy5s2TLls2q18NRbt68Kdu2bZOjR48mODafP38uSinJkCGDZMiQQfLlyydvvfWWVKhQQZo0aWL3919UVJRs2rRJNm7cKMeOHZMrV67Is2fPxNXVVTJmzChFihSRypUrS4sWLaRWrVoW5a/Y6vdPUs7Z8X9/JPXcLyI2+eywdsxEJGEOQlLaMWdc6/79+/Lnn3/KunXr5NKlSxIRESE5cuSQKlWqSKdOnaR169bi4uJitF2dOnVk//790qJFC+nXr580aNBA833jTDkx1r6eln43i4mJkc2bN8uKFSvk0KFDEhQUJBEREZI1a1YpUKCANG7cOMnXy2JiYmTRokWyYMECOXHihISEhEiWLFmkSJEi0rJlS+nSpYvmOXTWrFny008/SVBQkOTOnVvatGkjQ4cOtfs5Nynfj2O/35nLnue9pHxexz++rc0JIgcIAAAAzopCEQAAAACAN8awYcNkzJgxkitXLjl37pykT5/eZm37+/tL//79RUTk008/lUmTJtmsbQAAAAAAAABIjVauXClt27YVEZFvv/1WfvzxRwdHBAAAAKRciRWKAAAAAAAAQOpiXGYQAAAAAIBU6I8//pAxY8aIiMikSZNsWiRCRKRfv36SL18+ERGJjo62adsAAAAAAAAAkBpNnz5dREQMBoN89NFHDo4GAAAAAAAAAAAAAFIOCkUAAAAAAFK9AwcOyBdffCEiIoUKFZL33nvPLv1kyZJFRETy5Mljl/YBAAAAAAAAILW4evWqbNu2TUREGjZsKPnz53dsQAAAAAAAAAAAAACQglAoAgAAAACQqoWGhkrXrl0lKipKRF4lHBsMBpv38+LFC7l48aKIiNSqVcvm7QMAAAAAAABAavLHH39ITEyMiIj06dPHwdEAAAAAAAAAAAAAQMpCoQgAAAAAQKo2atQoCQwMjPt/+vTp7dJPQECAPHv2TIoUKSLVqlWzSx8AAAAAAAAAkBrcunVLpk2bJiIiefLkkVatWjk4IgAAAAAAAAAAAABIWSgUAQAAAABItV6+fCn+/v4Jlq1atUpevHhh035OnjwpQ4cOFRGRsWPH2rRtAAAAAAAAAEhNYmJipE+fPhIeHi4iIp9//rm4ubk5OCoAAAAAAAAAAAAASFkoFAEAAAAASLWuXbsmT58+TbDs0qVL0qZNG3n06JFN+ti7d6/UrVtXwsLCpFOnTtK6dWubtAsAAAAAAAAAKU1QUJC0bdtW/Pz8JEuWLNK4cWOZOXOmhISEiIjIs2fPpGvXrrJx40YREcmVK5d8/PHHDowYAAAASD2io6ONlimlHBAJAAAAAAAAkgOFIgAAAAAAqVbu3LnFy8vLaPnmzZulSJEiMnr0aKsLRty5c0f69+8vderUkcePH0udOnVkzpw5SYwYAAAAAAAAAFKmiIgIadq0qaxcuVKCg4Pl4cOHsnXrVvnoo48ke/bsUq1aNcmbN68sXrw4bpvx48dL2rRpHRg1AAAAkHpERkaatQwAAAAAAACpg0FRJhQAAAAAkIr9/PPP8s0332iud3V1lWrVqkmDBg2kRIkSUqxYMcmWLZukTZtWvL29JTIyUp4/fy4hISFy/vx5OXPmjGzdulV2794tMTExIiLSsGFD+euvvyR9+vTJtVsAAAAAAAAA4FT2798v77zzjtnP7969u8ydO9eOEQEAAABvlpIlS8p///2XYFnTpk1l48aNDooIAAAAAAAA9uTm6AAAAAAAALCnr7/+WsLCwmT06NFiqlZidHS07Nu3T/bt22dx2y4uLvLFF1/ITz/9JG5u/MQGAAAAAAAA8OZ6+PCh2c+tUaOGTJ061Y7RAAAAAG+WqKgoCQoKMlp+6dIlB0QDAAAAAACA5ODi6AAAAAAAALC3H374QXbv3i2VK1e2WZuVK1eWPXv2yLhx4ygSAQAAAAAAAOCNV716dfHy8kr0eU2bNpWtW7ea9VwAAAAA5pk6daqEhYUZLb98+bIsW7bMAREBAAAAAADA3gzK1HSqAAAAAACkQkopWbFihQQEBMj27dslKirKou3d3d2lYcOGMmDAAGnatKkYDAY7RQoAAAAAAAAAKc/UqVOlX79+JtelS5dOvv/+exk0aBDXVgEAAIAkunLligQHB0tgYKAsW7ZMVq9eLVq3Bbi4uEifPn2kSZMmkidPHsmcObPky5cvmSMGAAAAAACArVEoAgAAAADwRrp//75s27ZNjh07JidOnJAbN27IkydP5MmTJyIi4u3tLX5+fpI/f34pW7asVKlSRRo1aiS+vr6ODRwAAAAAAAAAnNimTZvk559/lqNHj4rBYJCiRYtKq1atpH///uLn5+fo8AAAAIBUIX/+/BIUFGTVtrVr15Zdu3bZNiAAAAAAAAAkOwpFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApBAujg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5qFQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQApBoQgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAUgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQSFIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFIICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkEBSKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCEoFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBCUCgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAghaBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQApBoQgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAUgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQSFIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFIICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkEBSKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCEoFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBCUCgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAghaBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQApBoQgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAUgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQSFIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFIICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkEBSKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCEoFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBCUCgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAghaBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQApBoQgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAUgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQSFIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFIICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkEBSKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCEoFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBCUCgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAghaBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQApBoQgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAUgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQSFIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFIICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkEBSKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCEoFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBCUCgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAghaBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQApBoQgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAUgkIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQSFIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFIICkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkEBSKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASCEoFAEAAACnd/nyZfn5558dHYame/fuyW+//SYRERGODuWNt3btWqlUqZKkSZNGcuXKJV9++aW8ePHC0WHh/9u3b5906dJFPD09xWAwyLVr1xwdEmATSinZsmWLtGrVSlxdXcVgMDg6JCSDGzduSOfOncXX11fSpk0rzZo1kzNnzjg6LPx/d+7ckVGjRkmePHnEYDDIyJEjHR0SkCqEhYVJQECAVKpUSQwGg9SpU8cm7UZGRsqyZcukbt26YjAYJH/+/DZp19lwbgIAAAAAAEhdLMllUErJ5s2bpWXLlg4dT5o9e7acOnXKIX0DgKM9efJEJk2aJMWLFxeDwSA9e/Z0dEhIBuSTOTfyyQD7uHLligwdOlSyZMkiBoNB5syZY5N235Qxb85NAAAgJXFzdAAAAACAlnv37sk333wj8+bNk/Lly8vXX3/t6JBMioiIkEGDBsmkSZPkxx9/lPfff9/RIb2R5s2bJz169Ij7/+3bt+XXX3+Vf//9V7Zs2SIuLtTJc4Rnz57JggULxN/fX06fPu3ocACbevz4scyePVv8/f3l8uXLjg4Hyeju3btSrVo1uXXrVtyyTZs2yb59++TQoUNSsmRJB0b3ZtuxY4f4+/vL6tWrJSoqytHhAKnG+fPnxd/fX+bOnStPnjyxWbs3btyQ6dOny8yZM+Xu3bs2a9fZcG4CAAAAAABIXSzJZQgODpbZs2fL1KlT5erVq8kYpWn79++X3r17S9euXeXHH3+U3LlzOzokALC7f//9V6ZMmSILFy6UsLAwR4eDZEQ+mXMinwywj+joaFm/fr34+/vL1q1bRSlls7bfhDFvzk0AACClolAEAAAAnI5SSiZPnizDhw+XJ0+eSMuWLWXy5MmODktTnjx55K+//pLevXtLly5dZPbs2TJt2jQpWLCgo0OziytXrsiGDRvk4MGDcv78eblx44Y8e/ZMlFLi4+MjWbJkkSJFikjJkiWlRo0aUrNmTcmUKZNme1u3bpXGjRvL4sWLpVOnTlbF9PLlSxk0aJDJddu3b5eVK1dKu3btrGob1jl9+rRMmTJFFixYIM+fP3d0OIBNHTt2TCZPnixLliyR8PBwR4cDBxg9enSCIhGxnj17JkOHDpX169c7IKo3V0hIiMydO1f8/f3lwoULjg4HSDUiIyNl9erV4u/vLzt37rRZu0op2bJli/j7+8uGDRskOjraZm07E85NAAAAAAAAqY8luQwHDx4Uf39/WbZsmbx8+TKZI9U2duxYCQ4Olnnz5smqVavkl19+kb59+4rBYHB0aABgUxEREbJ8+XKZPHmyHDx40NHhwAHIJ3M+5JMB9nH37l2ZOXOmTJ8+XW7cuGGzdt+UMW/OTQAAIKWjUAQAAACcyp07d6RHjx6ybds28fb2loULF8r777/v6LAS1bZtW6lYsaK0bNlStm/fLmXKlJGxY8fKgAEDHB2azaxatUrGjx8v+/fv13zOo0eP5NGjR3Lx4kXZsGGDjBs3TlxcXKRGjRrSvn17adeuneTIkSPBNr///nuSYzt9+rQ8evRIc/3u3bsZ2EsGL1++lL/++kv8/f113ydASvTixQtZtmyZTJ48WY4cOeLocOBgu3bt0ly3e/fu5AvkDXfs2DHx9/eXxYsXM/MPYEM3btyQGTNmyMyZM+XOnTs2a9fZZk60F85NAAAAAAAAqZM5uQyhoaGyaNEimTJlivz777+OCTQRmTJlktWrV8uvv/4qX331lfTv318WLVokixYtkjx58jg6PE09e/aUuXPnOjoMs504cULeeustR4cBvJGCgoJk2rRpMnPmTHnw4IGjw4EDkU/mHMgnA+xn165dMmXKFFm9erVERkbarN03YcybcxMAAEhNKBQBAAAAp7Fnzx5p166dPHjwQPLmzStr1qxJUQPn+fPnl/3790unTp1k48aN8sknn8j+/ftlxowZkjZtWkeHZ7WLFy/KBx98YPJiqJubm5QoUUKyZs0qadOmlZCQEAkMDExQlTgmJkb27t0re/fulUGDBkmtWrWkfv36kjZtWtmwYYNs3749yTG6uLgkaT2S7s6dO1KuXDkG2ZEq7dixQzp06CAPHz50dChwEnqfK3zmJI9u3brJggULHB0GkOpMmzZNBgwYINHR0TZtd8OGDdK2bVunmjnRHjg3AQAAAAAApE7m5DKsXr1aevbsKU+ePHFMkBYaMmSIFC9eXDp27Cj79u2T8uXLy6JFi6RRo0aODg0ArPbZZ5/Jn3/+KTExMY4OBU6AfDLHI58MsJ+aNWvKvn37bN7umzDmzbkJAACkNvy6BQAAgFOYO3euNGzYUB48eCAFCxaUAwcOpKgiEbF8fHxk9erV8t5774mIyOLFi6Vq1apy69YtB0dmnRUrVkj58uWNikRUrFhRli5dKg8fPpRTp07J9u3bZc2aNbJ79265fv263Lt3TwICAqRevXoJtouOjpadO3fK8OHDZdCgQTYpEiEiUqZMGfHz89Nc/3ocsL0cOXJI7969Ze7cuXLmzBn5559/pGnTpo4OC7CJIkWKSI0aNWT69Omye/dumT9/vuTLl8/RYcGB6tevr7mOz5zk0aFDB/nhhx/kwIEDcv78eZkwYQKJPIANNGrUSPr37y9bt26VixcvyooVKyRr1qxJbrdmzZrSq1cvWbt2rVy4cEE2b94sRYoUsUHEzoVzEwAAAAAAQOpjbi5DqVKlpG7dujJz5kzZvXu3LFy4UAoWLJj8AVugefPmsnHjRkmXLp08fPhQmjZtKhMnTnR0WABgteLFi8uAAQNk5cqVsnv3bhk2bJgYDAZHhwUHIZ/M8cgnA+ynV69eMn78ePnnn3/k3Llz8tVXX9mk3TdhzJtzEwAASG0MSinl6CAAAADwZvvtt99k0KBBIiKSO3du2bt3r+TPn9+xQSVRVFSUtGjRQjZv3iwiIvny5ZNt27alqJuhAgIC5KOPPpL4Pxk8PDzkt99+k379+pndztGjR+Wbb75JtCjE4sWLpVOnTlbHu2TJEnn//ffl9Z84TZo0kY0bNzLw6wChoaGSK1cuzVlzAgMDU/yxjjfXoUOHpFq1aprrudySuj148EAqV64sQUFBCZZnyJBBDh06JMWLF3dQZG+23r17S0BAgMl1I0aMkJEjRyZvQEAqsWDBAunWrZvJdbVr15Zdu3ZZ1e6+ffukZs2aJtfly5dPrl27ZlW7zoZzEwAAAAAAQMqV1FyGY8eOSaVKlTTXO8t40s6dO6Vx48YSGRkpIiLDhg2T0aNHOziqhHr27Clz585NsMzFxUXatm0rrVu3llKlSkm2bNnE19dX3N3dxdXV1ex2YiV2XTImJkZCQ0Pl1q1bcvr0adm4caMsXbpUwsPDjZ574sSJFDk5CpAa9e3bV6ZNm2ZyXY8ePWTOnDnJGxCSFflkzod8MsB+GjRoIH///bfJdbNnz5aePXta1e6bMObNuQkAAKRkqausFwAAAFKc+IkVnp6esnbt2lRxMc3NzU2WL18uZcuWFRGRoKAgqVWrVoq52Wnt2rXSp0+fBINknp6esnnzZouKRIiIVKpUSbZt2yZz5syRtGnT2jrUOJ06dZINGzZI5cqVxdPTU3LkyCFDhw6V1atXM6jnIGnTppX69es7OgzALqpWrer0s0DBfvz8/OTAgQPSpUsXyZAhg3h7e0vTpk3lwIEDFIlwoFatWjk6BCBVatmypV2+T9eoUUOyZMli83adDecmAAAAAACAlMkWuQwVK1aUQoUK2SE626pbt67MnDkz7v8//vijfP311w6MKHF58+aVAwcOyLJly+T999+XcuXKSfbs2SVNmjSaRSKSysXFRXx8fKR48eLSvn17mT17tgQGBkqbNm3s0h8A23j//fcdHQIciHwy50M+GWA/9hqbfhPGvDk3AQCAlIxCEQAAAHCYRYsWyRdffBH3/4kTJ0r58uUdGJFtpUuXTpYsWSJeXl4iInL37l1p2rSpPH782MGR6bt+/bp069ZNYmJiEiwPCAiQunXrWt1ujx49ZO/evZI9e/akhqipadOmcuTIEXnx4oXcvn1bfvnlF/H09LRbf0hcSkh8AqxVunRpR4cAB8qZM6csWLBAQkJCJDQ0VDZu3CglS5Z0dFhvND5zAPtInz69XQo6GAwGKVCggM3bdTacmwAAAAAAAFIeW+YylCpVylZh2VX37t2lR48ecf//5ZdfxN/f34ERacuRI4fs2bNHqlSp4uhQJFu2bLJixQrp37+/o0MBoKFMmTKODgEORj6Z82H8DLAPex1bb8ox+6bsJwAASH0oFAEAAACH2Lt3r3zwwQeilBKRVwMy/fr1c3BUtleiRAkZN25c3P/Pnz8vrVu3lpcvXzowKn2ffPKJPH36NMGyRo0aSZcuXZLcdvny5WXz5s2SPn36JLeFlCFjxoyODgGwm8yZMzs6BADx8JkD2I+9jq834bh9E/YRAAAAAAAgNbF1LkNKGk/6448/EhR3HThwoKxfv96BEZk2f/58yZcvn6PDiGMwGOT333+XmjVrOjoUACb4+vqKiwu3TADOhPEzwD4Y10+aN2U/AQBA6sNVDwAAACS7u3fvSvv27eOKJXh4eMhvv/3m2KDsaMCAAdK0adO4/+/Zs0cGDhzowIi0HT58WNatW2e03JbxlitXTmbOnGmz9uDcvL29HR0CYDfp0qVzdAgA4uEzB7Afex1fb8Jx+ybsIwAAAAAAQGphj1yGlDSe5OPjIwsXLoy7oTo6Olo6deokFy9edHBk/9OiRQupX7++o8Mw4urqKpMnTxaDweDoUAC8xmAwSNq0aR0dBoB4GD8D7INx/aR5U/YTAACkPhSKAAAAQLKKiYmRLl26yL179+KWDRw4UIoWLerAqOxvwoQJ4urqGvf/GTNmyOrVqx0XkIZp06YZLXNxcZGGDRvatJ/27dtLmzZtbNomnJOHh4ejQwDsxtPT09EhAIiHzxzAfux1fL0Jx+2bsI8AAAAAAACpgb1yGVLaeFK1atWkc+fOcf8PDQ2VLl26SGRkpAOj+p++ffs6OgRNZcqUkXfeecfRYQAwIaWdi4HUjvEzwD4Y10+aN2U/AQBA6kOhCAAAACSr8ePHy44dO+L+7+npKUOGDHFgRMmjePHi0qNHjwTLevfuLbdv33ZQRMaUUrJu3Tqj5X5+fnYZMP3hhx+YTeMN4O7u7ugQALvh/Q04F45JwH7sdXy9Ccftm7CPAAAAAAAAqYG9chlS4s1GP/zwQ4LrWkePHpXvvvvOgRG9kiZNGmnQoIGjw9DVrFkzR4cAwASu1QPOhWMSsA/G9ZPmTdlPAACQ+lAoAgAAAMnmypUrMmLEiATLunTpItmzZ3dQRMlr5MiRCQouPHz4UD788EMHRpTQpUuXJDg42Gj5y5cv7dJf6dKlpXHjxnZpG87DxYWfnUi9XF1dHR0CgHj4zAHsx17H15tw3L4J+wgAAAAAAJDS2TOXISWOJxUsWFA++uijBMvGjh0rBw8edFBEr5QvX97pC29UrlzZ0SEAMCElnouB1IzxM8A+GNdPmjdlPwEAQOrDtxgAAAAkm759+0p4eHiCZZ999pmDokl+efLkkY4dOyZYtnnzZlm/fr2DIkro0qVLJpeHhIRIUFCQXfrs0qWLXdqF8+DiOVIz3t+Ac+GYBOyHhBLrvQn7CAAAAAAAkNLZM5fBYDDYpJ3k9sUXXySIPSYmRj777DNRSjkspkKFCjmsb3OVLFnS0SEAMIFr9YBz4ZgE7INx/aR5U/YTAACkPnyLAQAAQLJYt26dbN++PcGyUqVKSdmyZR0UkWP06dPHaNmQIUMkMjLSAdEk9OTJE811CxYssEufrVq1omo/gBQrpSb2AQAAAAAAAAAA4BV75zKk1PGkQoUKSf369RMs++eff2T+/PkOiefrr7+WkSNHOqRvS+TIkUN27dolhQsXdnQoAOJJqediAAAAAACAxFAoAgAAAHYXHR0tX331ldHyTp06OSAax6pevbrkypUrwbILFy7IlClTHBTR/+hVwx0/frzcunXL5n36+PhIhQoVbN4uAAAAAAAAAAAAAAB6yGXQ1759e6Nl3377rYSFhSV7LMWLF5dChQole7/WqF27tqRLl87RYQAAAAAAAAB4A1AoAgAAAHa3cOFC+e+//4yWm0oqSO0MBoO0atXKaPnPP/8sERERDojofzJnzqy57vHjx9KhQwcJDw+3eb81a9a0eZsAAAAAAAAAAAAAAOghl0Ff69atxWAwJFh269YtmTlzpoMiAgAAAAAAAADER6EIAAAA2JVSSsaOHWu0PHfu3FKsWDEHROR4DRs2NFp29+5dWbhwoQOi+Z9SpUrprj9w4IA0atRIHj16ZNN+y5QpY9P2AAAAAAAAAAAAAADQQy5D4rJmzSply5Y1Wv7bb79JdHS0AyICAAAAAAAAAMRHoQgAAADY1caNG+Xs2bNGy+vWrWv3vqOjo2X79u3yww8/SPPmzaV48eKSPXt2SZMmjXh6ekqmTJmkSJEi0qxZM/n666/l77//loiICLvHVbt2bXFxMf4qPmHCBLv3rSdnzpxSqFAh3efs27dPKleuLCdOnLBZv4kVqLCUUkq2b98ubdu2FXd3d6MZTqxx5coVGTx4sGTKlEkMBoPs2rVL9/nnz5+Xr776SipXriwZM2YUDw8PyZ49uzRu3FimTJkiz549S3JM5sQ8ffp06dSpk5QvX17y5MkjadKkES8vL8maNauUKFFC2rRpI//3f/8nu3fvlqioKLvHlBzu3r0rM2fOlG7duknFihUlS5Ys4unpKenSpZOCBQtKtWrV5NNPP5XNmzfLixcvHB2uVcLDw2XmzJny1ltvicFgkJ49e+o+//nz5zJ16lRp3ry55MyZUzw8PMTX11cqVqwogwcPlnPnziVL3Pfu3ZOpU6dKz549pVy5cpItWzbx8PAQb29vyZYtm7z99tvSo0cPmTVrlty+fTtZYorv6tWrMmnSJGnXrp2UKFFCMmbMKO7u7pIlSxYpVaqU9OzZU/766y95+fJlsscWFhYmK1askAEDBsg777wjOXPmFG9vb/H09JTcuXNLxYoVpVu3brJo0SJ5+PBhssfnaJcuXZKxY8dKo0aNpGDBguLj4yOenp6SN29eadq0qYwZM0b+/fdfo+369+8vvr6+Se4/KChIhg0bJtmyZRODwSBz5sxJUnsp8Rh/9uyZrFu3TgYNGiTVq1eXwoULi6+vr7i7u0vGjBklX758UrduXRkwYIAsXLgw1bxPIyMjZePGjTJ48GCpW7eu5MmTR9KmTSseHh6SI0cOeeutt6R9+/YSEBDgkPOaJU6fPi29e/cWLy8vyZ8/f6LPHTx4sFSoUCHuXJk5c2apUqWKDB48WA4ePGi3OJ8/fy7Lly+XIUOGSJ06daRw4cKSJUsWcXd3F29vb/Hz85OyZctKu3bt5Oeff7bpd9ZYL1++lCVLlkjjxo3F1dVV8/WKioqSgIAAqVOnjvj6+oq3t7e89dZbMn78eImMjLSoz4iICFm3bp0MGzZMGjVqJEWLFpWsWbOKp6enpEmTRrJkySIlSpSQVq1ayciRI+XAgQMSExNjg71Nfc6ePSu//vqrtG7dWkqUKJHgXFWsWDGpW7eufP/99/LPP/+IUsrR4QIAAAAAAMCOHJnLYI6jR4/KwIEDpWzZspIhQwbx8PCQbNmySe3atWXkyJFy/vz5ZInD1OsRGBgoq1atSpb+kXpcu3ZNJk6cKJ07d5aSJUuKn5+fuLu7S9q0aSVHjhxSo0YN6dOnjyxevNjmE5g4SkrMNREROXLkiIwcOVKaN28uhQoVkowZM4qbm5ukT59e8ufPLw0bNpQhQ4bIli1bkn38PDo6Wnbt2iVDhw6VBg0aSJ48eSRdunTi6ekpefLkkWrVqsnw4cPl2LFjyRpXrMDAQPnzzz+lQ4cOUrZsWcmUKZN4eHhI+vTppUiRIlKzZk35+uuvU1WejrmUUrJ582b5/PPPpVKlSpIrVy7x9PQUHx8fKV26tHTv3l3mzJkjDx48SLBdaGio+Pn5yeeff57k/sknI58speeTRUVFybJly6R69epiMBhk5MiRus9dvny5dO7cWQoWLCje3t7i5eUlefPmlWbNmsmECRPk3r17dov10qVLMmXKFOnZs6eUL19e8ubNK+nTp4/7PMmVK5e888470rt3b5k/f75dYrlx44aMHj1aChcurPt63bp1S4YMGSLFixeXNGnSSObMmaV58+ayZ88ei/u8efOmzJw5Uz7++GN5++23JX/+/OLr6ytubm7i4+MjOXLkkCpVqkj37t1l+vTpEhQUlMS9TJ1SUz4OAABAslAAAACAHTVv3lyJiNFj1qxZduszNDRUjRo1SuXJk8dk33qP7Nmzqx9++EGFhobaLT6llCpVqpTJ/rdu3WrXfhPz9ddfm/U6eXh4qF9++UVFRUU5NN74Hj16pCZMmKCKFi1qFK81YmJi1MaNG1WzZs2Ui4tLgvZ27txpcpsrV66o9957z6z32Zo1a5Kwt9r27t2rGjVqZNSnt7e3ypQpk2ZMGTNmVIMHD1ZBQUE2jWf27NmafQYGBtqsnyNHjqiWLVsqV1dXs4/3TJkyqV9//VW9ePHCZnHY05UrV9TgwYNVxowZE+xHjx49TD7/xYsX6pdfflEZMmTQfR1cXFzUJ598oiIiIuwS9+7du1WTJk0s+tu4urqq5s2bq927d9slpvh27dpl8pjReuTLl08tWrRIKaXUiBEjNJ9nCzdu3FADBgxQPj4+Zsfn7u6u+vfvr+7evWuTGJzZjRs3VJcuXcx+b+XPn199/vnnatmyZWr8+PHK1dVVZciQwaq+o6Oj1YYNG1Tz5s2NPiNmz55tVZsp8Ri/e/eu+vLLL1W6dOmMjuEsWbIoNzc3zZiaNGlil+89Wq/DiBEjbNbHw4cP1bfffquyZMli9rFpMBhUp06d1OXLl20WR1JFR0ertWvXqnr16hmd50wJCgpSrVu3Nmt/q1Wrpo4cOWKzWK9du6b69u1r0fkw9lGmTBk1b968JMdw9OhR1b9/f6Nj1NTrdfbsWVWmTBnNmGrVqmXW743g4GD15ZdfWvRei30UKFBA/f777yoyMjLJ+66UUrVr1zbZT+3atZPUbo8ePTQ/b20lJiZGLVu2TFWsWNGi17B48eJq5cqVNokhOc5NAAAAAAAAsExy5TJYOp7033//qYYNG5p13blly5bq0qVLNo33dcuXLzfZf/Xq1e3ar71oXZO0xXXJr7/+WhUrVsyqh6lrkUlpT6/d+FauXGl2W/Xq1bPqdVmzZo2qUaOGRddnPTw8VOfOndXJkyet6tORUmquSXh4uJo0aZIqVKiQRX+rzJkzqyFDhqh79+7ZJa5YL1++VBMnTlT58+c3O7YWLVqo8+fPK6WUypcvn8nnaI3FWmrr1q2qTp06ymAwmB1f7ty5VUBAgFPlXtnLhg0bdMfO4j9cXFxU7dq11dixY9Xq1atVq1atlIiozz77zKq+ySd7hXyylJ1P9ujRI/Xzzz8b5cNqjTWuWbPGrPOlu7u7GjhwoHry5InNYl2/fr2qW7euRZ8lIqLc3NxUx44d1ZkzZ5LU/4sXL9SSJUtUo0aNjI5RU6/X1KlTlZeXl8mYDAaD+v33383qd9++fRa/12L7aNq0qdq/f3+S9jtWYGCgZl/W5jPF0mo3NeXjJNe5CQAAwNYoFAEAAAC7uX37tuaFz7Nnz9qlzz179pgctHR1dVVvvfWWatGihWrQoIEqXLiw7sXDQoUKxQ0W2kP37t1N9tu9e3e79WmOmzdvKg8PD7Mvsr799tvq1KlTDo35yJEjqmfPnpoX7EUs+9kTEhKiJk6cqIoUKaLZnqmBvWnTpilvb2+zXzsXF5ckX3yP78mTJ6p9+/YJ+vD29lYjRoxIcBH82bNnavHixaps2bIWD8jEPjw9PVW/fv3MisveF88fPXqkevXqZfTali1bVjVt2lQ1btxY5c2bV3d/8uXLp44ePZrkWOwhJiZGbdq0Sb377rtGg1exD1OJC2fPnrX4b9yoUSOb3Uyq1KuBJ1NJbF5eXqpq1aqqRYsWqmrVqip79uy6cbVp08YuRQ8eP36sOnfubLLPHDlyqFq1aqnmzZur0qVLm0zm+Pjjj9WwYcNsct55XVRUlBo7dqzRea1gwYKqfv36cXFpvSdERKVNm9am5xhns2vXLpU1a9YE++zm5qbKly+v3n33XdW0aVNVqVIllSZNGt33l6WFIu7fv69+/vlnVaBAAc02LXndU/IxHhAQYPS517x5c/X333/H9RMdHa2OHDmievXqZVFSVPyHq6urKliwoHrw4IFZcWm1Y6uB6dmzZxsVCsidO7eqU6eOatGihapQoYJmgQyRV4kWY8aMsUks1nr69KmaNGmS5vdhU4mwmzdvTrQoyesPNzc3NXbs2CTHO23aNJMFIry9vVWNGjVUy5YtVe3atY3OCa8/mjRpop49e2ZR3w8ePFATJ07UPd5ef7327dun0qdPn+jrM2TIEN2+V61apbJly2a0nYeHh3r77bdVy5YtVb169RItjlepUiWbfI6m1EIR586dU9WqVTN671SpUkW1aNFC1alTx+iYfv1Rp04ddf/+/STFYe9zEwAAAAAAACyTnLkMlhSKmD17dqJjG6aulQYEBNg05viuXr2q2ffVq1ft1q+92LNQRO/evS3628U+XF1d4wrVmxuruY/Exq30xvNffxQqVMii1+Pff/9VlSpVMmrHx8dH1axZU7Vo0UJVrlxZZc6cWbNPFxcX1bt3b/X06VOL+naElJpropRSy5YtUzlz5jTqK0eOHKphw4aqWbNmqkyZMrpx+vj4qPHjx6uYmBibxqbUqxvcTb2uLi4uqlSpUqpp06aqYcOGJseK0qVLpzZu3Gi3QhE3b940Kjzk4eGhKlasqJo3b64aNGhgcrwn/qNs2bLqypUrtnmxnEx0dLTJSYt8fX1VrVq1VKtWrVS9evV0j5vYh6WFIsgne4V8soSvbUrLJzt37pzq27ev5nvo9bHGqKgo9cknn1j8t8uXL586ceJEkmJ9+PChZh5W7ty5VaNGjVTz5s1V5cqVdfNTPTw81JQpUyzu/+jRo2rAgAG6Y7+vv16DBw9O9LVxdXXVLVwVFhamPv30U5M5MX5+fqp+/fqqRYsWqlq1arrnAoPBoIYNG2bxfr8uJReKcIZ8HApFAACAlIpCEQAAALCbcePGmbxg5uXlZZdq6MuXLzd5IfCDDz5Qt2/fNnr+hQsXjAZC4j+yZ89utxnZf//9d5N9pk+f3uHVqL/55huLBgrc3NzU4MGDk3VgPjQ0VM2cOdPsWYHNcfr0afXxxx+rtGnTJtpe/IG9yMhI9eGHH1o8wBI7sHH8+PEkvx5nz541qnyfL18+dfHiRc1tIiIirE5UERGVLVs2s2Kz58XzU6dOJbhZO1OmTGrcuHEmb+Q7fvy4ateunWYs3t7easWKFUmKx5ZCQkLUb7/9ZtZg+OuJC+vWrTPrfWzqkdhNq+ZauHCh0U2yRYoUUXPmzDE5g/q+ffs0BwtFRGXNmlVz5gVrnD592uSN/g0aNFC7du0ySl4JCgpSgwcPNhqo1BvAs9ajR48SzOLg5uam+vXrZ/J4vnnzpvrqq690Ewa//vpruyTjONL+/fuVp6dn3D56enqqUaNGqYcPHxo99+XLl2rjxo2qXr16Jl8fcwtF7Nu3T73//vtmFVMyZ2A1JR/jL1++NJlQ4e/vr7vdhg0bLE5ujf/YtGmTWfFpbZ/Ugenw8HDVrVu3uPZiZyQwlSwRHBysfvrpJ93CCt27d1cvX75MUkyWunr1qho0aFCiRQxeT4RduXKlxbNexH8MHTrU6pg///xzo/Y8PT3VuHHjVFhYWILnxsTEqB07dqjy5ctrxlK/fn0VHR2t22dUVJRav369eu+995S7u3ui+xf/9Tp58qTJohamHtmzZ9eMYeLEiUbPd3FxUV999ZV6/Pix0fOPHj2qeZ4TEVWqVCmTn7+WSImFIpYuXZrgs7p48eJq6dKlRu+d2L95hQoVNF/DAgUKJOkGAXudmwAAAAAAAGCd5MxlMLdQxMiRI62+Disiavjw4TaNOz6tG/kdXRjZGvYsFBEdHa0OHjyoevfurXsTW+yjQoUKas+ePZrjBTExMerZs2fq5MmT6ssvv9QtIh/7KF26tJozZ466ePGi2deFQ0ND1enTp1W/fv00X5clS5ZYVIx5/PjxRuNqFStWVCtXrlQRERFGr9umTZtU48aNNferYMGCDp/EREtKzjUJCwtLMP4V+2jbtq06dOiQ0fOfP3+uZs+erYoXL64ZW8OGDU2OZVhr0qRJRseTh4eH+vbbb9X169cTPDcmJkZt377daEzD1dVVc5w3KYUidu7cmWDG89y5c6vp06erJ0+eGD139+7dqn79+pqvW5YsWdTevXutjsVZvX7DerFixdS6detMjtfdv39fjR8/XuXKlcvka2ROoQjyyRIin+xVeyktnyx2wpHGjRsnOiFH/LHG6Oho3X1J7OHj42Py3G+O27dvqxIlShi1WaJECbVr1y6j5z979kyNHz9ed2x9zpw5ifZrzsQPWq/Xd999Z/Zr8/XXX5vs/+nTp6pmzZpGz8+ZM6davXq1Ub7Wixcv1OzZs3ULCI0cOdKyF/81KbFQhDPl41AoAgAApFQUigAAAIDd1KhRw+QFs8qVK9u8r02bNpm8gc2cKrvffvut5sW9tm3b2jxWpZTavn27Zp+rVq2yS5/mCg8Pt6o6ePbs2dWsWbMSvfkuqdauXat8fX0tik1PSEiIqlOnjkXtxQ7svXjxQjVr1szi1yr+o3r16kl6PQIDA1X27NkTtOnt7a07qBcrOjpatWrVyqq4HT2wd/jw4QQX/GvXrm3WTM8BAQGaN326uLioLVu2WB2Trfz4448W3QQeP3Fh9uzZSbqZ183NLcmzJP3xxx9GA5UffPCBCg8PT3TbVatWaVZ29/T0VCtXrkxSbEq9GuR9PZnNxcVF/fnnn4lu+/pgsrXnHS0PHjxQZcqUiWsjT548Zs1OcOTIEaPzQPyHLSrOO4u7d+8qPz+/uH1Lnz692QPVs2bNMjr+EysU8fz58wR/E3MeiQ2spuRjPCYmxmRRlx9//NGs7VesWGF17I4sFBEWFpbgJvyMGTOqzZs3J7rdpUuXVLFixTRj6tq1q9UxWeLIkSOqdevWZiWQiiRMhN27d2+SCnzEPiZNmmRx3MOGDTNqx8XFJdHXPiwsTDfR7o8//tDd/v/+7/8s2rfY1ys4OFjlyZPH7O3SpEljsv8ZM2aYfP6MGTN0446OjjaZzBn7GDx4sO72iUlphSL8/f0TfB8ZOHCgioyM1N0mMjJSffzxx5qvYbZs2dTNmzetisce5yYAAAAAAABYLzlzGcwpFDFq1KgkX4cVETVq1Cibx6+UUu+8847J/sqVK2eX/uzJnoUi4jt06JDuDWwiYvHM3YsXL9Ztz8/PTz169ChJcVevXj1Bm++8847Jm971fPnll0axDR8+3KxckmnTpmmOS/j6+qr9+/dbu2s2l9JzTZ49e2YUv7e3t1k5S2FhYap///6asZUtW9YmE/N8//33Rm0XKFBAnTlzJtFtJ02aZNbYmLWFItauXZug+ET79u3V8+fPE93uhx9+0Lzx29vbW3fW+pRm1qxZCfavbt26ZhWwCQkJUW3btjV6fRIrFEE+WULkk71qK6Xlk/n7++sW43n9EX+sccCAAUl6z4m8Kqph6ev/7NkzkzGXKlUq0cJBR48e1ZzoIm3atOrOnTu621syPh//9Vq6dKlF2/Xt29eo76ioKJNj6Dly5FBBQUG6cV+5ckXlzp1b8/3277//6m6vJ6UVinC2fBwKRQAAgJSKQhEAAACwi/v372sOuH344Yc27Ss4ONjkDbJFihQxa7aP6Oho3UriSb1p2pSbN29q9vf+++/bvD9LXblyRWXNmtWqAYO33nrLroMjFy5cUI0aNVITJkxQK1euVJMmTVI5cuTQjSkxderUUd26dVO//vqrGjNmjCpYsKBuezt37lQRERHq3XffjVuWOXNm9cUXX6gdO3ao4OBgFRERoW7evKnmzp1rVJ3dVHvWCAkJMTnQYu4Nu0q9quid2Mzirz88PDxUz549zWrfHhfPz58/n2Bwt1GjRkazjuhZt26dZkyZM2dW165dsyouW5k0aZKqU6eOGjlypJo0aZJq3bq17t8jNnFh/vz5ceddFxcX1bJlS7Vo0SIVGBioXrx4oR49eqR2796tOnbsaFZ71pg5c6ZRe507dzaqkK7n4MGDCWb/fv29t2PHDqvju3btmtG5zWAwqIULF5rdxo0bN3SLMph73nldWFhYgs+i3Llzq1u3bpm9fVBQkOZsTgaDQa1du9bimJxR3759E+zbzJkzLdp+6dKlCRJvEisUoZRSXbt2VUOHDlWLFi1SixcvVo0aNdL92yc2sJqSj/Gvv/7aqL0SJUpYNLuapTNYuLi4qLx586rbt2+b1b5WO9YOTEdHRyf4vE+fPr1FM1Y9evRIFSlSRDOuxIoW2MKECROUr6+vevfdd1Xnzp0TTSyJTYS9f/++ypkzp0V/L62Hu7u7OnLkiNkx79mzx+RviQ8++MCs7W/evKnSpUtnMpYcOXLoJqOeP39erV69Wt2+fVuFh4erQ4cO6RaMiX292rRpo0REValSRZ09e1YFBQXpzhLUoEEDo74vXrxo8jOwXr16Zu338+fPNRNK0qRJk6QE4ZRUKGLJkiUJzvXff/+9RdsPGTJE8+9WrVo1i753xrL1uQkAAAAAAADWS85cBqUSLxSxaNEim1yHFXk1JrRmzRqb74PezOLm3HDqTJKrUIRSid+E+PTpU5vG36pVqyTH3Lhx47j2cuXKZdbNtfENHz7cKC6tWbi1rFy5UrNwuq+vr1lFApJLSs01iYyMVHXr1jU6f2zcuNGidgYNGqQZW/ny5dWzZ8+sik8ppaZMmWLUZqFChdSNGzfMbsNU/sLrD2vGTvfu3ZugSIS541ex/vzzT814ChcurEJCQiyOydk8ffo0QW5GxowZ1YMHD8zePioqSrVs2TLBa5NYoQjyyf6HfLJX7aTEfLKyZcuq4sWLq44dO6pWrVol+jeIHWtcuHChRX8rvUelSpUSLcAfn9b3xD179pi1/W+//aYZy9ChQ3W3XbdunTp8+LAKCQlRISEhasaMGZoFP2Jfr6CgoLhiIsOGDVOPHj1S27dvV6VKldLcbsGCBUZ9jx492uRz582bZ9Z+r169WrO/Dh06mNWGKSmpUIQz5uNQKAIAAKRUFIoAAACAXeglM4wZM8amfX333Xcm+0lsgCg+vQt8v/76q03jjeXj42Oyv5w5c9qlP0udPHlSZcmSxepBgwYNGqjjx48nS6y7du3SjcVSt27d0vz7iLwaiIudsdnDw0N99913ugPcz5490y1G0qlTJ6v2+9NPPzVqy93dXd27d8+idsaMGWMyLj8/P4sGak2x9cXz0NDQBNWgCxQoYPEMJkop1atXL824GjVqZHF79mZqtoTYR48ePdTmzZuVm5ubEnl1M2liBW5++uknzfY8PT2tek2PHj2qPD09E7SVO3duq9patWqVZnwZMmSw6r0THh6uypYta9TeoEGDLG5r8+bNiZ4DLdW1a9e4bd3c3Kw6f86dO1cznsyZM1uVbOZMHjx4EPc+F3l10/PLly8tbueDDz5I8H6yVEREhG7ChjUDqynlGDeVODthwgSL2rlx44Zmct+cOXMsjut1Wvtt7cD06wmN69ats7iNXbt2ac4M5O7ubveEkrCwMKMEGFOzecU+YhNhW7RoEbcse/bs6ssvv1QHDx5U9+7dU6Ghoeq///5TEydOVCVKlEj0nCjyamY5cxNKatWqZbINc2axiqWXLHv06FGz21FKqbNnz+q+XrG/fapUqWL0nXDFihUqU6ZMCbbJmDGjOn36tFE/3bt3N9nHxIkTzY5VL+n8r7/+smi/40sphSJOnz6tvLy84tpp27atxW28ePFCt6CKNb9nbX1uAgAAAAAAgPWSM5dBKf1rdmfPnk1wPatEiRLq119/VSdPnlShoaHq6dOn6vTp02rSpEmqdOnSZl2LzZw5swoODrbpPvz666+a/U2fPt2mfdlbchaKUEqpGjVqaPZnTcGDq1evao6ztGzZMsnx5s2bN669adOmWbTtunXrjMZDypcvb9HNprEmTpyo+3dKbIZyR0kpuSamCiYPHDjQ4nZiYmLiCmmbelhbvGTPnj0JxoVFXo2pWTq+o5RSnTt31j1nWloo4vbt2wkKIFStWtWqAtPxZ09//dGnTx+L23M2r9/4bWkxDaWUevjwofLz84trw5I8wFjkkyU8hsgnS5yj88leLxTz4MED3fH4ESNGqMDAwATvy6pVq6pp06aps2fPqtDQUHX//n21b98+NXDgQJU2bVrdYyL2MW7cOLPivXLlislcCF9fX7P3OTQ0VHNCodKlS1v0+imlnwsxYsSIuKJYY8eOTbBdWFiY0eQ1IqKaNGliNHnK06dPNSeusOQ7Sv78+U224ePjY9GkTPGlpEIRzpiPQ6EIAACQUlEoAgAAAHbRv39/zQtmixcvtmlfWhdMLbkA+fDhQ814e/XqZdN4Y5UvX16zz8uXL9ulT0tdvnw5wSCKpQ+DwaC6deumrl+/bvdYc+XKpRmHNfRmZG/YsKESeTWoZO7N3GfPntW8KJ0xY0bdma1NOXfunNHAuIio6tWrW7yvd+7c0UwmsWawNj5bXzx/fUaKZcuWWRXXgwcPdCuIHzp0yKp27WXTpk2asVapUkWlT59eubm5WVTYpkqVKpptWnIjrlKvbqgsXLiwUTtTp061cE//Ry9Jq3r16hYfM59//rlROyVKlFDh4eFWxff6DCtJOe+sWbMmwbb9+/e3Kial9D9bfv75Z6vbdQbz5s1LsD/WFlYKDg6OGyS3plCEUkp9++23mq+zNQOrzn6MK6VU9erVTbZlzUxh8WcEiP/IlClTkmfI0dpnawamjx07luDzsVmzZlbHpZck17dvX6vbtVZ4eHiC2VTiP/Lly6eWL18e9/9+/fqp0NBQzbYiIiLU//3f/2l+z4n/mDlzZqKxXbt2TXN7S2bNWbFihWY7c+fONbudWFozUfj5+ans2bMrPz8/devWLZPbPnz4UI0ZM0Z16NBBffnllyooKMjoOeHh4QkSwq09rxw7dkxzv7///nuL9ztWSigUERUVpSpXrhzXRpo0aaz+HfL6Z3P8R5YsWdTz588tas+W5yYAAAAAAAAkTXLmMiilXyiiTJkySuTVePG8efN0bwiLiYlRv/32m0qTJk2i12L79etn033Qu17WtWtXm/Zlb8ldKGL9+vWa/VlSJDi+Zs2amWwvc+bMVt2wHuvUqVNxbeXKlcuigu0PHjxQGTNmNIpp8+bNVsUSExOj6tSpo/naWXvzdHJw9lyT7du3G7WTLl06qwvM3L9/X3cSGktzBp48eaLy5ctnszGOwMBAk8XwYx+WFoqIP+ZnMBjU4cOHrYrr5MmTmjF5eHgkS56VPb1eCOPbb7+1qp3p06fHtWFNoQilyCeLfZBPZh5nzCdbsmSJZjwjRoyIy7/w9fVNNBfkypUrmrkf8R8+Pj7q0aNHicY2cuRIk9tb+p0q/iQW8R/u7u5GRRoSs3//fs39iv3u3aVLF83tjxw5oj755BPVqVMn5e/vb/K71Zw5c2xyXhk4cKBmO6ZyCsyRUgpFOGs+DoUiAABASuUiAAAAgB3s379fc12BAgVs1k9YWJhcu3Ytye1kypRJcubMaXLdzZs3k9y+Kbly5dJct3fvXrv0aalChQrJP//8I++//75V2yulZP78+VKsWDEZMWKEhIWF2TjC/ylZsqRN26tQoYLmum3btkmlSpXk8OHDUr58ebPaK1mypNSuXdvkusePH1v8Pp4yZYpERUUZLdeLW0v27NmlYcOGJtctXLhQgoODLW7THi5fviy///573P8LFiwo7du3t6qtLFmySKVKlTTX//zzz1a1ay96f9fDhw9LVFSUrF69WgYPHmx2m/369dNcd/z4cYvimzhxoly+fDnBsowZM0rPnj0taie+X375RdKmTWty3YEDB2T69Olmt3X48GGZNGmS0fIxY8ZImjRprIqvb9++Vm33uqioKPniiy8SLBs6dKjV7TVp0kRz3YQJEyQiIsLqth3t4MGDCf4fHBwsL1++tLidzJkzJ+m9KSJSqlSpJG3/Omc/xo8dOyYHDhwwWu7j4yOFCxe2qC0RkW7duplc/ujRI5k3b57F7dnLF198IdHR0XH//+qrr6xuS+/YnD17tty7d8/qtq2RJk0aKV26tMl14eHh8vnnn4vBYJDff/9dpkyZIt7e3pptubu7yw8//CB//vmnGAwG3X5/+uknUUrpPufcuXOJ74AZypQpo7nOmu/3Wt/dHzx4IHfv3pXJkydr/p7IlCmTfPPNN7J06VIZO3as5M2b1+g5gYGBEh4ebnFcrytZsqS4uJi+7G+v3zXOYv78+fLPP//E/b9z586SJ08eq9pq2LChuLq6mlwXHBwsM2fOtKpdAAAAAAAAOF5y5TKY4/Tp01KuXDn5999/pVu3brrXWA0Gg3z22WeyZ88eSZ8+vW67AQEBcvv2bZvFmRJyG5xVs2bNpGDBgibXLV++3Ko2e/XqZXL5w4cPZd26dVa1KSKyYsWKuH/37NlTPDw8zN52+PDh8vjx4wTLSpYsKY0bN7YqltgxCq3r3UuWLJHNmzdb1ba9OXOuSXR0tHz22WdGy7t37y6ZM2c2u534/Pz8ZOTIkZrrv/rqK4vGwb755hsJCgpKsCxr1qzy9ddfWxVf/vz5rX4fvm7Xrl2yatWquP/XqVNH3n77bavaKlu2rOTIkcPkuoiICJkwYYJV7TqL18f2rR2j6t69u/j5+SUpFvLJXiGfzDzOmE+mF8/atWtlw4YNkjt3bjl48KC0bt1at62CBQvKtm3bpG7durrPe/bsmfzxxx+Jxmbvsf3IyEiLcyn0vreePn1acuTIIZMnT9Z8TuXKleWPP/6QxYsXS9++fcXd3d3oOc6a05CSpOZ8HAAAAEegUAQAAABsLiIiQs6cOaO5Pnfu3DbrS+9mKi8vL4vaKlKkiMnlrw9m24reRWlTN2M6io+PjyxcuFAWLVokWbJksaqN8PBw+eGHH6REiRIJkgtsKWvWrMnWXoUKFWT79u0WD0ZqDZ6JiFy8eNHsdpRSsnr1apPrrL0Zrlq1aiaXv3z5MsFAtyONGTMmwQCBtYN6sYoWLaq5bsuWLVbdgG4vWbJk0UwM8/T0lLVr18q7775rUZu2ej8GBwfLmDFjjJa3adNGPD09LYopvmzZssnAgQM115tbfEYpJQMHDjS6MTlXrlzSokULq+Nr06aN+Pj4WL19rEWLFsmVK1fi/l+lShXJly+f1e3pva/v378vhw4dsrptR7t7926C/0dERMiOHTusamvAgAFJisXWnznOfIyLiKxcudLk8ty5cydaGMAUrc8ckVeJfc5gz549snv37rj/58iRQ9555x2r29M7Nl++fClbtmyxum1raX2PuX//vty+fVsCAgJ0z8Ov69+/v/Tp00f3OVeuXJG///5b9zl653ZLvt8XLFhQ80Z/a77f653zmzRpkuTvJbba7zRp0mh+H7TX7xpnEBMTI6NHj06wrEOHDla35+Xlpfu7dc2aNVa3DQAAAAAAAMdJzlwGc9StW1f27dtnsrislsqVK8umTZt0rxtGRERIQECALUIUEf3chqCgIJsWpUhtDAaDZgHzAwcOGBXjN0fLli01czdmzJhhcXsir8ZU586dKyKvYv7ggw/M3vbcuXMmi+t26tTJqlhilSlTRvc679ChQxMtTu0IzpxrMnPmTDl79qzR8qT+rfr06aM5NvHkyROj6/daTp06JdOmTTNa3qtXL4sKl7yue/fuVm8b3w8//JDg/0kZhxDRHz9MyeMQT58+Ncrn2759u8niBYnx9PSU3r17Jyke8sleIZ/MfM6WT6b3fjpx4oTkz59f9u7dK8WLFzerPW9vb1m5cqVkz55d93kBAQESExOj+xytMW5b5e2KWD7GnVgu18SJEyVDhgwWtfk6rf22dLIiW+53SvIm5OMAAAAkNwpFAAAAwOYuXryY4OL766wtNmBK5syZJWPGjCbXWTrDtdYFYHNuRLaGXpLJhQsX7NJnUnTu3FnOnTsn77//vtVtXL9+Xdq1ayfNmze3edXjxGZNsVS6dOk0140bN86qAYOKFStqrrOkcvHly5c1Xz9rXwe9yvGvV/p3hCdPnhjdPFyzZs0ktak3kBYeHu5UN9S7uLhozubeoUMHqV+/vsVt5syZU3PQz5L3o7+/vzx79sxouTUxva5fv36aN/nev3/frAS3tWvXJphdPNaHH36o2bY53N3dpWzZslZvH2vq1KkJ/m/P97WIyM6dO5PUviM9f/7caNnIkSN1v3NoKVasmG5l/sTY+jPHmY9xkVez45hi7euQN29eze+Dx48fl8jISKvataXXj80aNWpozlplDmc8NrXecyKvzu1aM5LpGTt2bKKJ1IkVA9FLhrDk+72rq6ukTZvW5Dprvt9rFT9ycXGRcePGWdze6woVKqRZeMXZf9c4g+3btycovGQwGJKUTCKif9wePHjQqYqKAQAAAAAAwDzJmctgjo0bN+qOS2upXr260Q3Lr1u0aJG1YRnJli2bydmUYzljfoMz6dGjh+YYw7x58yxuz8PDQ7p06WJy3datW+XGjRsWt7lz5864Wevr1KkjBQsWNHvb8ePHmzyubDFerFfQ+vTp07J+/fok92FrzppropSSX3/91Wi5t7e3bpF3c7i7u0vfvn0118+YMUMePHiQaDsjRoww+V5KrFB5YipVqpSk7UVefX68Pp5nz7H9wMBACQoKSlL7jmJqXP/27dtG46/mateuXZLiIZ/sFfLJzOds+WR64/q5cuWSv//+W/Lnz29Rm76+vjJ58mTd51y/fj3Ryc60xvZtNb4tYvkYt96kRm+//bZ07NjRovZMccb9TknehHwcAACA5EahCAAAANjc+fPnNdelS5cuSTPMm2JqVvDcuXNL06ZNLWpH60Yye92sqJdkYs2sEcnBz89PFi5cKDt27JASJUpY3c6GDRukdOnSsnDhQpvFZmkl6sTovU+tvTCdL18+zXWPHj0yux29IhvW3viuV1nZ0pnn7WHVqlVGMw6ULFkySW0mVsV73759SWrf1vRuULWW1nvS3PdjZGSk+Pv7m1z39ttvWx1XrLx58+omEE2fPj3RNn7++WeTy/VmZDBXuXLlkrR9YGCg0cD5m/a+toSvr6/RsiNHjki/fv2smi2oTZs2Vsdi688cEec8xmNpfe4kpdiK1sD5ixcvHJ70FB4ebjTTSmo8NrX+fvny5ZOPP/7YqjbTp08vY8eO1X1OYrM1lC1b1mTyTps2bSRz5swWxWPL7/daM1XlyZNHSpcubXF7r/P19TWZ2FuxYkXdBCxTkvt3jTN4Pek9T548ViXYx6d33L548UKOHj2apPYBAAAAAACQ/JI7lyExls46HN+gQYN0byw9f/68VQUDTDEYDJIpUybN9c6a3+As8ubNK/Xq1TO5bv78+VaNc2kVe46JiZFZs2ZZ3N7s2bPj/v3BBx+YvV1wcLDJoiRubm4WX9s2pXr16rq5DOaMFyc3Z8012bBhg8ljtXz58uLm5mZVXPH16NFDsyD2y5cvEy2Kcv78eVmzZo3R8kKFCllUuMSUQoUKJXnM4PX3uZubm+570xzOOH5oC6bG9UVEhgwZItu3b7e4vQoVKugeA4khn+wV8snM52zHpt7frnfv3lafI9977z1p1KiR7nMSG9v/+OOPTX6GfPTRRxbFojW+LWL5GLfWuL6IWJxPrKVLly4mz3WO3O+U4k3JxwEAAEhuFIoAAACAzend3GePGTiGDx8uH330kXh6eoqrq6tUrVpVNmzYoFtN2RSti8T2uuiqVxH49u3bTl0VuG7dunLy5En59ddfraqELvKqonfXrl3lk08+sWo2+NfZOmlHb9DAWtmyZdNcZ8mMxHrV4p8+fWpRTLH0/o6PHz+2qk1b2rhxo9GyggULisFgsPoxevRo3T5v375tr92xSnK+J819P27dulXu3LljtNzV1VUKFCiQpNhi6d3Mf+bMGd2EvtOnT5us5O/q6mqTxKTEKpInZtOmTUbLPvjggyS9rxs0aKDbp7O9ry2hVaBoxowZ8u6771o0k4aIyPfffy8hISFWxWKPRFFnPMZjab221n7miDj3587OnTuNkkl++OGHJB2bic0c4YhjUytZL6natm2re368efOmbpKSiMjChQulXr16YjAYxMvLSzp27CgzZsywOBZbfr9PStEWc/3xxx/y3nvviaurq3h4eEijRo1kxYoVFv+tkvt3jaMppWTz5s0Jll2/fj1Jx6zBYEg0YSQlf6YCAAAAAAC8qZI7l8GeXF1d5csvv9R9ji1vitK7rn/p0iWb9ZNaaRVfuHbtmuzevdvi9jJmzKh53XrWrFkSExNjdlvPnj2TlStXisirv3Pbtm3N3nbp0qXy4sULo+W5c+dOUiGU+PTGi7ds2ZKk8Sp7cNZck7lz55pcrlXc3VK5cuXSnUxi+fLlutvPmDHDZNGUypUrJzk2g8FgcTHy172esxIVFSUeHh5JGodYsGCBbp8pdRzC29tb8ubNa7T85cuX0qxZM5k4caJF5yiRV+fK3377zap4yCd7hXyylJtPZq9xfRGRvn376q5/ffKb1xUrVkwWLVokuXLlEhGR7Nmzy59//iktW7a0KA6948rSMe7kGNfPnDmzrFq1Kq6QSqZMmeS7774zOeGdHlvud0rxpuTjAAAAJDcKRQAAAMDm7t69q7lOrwqutTw9PWX69Ony7NkzCQ0NlYMHD0rZsmUtamPfvn1y8uRJk+usmb3BHFoV1GMFBgbapV9bcXd3l8GDB8vly5elb9++Vlcenzx5snTo0CHJxSKSMqt5crQnol+lPiIiwux23N3dNdc9efLEophi6Q3s2XPAyVx79uxJ9j4fPnyY7H3qSc73pLnvx9crfMfKmTOnzeJNrPDB6zeGxmdq9hqRV5XILS0mZA+8ry3TsGFDzXWbNm2S4sWLyx9//GHR+dRa9jgenfEYj6X1uWPtZ46Ic3/uOOLYDAsLM5lImRJ5eHhIt27ddJ/z77//6q7PkyeP/P333xIaGirPnz+XJUuWWJTAFxERIX/99ZdmcpI13++TI6HE19dXVqxYEbffW7ZssWiGpOjoaNm8ebPm7wh7/a5xtAsXLlhcLMgWUvJnKgAAAAAAwJsquXMZ7K1169aSKVMmzfWnTp2yWV96+Q3OntvgDNq0aaP5Gs6ZM8fi9vRutL5+/bps3brV7LaWLl0aN5HJ+++/r5vX8Dqt8eI8efKY3UZi9MaLIyMjZceOHTbryxacMdfk5cuXmuPqyfW3+ueff+TRo0cm1ymlZPHixSbX2aJQRFKFhYXJsWPHkr3flDwOoTW2HxkZKV988YVUq1Yt0RvQbYV8slfIJ7OdlHxsvq5Fixa6hUoSG9cXEWnfvr3cvHlTnj9/Lnfu3LG4WMKtW7dk1apVmustHeNOjnF9EZE6derIhQsX5NmzZ/Lw4UP5/vvvLTo/PHz4UPOzTyT1ju2TjwMAAGAfbo4OAAAAAKmPXnKFPWbgjqU32GHK7du3Zc6cOTJr1iy5cuWKnaLSllihiKTcfJmcsmTJIv7+/vLJJ5/I4MGDZcuWLRa3sXLlSvn4449l5syZVsdh64v89hg00Jsxw5Jq+XoDNNYm4ejtb86cOa1q01bu3btn8uY/S2YysUbp0qXt2r6lkvM9ae770VRlfpHEz2+WKFy4sGTNmlXu379vcv2RI0c0t12/fr3J5QULFrRJbEllqkBRrVq1xM/Pz259WvpZ6UzeeecdKVeunGZhp5CQEPn0009l/PjxMmzYMOnRo4ddZvMQsc/x6IzHeKxs2bLJ8+fPjZbfuXNHXrx4YdWMUM78uWPqPVaxYkXJnz+/Xfu19rV0Rh06dJAJEyZorjf3+4olyagirxJVAgICZNGiRZrJhtZKzkQnS38zXb58WQICAmTevHlv5GwYpo7ZLFmySO3ate3ar953cgAAAAAAADgnR+Uy2Iunp6e0adNGAgICTK63ZR6E3vhfSsltcKQ0adJI586dxd/f32jdihUrZPLkyWYXKwkJCUk0t2LGjBnSpEkTs9qbPXt23L8//PBDs7YReXXT3e7du02us+V4cdWqVcXV1VVz8pEjR45I69atbdZfUjljrsmePXtMjvWJ2PZvVaNGDc11MTExcvToUWnUqJHRuuPHj8udO3dMbucMY/unT582ep29vLykWbNmdu3XGfbdWv3795dZs2Zp3uh85MgRqV69ujRr1ky+++47qVKlit1iIZ/sFfLJbMfZ8smSws3NTdq0aSNTp041uf7hw4fy7Nkz8fHxSbQtS4quRUREyJo1ayQgIEC2bdtmcQ6LnuQuYJIuXTqznxsTEyNbtmyRgIAAWbduXbJMhONsyMcBAACwDwpFAAAAwOa0BhdFxG43bJorJiZGNm/eLNOmTZMNGzYkGEj28vKS8PDwZIslsQuPeq+jMypVqpRs3rxZNm7cKIMHD5bz589btH1AQIDUrFlTevToYVX/tr7In1zVpa3x1ltviYuLi8lBEmtnMdBL3ilUqJBVbdqK1ntp9uzZZg1EpRbO9p68e/eu5s2olt7Ym5iyZcvK9u3bTa47d+6cyeUPHz6UM2fOmFynN+NBcomOjpbLly8bLR8yZIi0aNHCARGlDP7+/lKzZk3NRDARkaCgIOnTp4/88MMPMnToUOndu7fN35P2GFh2tmM8vgoVKphMJo2KipJTp07J22+/bXGbWp87adOmdfjN16Y+d3r06CEDBw50QDQpU7ly5cTNzU2ioqJMrrdlMYOwsDBZvHixTJ06VY4ePRq33M3t1aVvrRhSusjISFm1apVMnTpVdu7cGbfcYDCIh4eHvHz50oHRJS9Tx2zevHnlr7/+ckA0AAAAAAAAcGbOnMtgrcqVK2sWirDltVi9/IaUltvgKL169TJZKOL58+eyYsUK6d69u1nt+Pv7x73mWgX3161bJ/fv35esWbPqtnXx4kU5cOCAiLwak61YsaJZMYiInDp1SiIjI02us+XYXLp06aRAgQImx1ZFtMeLHcUZx/z08khs+bcqW7as7vpz586ZLBShVXBExDnG9k2NQ3h5eTEOoaNChQrSr18/mTJliu7zNm7cKBs3bpQGDRrI8OHD7VIEnHyyV8gng5ZKlSrprr99+7YUK1bMJn1dvnxZpk+fLrNnz5bg4OC45cmdt5vcbt++LQEBATJjxgy5ceNG3PLUvt+mkI8DAABgH877SxUAAAAp1osXLzTXOSq54unTpzJx4kQpUqSIvPvuu7J27VqJjo6WDBkyyCeffCKnTp2SDh06JGtMic3qnlKTKZo1ayanTp2SiRMnWjxg+8UXX8jDhw/tFFnqkS5dOs2ZGC5cuCCPHz+2uE2t2RlExOE3rd+6dcvk8pCQkOQN5P+rU6eOGAwGmz1GjhzpkP1IKlMVvmPZeqC9ePHimuviD6DFpzfIbctZUax17949kzcvO+p9nVJUq1ZN5syZY1byxc2bN+XTTz+VAgUKyNixY1Ps56oz0Jtx6tChQ1a1qfW506xZM3F1dbWqTVtQSplMnOXYtEyaNGmkVKlSmuufPXuW5D6uXbsmgwcPlly5cknv3r3jikTkz59fxowZIzdu3JBcuXIluR9nc//+ffn+++8lX7580rFjx7giEdmyZZNvvvlGrly5IlWrVnVwlMnL1HdFjlkAAAAAAACY4oy5DEmld2O/3s2dltLLb2AMxjyVK1fWvHY+d+5cs9p4+fKl/P777yLy6gb6xYsXm3xeZGSkzJkzJ9H2Zs+eHffvDz/80KwYYjn7ePG1a9dsOq5vMBjk2rVrNt2v5JJcf6tcuXLp3pyt9beKXwj8dc4wtm9qHMKW59fU6rfffpN3333XrOdu375d6tSpIzVr1pTNmzfbObLUi3yyVxgntExiRaJsMba/ZcsWadasmRQtWlTGjRsnwcHBYjAYpGHDhvLXX3/JmjVrktyHMzp48KB06tRJ8uXLJ999913c52DVqlVl9uzZVhdwSanIxwEAALAfCkUAAADA5iIiIjTXmapYbU/37t2Tr776SvLkySNffPGFXL16VUREypQpI9OmTZNbt27JH3/8IWXKlEnWuEQSLxQRFhaWTJHYnru7u3z++edy8eJF6datm9nbPXr0SMaOHWvHyFKPXr16mVweExMjS5Yssbi9EydOmFyeJUsWadCggcXt2dKDBw9MLmeQwLFu3rypuc7WyWB58uTRXPf06VOTyy9duqS5jTPMHMD72npdu3aVdevWSaZMmcx6fux3gXz58sn48ePl5cuXdo4w9WnXrp3mcbNw4UKL24uMjJSzZ8+aXNe5c2eL27Olp0+fmvwuy7FpufLly2uu00vGTsypU6ekc+fOUrhwYZkwYYKEhISIwWCQJk2ayPr16+XKlSvyzTffSPbs2a3uwxldvXpV+vbtK/ny5ZORI0fGJWVVr15dFi9eLDdu3JAxY8ZIgQIFHBxp8jP1mcoxCwAAAAAAAFOcKZfBVvRmeLblDMV6+Q0pObchuX3wwQcml+/cuVOuX7+e6PYLFiyQu3fviohI3759pV69epr5LgEBAbptRUdHy7x580RExNPTU7p27Zpo//E5+3gx/ic5/1a5c+fWXJeaxvajo6NtcvN0aubu7i4rV660aJb4ffv2SdOmTaVq1aqye/duO0aXepFPxjihpUqXLi1ubm6a660d24+OjpaFCxdKmTJlpEmTJrJp0yZRSkmGDBlk0KBBcvHiRdm6dau0bds20TzalGb9+vVSo0YNqV69uixdulSioqLEy8tLPvzwQzlx4oQcPHhQevbsKV5eXo4ONVmRjwMAAGA/FIoAAACAzenNtBEZGZksMYSEhMhXX30lBQsWlLFjx8YNNtatW1e2bt0qp06dkj59+kjatGmTJR5TErvA7cjZtG0la9asMm/ePNm2bZvuYHB806dPt2nCSmrVrVs3KVy4sMl1iSV8mLJt2zaTy0ePHu3w2XO0EouCg4OTORLEpzdIY+uEiGzZsmmui46OFqWU0XKt2UhExCkKBfC+TppmzZrJv//+K82bNzd7m0ePHsmQIUOkRIkSsnPnTjtGl/qkT59eBg8ebHLdkSNH5PTp0xa1t3v3bpODv9WrV5fWrVtbE6LNcGzaTpYsWTTXWZPocenSJWnfvr289dZbsmTJEomOjhY3Nzfp2bOnnD17VjZt2iTvvvuuuLikrkved+7ckT59+kixYsVk2rRpcYk4bdq0kcOHD8v+/fulU6dOqS55xhKmjtsnT54k229PAAAAAAAApBzOkMtga+nSpdO8LmrLnAO9a5CpIbchuXTt2tXka6mUkvnz5+tuq5SS8ePHi8ir9/Knn34qIiK9e/c2+fyLFy/Knj17NNvbunVr3KzOrVq1MrtIeyxnGS+OioqyaV+pkbP/rRjbT708PDzk999/lzVr1ugWfHnd4cOHpU6dOtKhQwfNYgAwjXwyjk1Lubm5ia+vr+Z6a8ahly9fLiVLlpSuXbvKmTNnREQkR44cMmHCBLl586ZMmDBB832akm3fvl0qV64sLVq0kAMHDoiIiK+vr4wYMUKuX78uM2fOlLfeesuxQToQxywAAID9pK6sWQAAADgFveILyZFcsXDhQilSpIiMHTs27uJi4cKFZcOGDbJjxw5p2LCh3WMwR2IzkqRJkyaZIrG/Bg0ayPHjx+Wdd95J9LkhISGag0z4Hzc3N5kxY4bJpJ9jx47FzfxhjuDgYFm5cqXR8qpVq8pHH32UpDhtQeu8cezYsWSOBPHpVYy3dTJJxowZNdf5+PiIwWAwWv7kyRPNbfTWJRfe10mXJ08eWbdunaxcuVIKFSpk9naBgYFSv359GTZsmMkiIzBt6NChUqpUKZPrPv/8c4vamjZtmtEyDw8P+fPPP00ez8mJY9N2MmTIoLnOkpkxXr58KcOGDZNSpUrJX3/9FXfcNmjQQE6dOiWzZ8+WEiVKJDleZxMTEyO//fabFClSRGbMmBGXPFmhQgU5ePCgrFy5Ut5++20HR+kcTB230dHRcvLkSQdEAwAAAAAAAGfm6FwGezAYDJI+fXqT62w5cYZefkNqym2wt6xZs8q7775rcl1iY/zr16+X//77T0REOnfuLDlz5hSRV8UnPD09TW4zY8YMzfZmz54d9+8PP/xQt29TnGW8WOv9j/9x9r8VY/upX8uWLeXcuXMydOhQiz4zli9fLqVLl5b9+/fbMbrUhXwyjk1r2Gps/9KlS1K7dm3p0KGDXLx4UUREPD09Zfjw4XL58mUZNGiQpEuXLsnxOps7d+7Ie++9Jw0bNpSjR4+KiIiLi4v069dPrly5IiNHjtSdaONNwTELAABgPxSKAAAAgM3pXcy1Z3JFSEiItGrVSrp27ZqgyuzHH38sp06dkmbNmtmtb2skVvXekovstlK4cGFp2bKlXdr28/OTrVu3St26dRN97t9//22XGFKbOnXqyK+//mpy3eDBg3VnXYhvwEtX2h0AAQAASURBVIABEh4enmBZ4cKFZc2aNU4xK7dWUsvhw4eTORLEp5fg8fjxY3n+/LnN+tJ6D4iIZlV7vXOsMyST8L62nTZt2sj58+fF398/LiEuMUopGTNmjHTr1i3Rwk14xcvLS1asWCFZs2Y1Wrdjxw7x9/c3q51NmzbJX3/9lWCZi4uLLFy4UMqXL2+TWJNC69j877//bJ4ol9rpJZP4+fmZ1cbZs2elfPnyMmbMmLjfEZ6enjJlyhTZtm1bqiwQISJy8+ZNqVmzpgwaNEhCQ0NF5NVxMmLECDly5IhUrVrVwRE6Fz5TAQAAAAAAYC5H5TLYm1ZBCL3xPEvpjb05IrchJevVq5fJ5RcvXpSDBw9qbjdu3Li4fw8ePDju35kyZZI2bdqY3GbFihUSEhJitPzRo0eydu1aERHJmzevNGjQwJzQE9B7f5mbq2Aua8aL8T96f6vr16/btC/G9qElXbp08ssvv8ilS5fko48+Ejc3N7O2u3//vtSvXz/unIXEkU/GsWkpW4ztT5kyRcqWLSt79uyJW1ayZEk5evSojBo1Sry9vZMcpzNasWKFlCpVSlatWhW3LHfu3LJz506ZMmWKZMqUyYHRORfycQAAAOzH8b/QAAAAkOroJVfY8sbh+C5duiRvv/220aDQhAkTZOrUqU6ZmBAREaG73tyL7LYWW9XYHmJvMs2fP7/u886cOWO3GFKbQYMGyaRJk4wGUIODg6VevXpy9epVzW1jYmLks88+k2XLliVYXqxYMdm6davJm4EdQSux6dChQ8kcCeJLrNL5uXPnbNaXh4eH5rqiRYuaXK6XgPLgwYMkx5RUWu/r4OBguXLlSjJHk/K5ublJ37595cqVKzJ+/Hizz18LFy6UIUOG2Dm61KNYsWKyY8cOKVCggNG6gQMHJph5ypSdO3dKx44dEyzz9PSUgIAAadeunU1jtZbWsRkTEyNHjhxJ5mhSNr3v33ny5El0+/Xr10vVqlXjZkcTEfHx8ZGtW7dKv379bBKjMzp8+LBUqlRJDhw4ELfMzc1NlixZIiNHjhRXV1cHRuec+K4IAAAAAAAAczkilyE5hIWFmVye2Li8JfTyGxyV25BSNWvWTLJly2Zy3Zw5c0wuP3z4sOzdu1dERJo0aSJlypRJsL53794mtwsPD5cFCxYYLV+0aFHczfk9e/a06oZfvfHi4OBguX//vsVtarFmvBj/o/e3suW4vsibNbbPOIR1cufOLdOnT5f//vtPunbtatb55+XLl9KxY0cKAFiAfDJYQmts393dXfM7S6zo6Gjp3bu3DBgwQF68eBG3vFatWnLw4EEpXbq0TWN1JiNGjJD27dvL48eP45aVLFlSDh06JLVq1XJgZM6JfBwAAAD7oVAEAAAAbC5Xrlya6+JfFLWVwMBAqVevnly6dCnB8iFDhsigQYNs3p+tJFYoInv27MkUSUJ37tyRW7du2a39jBkzyuTJk3Wfc+/ePbv1nxp9+umnsnv3bqOBlcuXL0uZMmXk//7v/+T8+fMSExMjIq9mXFi2bJlUrFhRfv/99wTb9OjRQ44dO2byJmBHyZEjh8nlN2/edMgg8K5du0QpZbPHyJEjk30fbCGxgd+zZ8/arC+9GZzKli1rcrmPj4/mNidPnkxyTEml9b4WEfnrr7+SMZLUJU2aNPLFF1/I1atXZeTIkWbNSDBx4kT5+++/kyG61KFUqVJy/Phxo6TB6Oho+eCDD6R58+ayZcuWuJlFoqKi5NChQ/LRRx9JgwYNEswCUKRIETl48KD07NkzuXdDU7p06TQThTk2LfP06VPNdUWKFNHddsOGDfLee+8ZJWYvWrQoVSdUHD16VBo1amT0Xfi3336T9u3bOygq56f1mbphwwajWY4AAAAAAADwZkvuXIbkojUDb2LXYi2hl9/gqNyGlMrNzU26detmct2yZcsS3GQZa9y4cXH/NlUEvV69eppj/DNnzjRaFlv822AwSK9evcyK+3XOPl6cP39+m47rK6VsWnwlOen9rS5duqT7+lrK1mP7//77b1JDSjKtcYhDhw7ZNb8qtStcuLDMnz9fzpw5I02bNk30+S9evJDu3bubPEfCNPLJYC6tsf1ChQrpFnNRSknPnj0lICAgwfLChQvLmjVrJH369DaN05kMGzZMfvjhB1FKxS3LlCmTbNq0Sfc3x5uMfBwAAAD7oVAEjDx//lxOnDghmzZtkjlz5sjvv/8u48aNkx9//FF+/fVXmTJlisyePVtWrVolx48fl+DgYEeHDAAAnEzhwoU11z19+jTBxdGkioiIkPfee09u3ryZYHnevHll1KhRNuvHHvQSTVxcXBKtxmxP9r5htlmzZlKxYkXN9bEzV8B81atXl71790q+fPkSLA8LC5PRo0dLiRIlxNPTU9KlSye+vr7SsWPHuAF1g8EgLVu2lL1798qcOXM0qzc7yuv7FJ+/v79d+ly0aJFcv37dLm2nFhUqVNAdDLRlwobeQH/VqlVNLs+dO7fmNo8ePZLAwMAkx5UUmTNn1hz8mjZtWtxAvC3t27dP9uzZY/N2nVHatGllxIgRcvHiRWnXrl2iz//222+TIarUw9fXV2bPni0DBw40WrdhwwZp0qSJeHt7S/r06cXDw0OqVasmM2fOjHtfFy1aVPz9/eXUqVNSvnz55A4/UVqfOwsWLNBMtk2K8+fPy6pVq2zerqM9efLE5HI3NzcpV66c5nZXrlyRzp07GyUSdujQQZo3b27TGJ3Jo0ePpE2bNkZJOFWqVJH+/fs7KKqUQeuYffz4sSxdutQufU6aNElzlkYAAIA3ATkFAAAgpUrOXIbkEhYWJlFRUSbXValSxWb96OU35MyZ02b9vCm0ijOEhITImjVrEiy7cuVK3DhC+fLlpX79+kbbGQwG+eCDD0y2efLkSfnnn3/i/n/q1Ck5fvy4iIjUr1/f6uIHlSpV0l3v6PFi/I/e3yoqKkrOnDljs760/lYZMmSQEiVKmFynN7Z/7Ngxm8SVFFrjEFFRUTJjxgy79Dl9+nR5+PChXdp2NiVKlJCNGzfKpk2bEi1CcPHixbhCNzAP+WS2lVrzybTG9hP7rB83bpwsWLDAaPnvv/8uvr6+tgjNKS1fvlzGjBljtHz06NGSN29eB0SUcpCPAwAAYB9ujg4AjnfixAnZsWOH7N27V44fP25VdVNvb2+pUKGCVK1aVapVqyYNGzZ0uosBAAAg+eglV8TExMjTp08lQ4YMNulr7NixJgeX+/TpI2nSpLFJH/aiN6BXsGBBcXNz3Nf1rVu3Svfu3e3aR5cuXTQHdPVmC4BpN27ckObNm0tQUJAULVpUxo4dK2fPnpUjR47IxYsX5eHDh/L48WNxcXGRfPnySZYsWaRcuXJSs2ZNqVevnlMPUpQqVUpcXV0lOjraaN3SpUtl/PjxkjlzZpv1Fx4eLgMHDpQmTZrIwoULbdZuapM+fXopV66cnDhxwuT6TZs2yaRJk2zSl1bimbu7uzRq1MjkusRmSPrnn3/sOtOBUkoMBoPuc8qUKSMHDx40Wh4YGCibN2+WZs2a2TSmH3/8UU6dOpViZzXp27ev7Nu3z6JEpVy5csny5cvlr7/+kg8//FBzFoQjR47IyZMndW9ex//ExMTIl19+KZMmTRI3NzcZP368eHl5yeHDh+Xff/+V+/fvy8OHDyUiIkKyZcsmmTJlkoIFC8o777wjtWrVkipVqugWmnG0smXLmpzl6vnz5zJ//nyb37Q/adIkmTlzpjx9+lS8vLxs2rYjaZ27K1asqPs9/eOPPzaZAPDpp5/aLDZnNHToUKPidyIiAwcOTPTz5E2nNQOZiMiUKVOkZ8+eNu3v8OHD8vnnn4u3t7d89NFHNm0bAADAWZFTAAAAUovkzGVILqauK4qIeHh42LRQhF5+Q9GiRW3Wz5uiZMmSUqVKFZMzns+dO1c6duwY9/8JEybEFeMePHiwZpu9evWSkSNHmhxXnzlzplSuXFlEJMFN1lrFJcxRqlQpyZw5s+Z7Y9OmTTJo0CCr249Pa8whW7Zsid7ECpFatWrprt+0aZPNirtr/a0aNWqkmQdVpEgRzbyDEydOSFRUlN1yqMwpEKQ3DjFjxgwZNmyYuLu72yymW7duyYABAyQoKEh+/PFHm7WbnNKkSSOjR4+WIUOGmL1NkyZN5PTp0zJo0CDdAhzTp0+Xfv362SLMNwL5ZOSTmSMkJMTk8ho1amhuc/XqVRk+fLjR8iJFikjTpk1tFZrTefLkifTt29douY+Pj83HpVMj8nEAAADsg0IRb6hbt26Jv7+/LFmyJMEsqtZWxA4NDZV9+/bJvn37ROTVBZ6mTZtKp06d5L333nPq5H8AAGB7id2ce+fOHZskV0RFRclvv/1mcl2dOnWS3L696c2iplVFP7ls2LBBXr58KZ6ennbrQ29WB2tnrHhT/ffff9KoUSO5efOmFClSRPbs2SPZsmWTVq1aOTo0m/Dy8pIyZcqYLArz4sUL+fLLL2XWrFk262/evHny6NEjqV69us3aTK3q1KmjmbBx6dIluXjxok0Sw27fvm1yea1atTQ/TypWrKjb5pIlS6RDhw5Jjk1LTEyMuLq66j6nSpUqJgtFiIh8+eWXUr9+fZudh8+fPy9btmyRtm3b2qQ9Rzl37pw8ePBA/Pz8LNquXbt2UqpUKalfv77cuXPH5HN27txJoQgzREZGSvfu3WXJkiXi4uIiixcvlnbt2omIpJobpqtUqSKLFy82ue7777+XDh06SJYsWWzS18OHD2XBggXy1ltvOc2gtKlEGmucO3fO5HK9IjgnTpyQv//+22h5mjRpbJrQ7GwePHggc+fONbkuJfyucbRKlSqJi4tLXKJ0fP/884/MmzfPpkXwYn+D8l0RAACkduQUAACA1Ci5chmSk6kxVJFXN2V7e3vbrB9nzm9IqXr16mWyUMTWrVvl7t27kj17dgkODo4r7JA3b94EBSRelytXLmnSpIls2LDBaN3ixYtlwoQJ4uHhEXdza8aMGaVNmzZWx28wGKRWrVqaszTv3r1bnj9/LunSpbO6j1ha48XNmzen2LIZypQpI5kyZZJHjx6ZXL9+/Xr59ttvbdKX1t+qZcuWmttUrFhRli1bZnLds2fPZOPGjbrbJ4WpsYXXFSlSRPP1u337tvz000/y3Xff2SymP//8U6KiolL8OMSuXbssKhQhIpI2bVqZPn26lCxZUrPQzMmTJ+Xx48eSMWNGW4SZqpFPlvrzyWwxtn/z5k3NSVf0xvYnTZokkZGRRstr166d5Jic2axZs0x+HlSpUsVpcj6c2ZuejwMAAGAvjLS/YYKCgqRr165SsGBB+emnn+Tq1auilIp7GAwGqx/x2wkPD5dVq1ZJx44dpVChQjJ58mR58eKFo3cfAAAkk3Tp0uneGGyrmcwPHDigOTNB1qxZbdKHiPWJr4l58OCB5rrSpUvbpU9zhYSEyNq1a+3ah94FXVvNVPAm+O+//6R27dpy8+ZNcXd3l9WrV0u2bNkcHZbNNWnSRHPd7NmzZf369TbpJywsTH744QcRSf0DV7bQrVs33fW2Oo/Evxkhvt69e2tukzVrVilVqpTm+vXr1+ueh5MqKioq0efova/PnTsnw4YNs1k8X331lSilUvz7Will8iZyc5QoUUJWr16teePJtWvXkhDZmyEqKkrat28vS5YsERGRb775Jq5IRGqid2zev3/fpjPU/PDDD/L8+XOnOjYjIiJs0s7x48dNLtd7z6xbt87k8kyZMtl0pih7fb+31qZNmzQ/N1LC7xpHy5Qpk7z99tua6z/77DPNWRUtdfz4cVm6dKlkyZJFSpYsaZM2AQAAnA05BQAAIDVLrlyG5HTy5EmTyzt37myzPiIjI+XJkycm17m6ukrx4sVt1tebpFOnTiZvWouOjpYFCxaIiMjkyZMlPDxcRF5d60zsWvmHH35ocvmzZ89k6dKlsmHDhrgx0i5dukiaNGmSsgu648URERGyefPmJLUfy5rxYvyPwWCQrl27aq4/fPiw3L9/P8n9xMTEyPXr142WZ8yYUXdCg3r16um2a8sbvV9nzri+wWCQRo0aaa4fPXq05gQblrp165b8/vvv4ubmJjVq1LBJm46yd+9eq8cdP//8cxkwYIDJdUopCQoKSkpobwTyyd6MfDJbjO0fO3bM5PLKlStL3rx5NbfTGtu35fi2iPONcb+p+20rb3o+DgAAgL1QKOINER0dLSNGjJASJUrI4sWLJTIy0mQSh4hlPypikzhERDPJIygoSD799FMpWbKkbNq0yS77BwAAnE/NmjU119nqJp0zZ85ornv+/LlN+hCx3azKr9O7IbVatWp26dMSsTPl2oveDdqNGze2a9+pxZ07d6Rhw4Zxr2Xnzp1T7Q1r7du3113/0UcfyY0bN5Lcz/fffy+3b9+W8uXLO7xgS0pQvnx53Ur5U6dONWsGjsScOnXKaFm2bNl0k0lERFq3bq25LjIyUqZNm5bU0DS9fPky0efUrVtXt2jOxIkTbZI8tWnTJlm7dq14eHjozjKUUsybN8/qbd9++23NxEhz/mZvuj59+siaNWtE5FUy7dChQx0ckX0UK1ZMypQpo7n+r7/+kunTpye5n1OnTom/v7+IiHTv3j3J7dlKaGhoktu4dOmSPH782Gh5jRo1dL+raH2/t+V3exH7fb+3Vkr/XeMM9L4rhoSESLdu3ZKcKBUdHS0DBw4UpZR069aNWeoAAECqQ04BAAB4UyRHLkNy2r17t9Gy3Llz27TQc1BQkOZ3wHLlyom3t7fN+nqTZMiQQd577z2T6+bOnSvh4eEyefLkuOd+9NFHibbZokULzRuBZ86cKbNnz477/wcffGBF1Am1bNlS9ybS2PiTytR4cfny5aVq1ao2af9NMGDAAM3r2jExMXFjVklx8eJFkwUAe/bsqTuTd8WKFSV37tya6zds2KBZLCSpzB0j1huHiIyMlK5du2oW1LHEF198IWFhYdKiRQvx9fVNcnuO9PTpU1m9erXV248ePVrSpk1rch1j+/rIJ/uf1J5PZoux/SNHjphc3qdPH91+tc7Lb+rYfmrfb1t50/NxAAAA7CXVFop4+PChHD58WJYvXy6zZs2S33//XX766Sf5+eef5bfffpOZM2fKunXr5OjRoxISEuLocO0qMDBQqlatKqNHj5YXL14kSOYwxZIE18TaiZ/gce3aNWnevLn06tXLZjMTAgAA56WXXGGqerw1TN18FsvUILG1IiMjbdZWfFqFIgwGg+6N18nlwIEDsmHDBru1f+7cOZPLixcvrjsjMP6nR48eCWa1ccYkCFtVt65QoYJUqFBBc/3du3elYcOGSZrlZ9OmTTJu3DgREfn444+tbudN8+mnn2quu3LliqxcuTJJ7YeGhpqcfeOLL74Qd3d33W179eql+xt3zJgxcuXKlSTFpyUsLCzR53h4eOgORsXExEi7du1MJviZ6+bNm3F9vPfee+Ln52d1W85iy5YtusWWEqOVGJk9e3ar23wTLFq0KEHyYMmSJSV9+vQOjMiYLWdUSCzZsn///rJ06VKr23/27Jm0b99eIiMjpWrVqlK2bFmr27K10NDQJM/iu3jxYpPLhwwZorud1vf7p0+f2nRmIFt+v7dFgkZK+F1jrxlLbNVu9+7dxdPTU3P9rl27pHPnzkm6Lj18+HA5cOCAiFj2XTG1zvYCAABSF3IKAADAmyQ5chmSS2BgYNw1q/i+/PJL8fDwsFk/euMyKW3Ge70i97YogG8prWINZ86ckYEDB8bd5NunTx/x8fFJtD03Nzfp0aOHyXUHDx6MywEpX768lC9f3sqo/8fV1VX69++vuX7Xrl1y9OjRJPVx6dIluXfvntHyr7/+OkntvmmKFi2qO2nL5MmTJTw8PEl97N2712iZp6enfP7557rbGQwG3cIlUVFR0rdv3yTFpsWccX2RV0VY9MaTz507J++++648ffrU6limTZsmy5YtE5HUk7MydepUq7f19fWVBg0amFzH2L4+8sn+J7XnkwUHBydpe6WULFmyxGh5jhw5pEuXLprb6d1/ZcvxbZGUM7bvLPvt7OP6Is6dj8PYPgAASKlSRaGI58+fy5YtW2T48OFSu3ZtyZgxo2TNmlWqV68unTp1ko8++kgGDRokw4cPl2HDhsngwYPl448/ltatW0uVKlUkc+bMkjNnTmnSpImMGjVKdu7cKVFRUY7eLZs4fPiwVKlSRY4fP24ymSN2ho7XH+7u7pIuXbq41yZPnjySM2dOyZ49u/j6+sZVdtXa/vUvyPGTO+bNmyf16tWTR48eJetrAQAAkpdecsWFCxds0oferBSWXigMCwuTq1evmlynNRCa1CQBrarKpUuXlsyZMyepbVvp06ePPHz40C5tL1++3OTyr776yqr29C7SWnMBV+/va48Lwpa2uXXrVtm2bVuCZevWrXO6i9V6Cd2WDmgMHz5cd/2FCxekevXqViWabN26Vdq3by9KKcmTJ49069bN4jbsTes96ej3Y4cOHXQTwMaOHZukWDZv3mz0PsqTJ49ugYpYhQoVkrZt22quDw8Pl48++sgur6G5s4UMHjxY0qRJo7k+NDRUmjRpIvPnz7c4hqCgIKlbt64EBweLq6ur2efX4OBgGTx4sBQqVEg8PT0lV65c0r17dzl9+rTFMdhDTEyMjBgxwurtixQpYnJ5/vz5zW7D1p85Is57jIu8Sr56PdnuzJkzmt+dHMWWnzkffvihboJRdHS0vP/++zJ27FiLX89Hjx5Jw4YN5eLFiyIi8u2331q0fXKIjc0aSqkERUViVapUSVq3bq27rS2/31+/fl0zGc+a7/da62wxS4st9/vhw4dy584dk+uS8rtG6/hKamKOrdrNkiVLoolZK1eulCZNmphMKE7MmDFj5OeffxaRV4WXihUrZva2tjw3AQAA2AM5BQAA4E2THLkMyWXhwoVG36tKly6te+O+NbRyG0RE6tSpY9O+7E1vFnpHzFBft25dzTGqgIAAERFxd3eXzz77zOw2P/zwQ811sTdI6j3HUp9++qkUKlRIc/0vv/ySpPbXrl1rtKxy5cqJziLvKM6ca/Lrr79qTsbw4MEDmTVrVpJiMfW3GjhwoOTNmzfRbfv37y9p06bVXL9161aZO3dukuIzxdxxfXd3dxk6dKjuc/bv3y81a9aUy5cvWxzHvHnzZMCAASLyakytUaNGZm23b98+adGihWTOnFm8vb2lTJkyMmrUKJuMX9nCzp07ZefOnVZvb2ps39PTU3LkyGF2G+STkU+WmvPJkjKuL/KqoJOpvI9hw4bFXdszRW98e//+/RYX5tDLR7J0jFvvGLXn2P61a9fkyJEjFrVly/2OZa+x6TclH4exfQAAkFKl2EIRz58/l4ULF0rLli3Fz89PmjVrJj/99JPs27dPnjx5optsYOpx9+5d2bZtm4wcOVIaNGggfn5+0qlTJ1m3bp1DqgTbwpEjR6Rx48ZxlQJjkypiH9myZZNWrVrJ119/LfPmzZN9+/bJpUuX5MmTJ/LixQt58uSJ3L9/X27cuCHXrl2TGzduyK1bt+Thw4fy/PlziYqKkpCQELl27Zr8888/sn79evH395evvvpK3nvvvbgLv/GTPGJjOHjwoLRq1YpZQAAASMUKFiwoJUuWNLnu3LlzNulDb1b0TZs2GQ16aNm7d6+ULVvWZGV7kVffPV+vJhwdHS09e/Y0O1ZTbWrdwNWiRQur27W127dvS8uWLeX58+c2bXfv3r2ydetWo+WVKlWyekBFL2nDmkJwejMl2KOwnKUXkufMmWO0bNOmTVKzZk0JCAiQkydPyv379yU0NFSioqIcNuCnN1vCs2fPLGqrTZs2uolbIq9uCq1Ro4Z8++23Zs3UEB4eLsOHD5fmzZvHDQaNHz9ed0DLUbTek45+PxoMBpk+fbpmQsk///wj8+bNszqWGTNmGC0bN26cbnGF+EaPHq07Y9LOnTvliy++sDgupZTu51lQUJBZ7eTMmVOGDBmi+5wXL15I9+7dpV27dmbdmK+UkgULFkjlypXjklA+/vhjeeuttxLd9tKlS1K+fHmZMGGCXL16VSIiIuT27dsyf/58qVixokyePNms/bK3+fPny/79+63a1tQMAa6urtKsWTOz27D1Z46I8x7jIiI7duyQGzduJFgWFhYm1apVk5EjR8ru3bvlxo0b8vTpU3n58qXDrqXZ8jPH29tbRo8erfucmJgY+eqrr6RevXpy8uRJs9rdtGmTVKxYUQ4fPiwiIs2aNXOq736xTCXymWvp0qVGs8u5urqKv79/otvqfb8fN26c5vfn182YMUNKly6tOZuHqRlOgoODZdCgQZptal3HfPz4cZK/K+vt9+zZs+XMmTNmtbN69WopVaqUZkKQqf0ODw+XPn36JNq21vFl6bFlz3aHDx8umTJl0n3Ozp07pWzZsjJ79myzZoy5deuWtG3bVoYNGyYiIl5eXjJhwgSL4rLluQkAAMDWyCkAAABvouTIZUgOwcHBMnHixATL3NzcZPr06eLm5mbTvrSuOXp6epp9M7Oz0Lue64gbqw0Gg/To0UP3OZ07d5ZcuXKZ3WbRokV1x9XTpEkj77//vtntJcbLy0umTp2quf6vv/6S3bt3W9V2TExMXMGMWK6urvLbb78lKHDnTJw516RUqVK6xQ5GjhxpdcG+GzduyObNmxMsy5Ejh9k3aGbLlk0GDx6s+5x+/frJwYMHLY7t1q1bJsdIRMwf14/tv3DhwrrPOXXqlFSoUEHGjx9vVvGZx4//H3v3HR5F2fVx/DebkIRAQu8gTSMQSqiCVAVBkKKIgNJBUeygRJQHqUoTK4o8iojw2KUpIIICSgklFKVI6L1DCKSH3O8fXNmXkLabbLIJfD/XdV9kZ2fOfWazJeycOXNJzzzzjPr3769r167Jsix9/PHHDj2/p0+frpYtW+qXX37RxYsXFR0drZ07d+rNN99UrVq1ck3zo+effz7TJ9emdiynbdu26daA3Ix6MurJpFu3nmz79u0pajmckVozp3r16umZZ55Jd7vChQunWScWHx/v8IVsLl68qF69eqV7saDU3r9/+eWXNC+4kN53iVl5rJKkd2x/+PDhDh2DjoqK0ssvv6wuXbqkuU5q+71582Z99NFH6cbOrmPTt0s9Dsf2AQBAnmXymLCwMPPMM8+YAgUKGJvNZmw2m7EsK9lIWu7sSCtO6dKlzZtvvmnOnTvn7t132IkTJ0zp0qXt+5G0T82aNTPTp083e/bsyZE8Ll++bJYtW2ZeeOEFU6FChWT52Gw2M2jQoBzJAwAAuMfYsWONpBTD19fXJCYmZjn+v//+m2r8pFGsWDGzefPmNLc/cOCA6dWrl7EsK904ksyOHTvs28XGxppu3bqZrPw5vW7dujTnCgkJyXTcrKpatWqqOd1zzz3mxIkTLpnjwoUL5u67704xR4ECBczOnTszHffpp59O8zHNzN/yX331VZrxFixYkOk804r57LPPOhWnfv36GT5v0xo2m814eHiYfPnymfz58xt/f39TokQJU7FiRRMYGGhatGhhevXqZd577z3z999/Z3pfjTHmxRdfTDOPxYsXOx0vLCzMFChQwKH99PPzM08//bRZtGiROXLkiImJiTExMTHmxIkTZunSpWbo0KGmaNGiybbp0KFDlvY3u1y7ds3ky5cv1f3s0qVLpuP269cvzfdpZ6X1ni/JFC1a1Bw5csTpmH/88UeKWP3793c6zrhx4zJ8vrz44ovm2rVrDsVLSEgwffv2zTCeo2JiYkzNmjUdel57eHiYhx9+2MyZM8fs3r3bXL161cTHx5uzZ8+adevWmbffftvcddddybYpV66cuXjxokP7VatWrQxz+Pzzzx3eN1e6+X2+fPny5tixY07HmT17dop9evDBB52KsWHDhjQfn6lTpzqdU25/jX/00UeZ/sxJ+g7I09PT+Pj4mIIFC5qiRYuasmXLmoCAANOoUSPTqVMn88Ybb5glS5aYuLi4TO/v1q1b08yja9eumYrZtm1bh/e1TZs25tNPPzU7duwwERERJiEhwVy4cMFs2bLFvPfee6ZevXopPqf279+f6f3NqrSeH5JMiRIlTHh4uNMxL168aEqVKpUi3uuvv+7Q9p9++mm6j3H9+vXT/btu9erVpkmTJhn+rooVK5bsPf/48eOmRo0apmXLlmnGbteuXZrx/vjjD4cfo9T8+uuv6eZbuXJlc+DAgTS337Ztm+nQoUOG+22z2ZJ9HoSHh5vmzZubihUrZphjoUKFUo1ZtGjRLO177dq108w3IiLC6Xj/+9//HH7NVqxY0YwcOdKsWrXKnDlzxsTHx5srV66YAwcOmG+++cY8/vjjxsvLK9k2U6ZMcTqn7HhvAgAAcAVqCgAAwO0su2sZbjR69Og0vx/KigEDBqSI995777km6Zs88MADqebv7PGV3KBu3brpfm+Yme/Gs+rQoUPp1q1k5pj9nDlz0oz3+OOPZ8NepP6cTBpVqlTJ1GOb2nG9MWPGZEP2rpPba02io6NN9erV04zXrVu3TOV383Enm83m9PGTmJgYU6NGjXRfo35+fub33393OGZYWJipWLFiujG3bt3qcLw///zTeHh4OHQcokSJEmbYsGFm+fLl5sSJEyY2NtZERUWZI0eOmAULFpinnnoqRf2Lo7/PjRs3ZljvVrJkSZfVejnL29s7WS6ZqfMwxpiWLVum2K9vv/3WqRjUkzk+qCfLvfVk6e3PU089lamYqR1X9fHxSVYnm57GjRunm9fo0aPT3DYmJsZMmzbNFC9ePMPf19ChQ5Nt++2335p8+fKZ2bNnpxr71KlTacZy5Lh4Rnr27JluvgMHDjQJCQmpbpuQkGC++OILc8cdd2S434888kiybVevXm38/PzSfVyNMWb+/Plpxhw2bFim9/t2qcdx9XsTAABATskzjSL++ecf07lzZ+Ph4ZGiqUNmG0M40zjCZrMZX19fM3ToUHP+/Hl3PxwZ6tChQ7LHpk+fPubff/91a06JiYnmp59+MoGBgckeV2e+sAMAAHnL3r170/zSbO/evS6Zo1KlSul+Qejj42Nef/11s2fPHhMTE2OOHj1qfvrpJ9O1a9dkJ2Q+8MAD5pFHHkkzTrdu3Ux4eLjZs2ePadasmZFkevbsmem8P/nkk1TnqVy5sssLT5yRVqMISaZUqVLmxx9/zFL8CxcumHvuuSdFbA8PjywdLDPGpHty3Pbt252Ol95J7zNnzsx0nmnF7NSpk1NxHn/8cYe/KM/qaNCggfntt98ytb8NGjRIM+6IESMyFfPHH390qMGLs6NKlSoOnUzvDkeOHEkz7yZNmmQ6bnonCV+4cMGpWNeuXTOdOnVKM16dOnXMpUuXHI53+PBhU758+RTPxatXrzq5l9cPtKV3gm/SuO+++zI8SLRz585U38duHj4+PmbNmjX27Xbt2mVWrlyZZtx9+/alONDsiuHt7W02btzo0OOUWmOO1Iavr685fPiwYw++C6VWwBEYGOhUs4iEhAQTFBSULEa+fPnMrl27nMrl+++/T/Pxefnll53dtVz/Gl++fLnLn5tpjeLFi5tx48aZ6Ohop/d3+vTpacYtV66cw81gbnT+/HlTuXJll++nZVlZ/tsnq9J7fkjX/zZJq4AhNQkJCaZr164p4rRu3drhOAcPHszwM75MmTJmxowZ5vjx4yY6Otrs3bvXzJgxw9x7773J1nvllVfS/d1NnTrVREVFmRUrVtg/bz799NNU84qMjEz3Pbp3794OP06puXr1qilYsGC6+12oUCEzefJkc/DgQRMTE2MOHDhg5s6da9q1a5fsMevVq1eKx+LG8eKLL5qrV6+aTZs2mcDAQCNl/DfZzp07080ts987X7p0Kc0mOZLMr7/+mqm46RVvZGV07do1U/9Xy473JgAAAFegpgAAANzOcqKWIUl6jSKee+45p76HTTJ37twU36U+99xzLs37RiVLlkw1/7RO0Mut4uPjTf78+dP9HnDDhg1uye3+++9PNZ+2bdtmKl5UVFSaDYDTO2aZFdHR0enWB7Rt29bExsY6HG/r1q3G398/WYyHHnoo13+nmttrTYy5fkJ14cKF04yZ0UmoN5s1a1aKGJMmTXI6L2OM2b17t/Hz80v3derp6WnGjh2b4fPp888/T/N1cONo1qyZ/dhpbGysWbZsWboXwnj33Xez5ThE48aNHX6NZHRhi6ThrpPbb24UIV0/2duZ1+/mzZuNzWZL8bty9lgN9WTZN6gnyzkZ5fjdd985FS8sLCzVJg1ffvmlwzHGjBmTYV4PPPCAWblypYmIiDAXL140GzZsMMOHDzdlypSxr1OiRIl0X1fFixc3O3bsMOHh4WbMmDHGsixTokSJNGuFvv3223RzyurfQV9++aVDr42FCxeaixcvmoiICLN161YzZsyYZLW5BQoUMFOnTk0zhre3t1m1apWJjIw0H3/8sfH29jb58+c327ZtSze/V199Nc2YjRs3zvR+3y71ONnx3gQAAJATcn2jiHPnzpmnn37aeHp6JmvekNmGDzcPZ2PYbDZTqFAhM2XKlEx9QZ8T/vjjD3uupUqVMqtWrXJ3SsnExcWZIUOG2B/ToKAgd6cEAACy0c2dWpPGvHnzXBL/ww8/zNKXgjabzYwaNcpcu3Yt3S9Jbx5169bN1MnKSdLqVj527FiXPC6ZlV6jiKTRpk2bTP2N+dtvv6U46Vu6foLu119/naW84+Li0j1575NPPnE6ZuvWrdOMl9lO3OvXr08zZqlSpZz6wnzXrl0ZFrG4ejz77LNO/T9o8eLF6cYrWLBgpq+k/vHHH7v04J6fn1+Wu91np7lz56abe2ZOqE5MTDR33313mnF/+eUXp2NevXrVtGrVKs2YderUMQcPHswwzr///pvi/ah+/fpZOvAaHh7u0JUTvLy8TP/+/c2SJUvMmTNnTFxcnDl27JhZunSp6dmzp/3K4kWLFjUdO3ZMN5ZlWaZixYqmSJEiRpKpVq1aujmGhISkKHbK6nCmQC+tJkapjZdeeinTv4vMSuuzs2TJkmb58uUZbp+YmGieeeaZFNtn5urwzz//fJqPTaNGjZyOl9tf44mJialerSU7R/Xq1R16v0hy5cqVDK+6MHnyZKcfR2OuN3IpV66cS/cvN1ztKqNGEZJMly5dzOXLlzOMFRkZmeqVM+rWretUkyBjTKrNJpwZhQoVMvPnzzfGpH8Q/+YxePDgNHNy5P8JX3zxhVP7ebNhw4Zlab+9vb3tf/N269bN4e3at2+f4d93Gf1OOnbsmKnCj4z2uV69epl6/0tISDBPPPGES1+ztWrVMleuXHE6l+x8bwIAAMgKagoAAACyv5YhSXqNIqTrJ747cwxs6dKlKRqwDh48ONsuSJHWVZn9/PyyVDPhDsuWLcvwu8A333zTLbnNmzcv1XwyewKuMSbV42KVKlXK1ouXnD592tSsWTPNx/f+++83586dyzDOhg0bUpzA2r59exMTE5NtubtKbq81uTFmesemhw4dauLj4zOM89///jfFyfzjxo3LzG7arVy50vj4+GT4eq1QoYKZMGGCCQ0NNVevXjVRUVFmz5495uOPPzZ169a1r9e2bVtTunTpdGP5+PiYKlWq2OsBMmp08dprr7n0OES5cuXMiRMnHH6MGjVq5HDsjE4qzg6pNYqQZNq1a2dOnTqV4fbHjx9PcfJw0aJFnW5wST1ZzgzqybJfRnl6enqazz//3KFYf//9d6r1D87WMJw5cybLz7UmTZqYY8eOZXjhghuHl5dXmt9lnj9/3lSrVi3d7StVquRULcrNYmJikjW6yMyoVq2a2blzp7ly5YrD21iWleH/U44fP55hsyVnm4oYc/vU42TnexMAAEB2y9WNIr799ltTpEiRdBtEpNUAwsPDwxQpUsRUqlTJ1K5d2zRo0MA0adLEtGjRwjRt2tQ0bNjQ1KlTx1SpUsUUKlTI4UYSNy4PCgoyoaGh7n6YUujWrZuxLMsULlzY5d2tXal///72xzIrX2YDAIDc7fPPP0/1S7MXXnjBJfFjYmKSHdxzZpQsWTLZ3yGfffaZQ9tVrVrVoYNW6Um6eu+Nw8PDI92O9DnBkUYRSaNmzZrmzTffNGvXrjURERGpxtuzZ4+ZOXOmadiwYaoxSpQoYf74448s5z1hwoR0c61QoYJTJylu3bo1xYHsG4eXl5fTXeXj4uLSvApI0nj33Xedivnnn39meDDb1aN///7p5hQbG2v2799vPvzwQ+Pr65thvBIlSpiZM2easLAwp08E/Oqrr9I8uOzMKFy4sFm/fr1Tc+ekuLi4NF9DSSM4ONjpuGm9PyeNhg0bOnVFlyRRUVHpnqBaoEABM3bsWHP69OkU2x4/ftyMHTs2RdFH9+7dTXh4uNO53OzChQumWbNmWX7OVK1a1ezatSvDwr6kUaNGDfPOO++Ys2fPZphjaGhoqk11nB02m818/PHHTj0+c+bMcTh+hQoVMvtryLS0GkUkjQcffNAsX7481edtaGioadOmTYptMlOktG/fvgwPdv/0008Ox8srr/Hw8PB0r7aSHaNs2bLm5MmTaeaUmJhozp49a5YtW5ZmQe/NY8iQISYkJMRcvHjRqULIgwcPpvr3W2bGa6+95vC82SmtRhF+fn7JriJVvnx5M2PGjFQbRly9etXMmzfPVKpUKUWcZs2amfPnzzud1759+zLdNKd+/frmwIED9li9evVyaLsuXbokK15KSEgwJ06cMIsXLzadO3d2eP5u3bqZZcuWmdOnTztdlHn+/HlToUKFTO131apVk31PPXLkSIe2u+eee9Is5I6IiDAbN240PXr0cChW69atza+//mpOnz6dbiFYZGSk2bFjh3nhhRcciluvXj2zYMECc+zYMYcKUpMkJCQ4PEdGo3bt2ubMmTMOz52T700AAACZRU0BAABA9tcyJFm/fn2q36HeOEqUKGG++OKLdL8bSkxMNJMmTTIeHh727SzLMuPHj3dpvjf74YcfUs35ySefzNZ5Xe3o0aMZnuAmXW9G7I664KioKFOoUKFkudSpUydLMbds2ZJi/3Li4iXnzp0zLVq0SPMxLl68uPnggw9SPf67b98+8/LLLyd7nie9LjNz7Dqn5ZVakyShoaHpHpuoWbOm+emnn0xcXFyKbdetW2ceeuihZOv7+vo6fKJyRlasWOGSiyz079/fxMbGmooVK2a4rqenp+ncubNZtGiRQ8ckJk6cmO7v29FRoUIFExYW5tTjc9999zkc/z//+U9mfw2Zll4tT4ECBcyIESPMnj17UmwXFxdn5syZY0qWLJlsm2LFimWq4QX1ZFl7bjr7WksP9WRZk95z+MbbDz74oPnjjz9SPVZ94MABExwcnKLhmGVZZuLEiZnKa8qUKZl6bC3LMq+++qr9vTY6OjrFZ39qw8PDw3z77bfJcoiOjja7du0y06dPT9FgJq3h7+9vxo0bZ0JDQzN1sYDvv/8+08+r3r17JztG72iThKlTp6aay7Vr18zJkyfNTz/95ND+e3p6mpEjR5pt27ale9GQ26UeJyffmwAAALJTrmwUceXKFdOnTx97Y4a0GkMUL17c3HfffWbIkCHmww8/ND///LPZtm2bQ91mbxYfH2+OHz9u/vrrLzN37lzz5ptvmocffthUrlw51UYVSbe9vb0z/QVbdrh27ZopUKCAsdlsmboiZk6KjIw0ZcuWNTabLdMdNAEAQO4XExNjSpUqleILs9q1a7tsjgMHDjh9UlVqHcqPHj2a4QG8mjVrOtXBPTVnz55NtXP1Y489lqW4rpDUKKJFixbmxx9/NAsXLjRjx441rVu3Trdbv2VZpnTp0qZatWqmTp06pmLFiqZAgQLprt+zZ0+nTri62dWrV83ff/9tgoODHeoEXqNGDTN//nxz8uTJVE9eS0hIMMeOHTOffvqpKVGiRIbxChcubD755BPz77//msjIyFRzTExMNOfPnzfLly9P9QTl1B6XoUOHmtDQ0DSbb9zs3Llzpnv37i75otzRMXfu3FRzGTBgQJZjV65c2fEngble3JKVAwVBQUFOH3DPKZcvXzYrV640rVq1cmhfBg4caNavX2/Onz+f5smpUVFRZseOHeY///mP8fT0zDBm48aNzZIlSzJ1wuv06dPTLdyw2WwmMDDQdOjQwbRr184EBgameA8uVaqUmTVrliseTruYmBjzwgsvZPoKAj169LAXCqTXKMLPz888+eSTZsOGDU7neObMGdOlS5dMP69LlChhlixZ4vS8Bw4ccOpxSe8E/uyQUaOIGx/7hg0bmo4dO5q2bdumWvRXtGhR88033zg8d3x8vDl69Kj5+uuvTdmyZTPMwcvLy0ycONHs3r07zQODefE1npiYaD799FOHDo66arRu3TrVXFavXu2S+KtXr3b4eXDlyhXz5JNPZnquggULmtmzZzs8X3ZLq1FExYoVzY4dO1K8djw8PEytWrVMu3btzEMPPWTq16+fatMUm81mhg0blqWCzZ9//tmp4h3Lsswrr7ySYs60rsB24+jZs2eyAkdXPbckmcOHDzu135s2bUrWpMOR0bt37xR/N65duzbD7Vq1apXm35uuuMpOasXGjhbmpDcGDBjg1GP69ddfp3ulKEeeH84UB7njvQkAAMBZ1BQAAABclxO1DEkiIyPN6NGjTcGCBdP9Xujuu+82b731ltm4caMJDw83sbGxJiwszMyaNcvUqlUr2bplypQxK1ascHmuN3vuuedS/U52586d2T53Vl29etXs2LHDjB8/PkUThvSGj4+Peemll8zatWvTPYHO1W4+FpbWcXlnBAUF2ePZbLYcu3hJQkKCefPNN9P9rt/T09PUrVvXdOzY0bRp08YEBASkWKdKlSpm8eLFOZJzZuXVWpMk58+fN4899li68QsWLGiaNm1qOnfubJo3b57qldRbtGhhdu/e7YqH1G737t3JnsPODD8/PzNz5kx7rPQaRdx9991m8uTJqV7sIiO//fZbphuBSzL3339/puZ19KIWkkzbtm2djp9Vjh7nu+OOO0yLFi1M586dTbNmzVL9nGzevHmyRvEZoZ7sOurJbq16srTyHD16tHnnnXdS1Fv5+/ubpk2bmk6dOpnWrVun+hkrXf97MjP1RUkSExNN7969nXpsS5UqZZYtW5YiVkavBW9vb/P9998n26Z///4uee62atXK6X139OINScPPz8/MmTMnRZyMalBsNpt5//33U83BmQsCpTdurmu4Xepx3PHeBAAAkF0sY4xRLnLkyBG1b99ee/fulTFGlmUpKcXKlSurbdu2atWqle655x5VqlQpR3K6ePGi1qxZo9WrV+vXX3/Vvn37JMmem2VZ6tq1q+bOnSsfH58cySkt+/fvV0BAgCzL0v79+1W5cmW35pOR8ePHa/To0br77ru1Z88ed6cDAACyyYQJEzRq1KhkyyzL0tmzZ1W8eHGXzHHy5En17t1bq1atSne9woULa+LEiXr66adlWVaK+4cNG6b33nsv1W379eun6dOnq2DBglnK9ccff9Rjjz2WYvmWLVtUv379LMXOqjvvvFPnzp3T8ePH5efnl+y+6OhorV69WkuXLtWyZct04MABp+N7e3vr0Ucf1bBhw7K0rzabTVn9r8ycOXPUt29fSdKgQYM0e/bsLMW0LEuHDh1SxYoVJUmtW7fWH3/8kaUcLctSYmJiuuvEx8erS5cuWrZsmWrVqqUXX3xRR48e1cmTJ3X27FldunRJERERunLliqKiohQTE6O4uDjFx8fr2rVrmdrnypUr68CBAyleQydOnNClS5ecjncjLy8vBQQEOLVNXFycPvvsM02ZMkVHjx51aJvSpUvrtdde0/PPPy9PT8/MpJpt1qxZo/vvvz/D331Gxo4dqzfffFOS9NVXX2nAgAFZjnnj68YRZ86c0ZQpUzRr1ixdvnzZ4e0qV66sp556Si+++KIKFCiQmVQztH79eo0YMUJ//fWXQ+vXq1dPEyZMUPv27e3LxowZo7FjxyZbr2nTpho0aJC6d++e5dyXLVumsWPHauPGjQ6t7+Pjo8GDB+vNN99UsWLFMjXnc889p08++STF8nz58ilfvnyKioqyL9u6davq1q2bqXky45lnntHXX3+thQsXqmbNmgoJCdH8+fP1yy+/6MKFCw7FyJ8/v/r3769Ro0apTJkyDm0zcOBAzZ49Oyup67777rN/JuT11/jcuXPVr18/eXh4aMqUKYqNjdWJEyd09uxZnT9/XpcvX9aVK1cUGRmp6OhoxcbG2j9zrl27lqm8Vq9erZYtWyZbFhkZqUOHDmUq3o0qV67s9Gt1w4YNGj16tFauXOnQ56inp6cef/xxTZgwQXfccUdmU3W5/v37a86cOSmWV6xYUYcPH9aFCxf04osv6ptvvnFoP202mx566CGNHTvWJe8N69atU9++fXXw4MF01wsICNB///vfFM8RSUpISNC9996rzZs3p7gvf/78GjdunF599dVky1313JKku+++W/ny5XNqmz179uiJJ57Q9u3b012vbNmy+vDDD/Xoo4+men/Xrl21YMGCFMs9PDw0bNgwvf3222n+DbRz506nck5NyZIlVbJkyWTLwsLCFBcXl6W4RYoUUbly5Zza5vz585o0aZL++9//6sqVKw5tU6dOHU2YMEEdO3Z0ai53vjcBAAA4ipoCAACA/5cTtQw3OnfunN577z3NmDFD4eHhmYrh4+OjIUOGaMyYMfL393dtgqmoWbOmdu3alWxZx44d9fPPP2f73Jlx5MgRVa1aVZIyfVziZjabTZZl6YsvvnDqWKmzNm7cqMaNG0uSypcvr4MHDzr9HfPNpk+frhdeeEGS1LZtWy1fvjzLeTrj4MGDevvtt/X1118rOjra4e0CAwP13HPP6cknn8zyY5Cd8nKtyc3+/PNPTZw4UcuXL3d4f2w2m1q1aqXhw4frwQcfzEyqGYqPj9fHH3+sSZMm6cyZMxmuny9fPvXu3Vtjx45VhQoV7MsrVaqkI0eO2G8XKFBAjz32mAYNGqRmzZplKcerV6/qgw8+0AcffKBz5845tE3VqlX15ptvqk+fPqnWr2XkwoULqlevXqo1MoUKFUpWn1G7dm3t2LHD6TmywsfHRy1atNDnn3+u2NhY/frrr1qwYIH+/PNPh9+bq1atquHDh+upp56SzWZzaBvqyf4f9WS3Vj1ZWu8To0eP1pgxY7RmzRo9/fTT2rt3r0PxihQpoueee06vvvqqChUqlKXcjDEaN26cJk6cqNjY2HTXfeKJJ/TBBx+k+nf2pk2b1KJFi1RjVKtWTXPnzlWDBg2SLXfFc0u6/pmQme9IZ86cqeDgYEVERKS7Xrt27fTpp5+mev7b4cOHVa9evVT3o1y5cpo1a5batWuXatzw8HAdP37c6bxvdnNdw+1Sj+Ou9yYAAIDskKsaRWzdulUdO3a0f5FjjFHRokXVr18/9evXT7Vr13Zzhtdt27ZN3377rb744gv7iQiWZalhw4ZasmRJpk/GcIVNmzapcePGsixLsbGxueo/qKlZsWKF2rVrpwIFCjhcpAsAAPKeCxcuqHLlyik+75094dgRy5cv19dff621a9fq9OnT8vDwULly5VSjRg09+uij6ty5c7qNHowxmjZtmv773//q8OHDKlasmO6//349//zzatKkiUtyHDRokL744otkyx588EEtW7bMJfGz4s4771RgYKAWLVqU4boHDx7UH3/8oY0bN2rfvn06duyYLly4oKioKF27dk2+vr4qXry4KlWqpDp16qhZs2Zq165digYUmeGKk9fKly+vwoULS3LdQYMbvzQ/dOiQIiMjsxyzZs2aad5njFGvXr30zTffqESJEtq8ebP9wKKz4uPjFRcXp5iYGF28eFHnz5/Xvn37tH37di1evDhFY5Dc0NjkZomJifr999+1bNkybd68Wfv27VN4eLiuXbsmf39/Va5cWQ0aNFD79u3VoUOHXFtQ4qqDLTeeoOmqA0M3vm6cERUVpZUrV2rFihXasWOH9u/fr8uXLys2Nlb+/v4qWrSoqlWrpgYNGuiBBx7Qvffem6liiMzYvn27fvzxR/3111/au3evLl68KEkqWrSoAgIC1LRpUz3yyCNq1KhRim2TGkWUKlVKffv21aBBg3T33Xe7PMe///5bixYt0tq1a7V3716dO3dOMTExKlCggCpUqKDatWurTZs2evTRRzP1+7lRYmKiPvjgA3322Wc6cOCASpYsqb59+2rYsGHas2ePmjdvbl93/fr1LvtszIpr164pJCREf/75pzZv3qx///1XJ0+eVGRkpAoWLKiSJUuqTp06at26tbp27aoSJUo4Fd8VnxE3HlTOy6/xX375RY888ogSEhL0ySefaMiQIZma59q1a/Yik/DwcF28eFFHjhzR7t27tXLlSq1evTpZYcvzzz+vjz76KFNzZacDBw5owYIFWrNmjfbs2aPTp08rOjpa+fPnV9myZVWzZk3dd999euyxx1S6dGl3p5tCRo0ikhw4cEA///yzli9froMHD+rcuXOKiIiQr6+vypQpo8DAQLVs2VKPPPKIyxthxMXFad68eVqwYIG2bdumc+fOyc/PT+XLl1ejRo3UvXt33XffffLw8EgzRnh4uEaOHKmffvpJly5d0h133KFOnTrppZdeyvTfTdktMTFRP/30k3744Qdt3LhRZ8+elY+Pj8qVK6egoCA99thjevDBB+Xt7Z1mjNjYWI0bN07z5s3TqVOnVKZMGbVr104vvfSSAgMDc3Bvco/IyEgtXrxYK1as0Pbt23X48GFduXJFNpvN/rnfpEkTPfzww/ZibAAAgFsRNQUAAAD/LydrGW4UHR2tn376Sd9++63++OMPh06gr1y5svr06aMhQ4bk2HfOR48eVaVKlVKcpLVhw4Zc+x1afHy8wydJOiuzx0qdERgYqN27d2vq1KkpGh1nRnh4uMqUKaOYmBh999136t69uwuyzFwey5cv1++//65//vlHBw8eVEREhBISElSoUCEVK1ZMNWvWVMOGDfXggw8qKCjILXk6K6/WmqTnyJEjWrp0qf7880/t3r1bx48ft3+XXqRIEZUqVUpBQUFq1KiRunTp4nRz58yKi4vTzz//rKVLl2rLli06fPiwIiMj5e3tbT8u17p1a3Xv3j1FI2vp/xtF3HPPPRo0aJB69uzpkvqlm3NctmyZfvvtN23ZskUHDx60N2woXLiw7rzzTjVq1EgdO3bU/fff73Dzg7ScOHFCI0eO1LJlyxQeHq569epp6NCh6tatmwYPHqxZs2ZJut50PbveF5118eJFrVq1SmvXrtXff/+tffv26cKFC4qPj1exYsVUtmxZe31Zu3bt0j0GmBrqya6jniy5W6GeLKNGEdL1Oow///xTS5Ys0dq1a3Xq1CmdO3dOCQkJ8vf3V5UqVVS3bl098MAD6tixo8svkHvkyBF99tlnWr58uQ4dOqQrV66odOnSuuOOO9S+fXv16NHD3swrLRs2bNDIkSO1ceNG2Ww2BQUFqU+fPurfv7+8vLxcmq+rnD9/Xp999pmWLFmisLAwhYeHq0SJEqpQoYJat26tHj16ZHge3J49ezRixAitWrVKCQkJCgwMVI8ePfT000+7/LMqr8jr9TgAAAA5Ldc0ili3bp3at2+vyMhIGWNUsGBBDRs2TK+88kqu/eM2JiZGs2fP1sSJE3X8+HFZlqVatWrp999/d1uziH///Vc1atSQZVk6ceJErv+jd+nSperYsaN8fX119epVd6cDAACy0ZQpU/Taa68lW/bII49o/vz5bsrIPeLj41WqVKlkB5FsNpu2bduWaxqjIe944YUXNH36dFmWpZUrV+r+++/PlnkSExM1adIkjRw50r5s5syZGjx4cLbMByB3io2NTXageP/+/RkexMWtY+3atWrbtq2io6PVt2/fVBsMuMqWLVuSNZNt0qSJ1q9fn23z3a4cbRQBAAAA4NZCTQEAAEBy7q5liImJ0ZYtW7R9+3YdPHhQ58+fV2xsrHx9fVWqVCndfffduvfee7OlWXlG3nnnHQ0fPjzZskcffVQ//vhjjudyu/jtt9+0fv16DRs2TP7+/i6J+dVXX+nQoUMaMWJEug2IAdw6Zs6cqWeeeUaS1KxZM/31119uzgg5iXqyW48jjSIAAAAA3L5yxaUhduzYoU6dOtkP6vfo0UMfffSRihcv7ubM0ufj46MhQ4aof//+euutt/TOO+/on3/+Udu2bfXXX3/J19c3x3OqWLGivLy8FB8fr0WLFunpp5/O8RyckfTFU5kyZdycCQAAyG4vv/yyPvvsM+3fv9++bNmyZbp06ZKKFCnixsxy1vLly1N0Gu/bty9NIuC0CRMmaPr06ZKkp556KtsO6knXm5m88cYb2rhxoxYvXizpejdsALeXGz+/kq5sj9vDP//8o06dOik6OlqlS5fW+++/n63zNWjQQDNmzFDXrl0l8ZkDAAAAAK5ETQEAAEBy7q5l8PHxUbNmzdSsWbNsn8tZ3377bbLb+fLl08SJE92Uze2hbdu2atu2rUtj9u3b16XxAOR+Nx7bv/POO92YCXIa9WQAAAAAcPuxuTuB8+fPq1OnTgoPD1ehQoU0d+5cffPNN7m+ScSN8ufPrwkTJmjdunWqWLGitm/frscff9xtudx7770yxmjMmDG5+j/bp06d0syZM2VZlho3buzudAAAQDbz8vLSO++8k2xZTExMtl6NOjf68ssvk90uWrSoJk+e7J5kkGf9+OOPGjVqlKTrhUNvvfVWjszbpk0b+88+Pj45MieA3OOff/6x/9ysWTPeB24TFy9eVMeOHRUeHi5JGjlyZI4UxvKZAwAAAADZg5oCAACA5KhlSN3OnTsVGhqabFlwcLDuuusuN2UEAHDUjcf2bzzuilsb9WQAAAAAcHtya6MIY4wef/xxHT9+XAEBAQoNDVWvXr3cmVKW1K9fX9u2bVOTJk30yy+/6O2333ZLHk899ZQk6ezZs2rTpo1OnDjhljzSc+7cuWQnGXTr1s29CQEAgBzRpUsX9ejRI9myqVOnKjo62k0Z5ayDBw9qwYIFyZa98847KlmypJsyQl505MgRPfnkk/bb3bp1y7FGeze+VrniAHD7WbJkif3nnj17ujET5KRBgwbp6NGjkiRfX1/169cvR+blMwcAAAAAsg81BQAAAMnd7rUMqZk2bVqy2wEBAfaTTwEAuVd8fLxWrFghSfLz89NDDz3k5oyQE6gnAwAAAIDbl1sbRbz//vv6/fffVbt2ba1bt05VqlRxZzouUahQIf32229q1aqVxowZo82bN+d4Dt27d1dgYKAk6e+//1atWrU0Z84cGWNyPJfUfP3116pTp462b98uy7IUEBCgzp07uzstAACQQ2bOnKmKFSvab588eVIffPCBGzPKOe+//74SExPttzt06KABAwa4MSPkNcYY9e/fX5cvX7Yvu/fee3Ns/qT/33h4eKh58+Y5Ni8A9wsPD9fs2bMlSeXLl1efPn3cnBFywpdffqmFCxfab9esWVN+fn45MveN36m1atUqR+YEAAAAgNsFNQUAAAAp3c61DDc7deqUvv76a/ttT09PzZ49W97e3m7MCgDgiLlz5+rcuXOSpGeeeUaFCxd2b0LIdtSTAQAAAMDtzW2NIg4dOqRRo0bprrvu0u+//65ixYq5KxWX8/X11cKFC3XXXXfp6aefzvFiCg8PD3322Wfy8PCQZVkKDw/XwIEDdeedd+r999/XkSNHcjQfSfr333/19ttvKyAgQH369NHp06dljJFlWfrkk09kWVaO5wQAANyjUKFC+t///icPDw/7ssmTJ+vSpUtuzCr7HTx4UJ999pn9dtmyZTVnzhw3ZoS8aN68eVq9enWyZUWLFs2RuQ8fPmw/Wfihhx5SkSJFcmReALnDyJEjFRERIUl699135eXl5eaMkN3Cw8P16quvJluWU5850vUGW5Lk5eWV4ipuAAAAAICsoaYAAAAgpdu1liE1o0ePVlxcnP32uHHjcvSEUwBA5oSHh+vNN9+UJJUrV06vv/66mzNCTqCeDAAAAABub25rFDF06FB5eXnpl19+uaWaRCTx8/PT4sWLdeDAAX366ac5Pn/jxo310Ucf2QsnjDE6dOiQXnnlFVWpUkW1a9fWM888o5kzZ2rDhg06efKkyxpaGGO0e/duzZ07Vy+//LKqV6+uwMBAjRo1Svv377fnZFmWxowZo/vuu88l8wIAgLyjadOmmjp1qv12eHi4nn/+eTdmlP2GDh2qmJgYSVK+fPn0zTffqHjx4m7OCnnN+PHjUyxbuXJlts+bkJCg3r17KyEhQZZlaeTIkdk+J4Dc4+eff9aMGTMkSb1799Zjjz3m5oyQEz7++GNduHAh2bJNmzbpypUr2T73jBkz7J9vTz75pEqVKpXtcwIAAADA7YaaAgAAgJRux1qGm4WGhmrWrFn22+3bt9eIESPcmBEAwBHGGA0ePFgnTpyQzWbT7NmzOWn/NkE9GQAAAADc3izjqiP5Tli7dq1atGihBQsWqEuXLjk9fY765JNP9Pbbb+vgwYNuudrmqFGj9NZbb9mvrnHjr/vmK254eHiodOnSKl++vMqXL6/SpUvL19dXvr6+yp8/v/1fSYqJibGPq1ev6uTJkzpx4oSOHz+uo0eP2k+CTGtOY4xeffVVTZkyJdv2HQAA5H7Dhg3Te++9Z789b9489erVy40ZZY9Fixbp4Ycftt+ePXu2+vfv77Z8kDeFhYXp7rvvTrHcw8ND8+fPV+fOnbNl3tjYWPXp00c//PCDJGnw4MGaOXNmtswFIPdZtWqVHnroIUVHR6tt27ZavHixvL293Z0WcsC9996rDRs2pFjeo0ePFFdUc6XvvvtOffv2VVxcnMqUKaOdO3fm2NVObjf9+/fXnDlzUiyvWLGiDh8+nPMJAQAAAHALagoAAABSul1qGW4WHx+vpk2bavPmzZKk2rVra+3atfLz83NzZgCA9CQmJur555/XjBkzZFmWPv/8cw0cONDdaSEHUE92e7j5O7oko0eP1pgxY3I2GQAAAAC5jlsaRaxYsUIXL15Ujx49cnpqt/j000/Vvn17VaxY0S3zf/bZZ3ruued07do1+7L0fu1p/UfSEanFvTGeMUb58uXTtGnTbrtO2wAAICVjjB5//HF99913kiR/f3/t2LFDlSpVcm9iLnTkyBHVrVtXly5dkiSNGTNGo0ePdnNWyIu2bNmihg0bpnqfh4eHXn/9dQUHB7u0SGf//v0aOHCg/vrrL0lSnTp1tG7dOhUoUMBlcwDInYwxmj59ul555RXFx8frkUce0f/+9z/7yR649dWsWVO7du1K9b4WLVro448/Vs2aNV02X2xsrCZOnKhx48bJGCNPT0+tWLFCrVq1ctkcSK5379763//+l2J5hQoVdPToUTdkBAAAAMBdqCkAAABI7naoZUjNK6+8onfffVfS9e+K161bpwoVKrg5KwBAei5cuKA+ffpo2bJl8vHx0YwZM7iA0W2EerJbX0JCgvLly5fqfaNGjdK4ceNyOCMAAAAAuY3NHZM+8MADt02TCEl65pln3NYkQpKeeuop/fnnn6pRo4a96MKyrDSHMSbTI7V4SYwxqlWrltatW0dBBwAAkHT9b5KvvvpKjzzyiCQpIiJCXbp0UUREhJszc43o6Gh1797d3iRi5MiRNIlAptWoUUOFChVK9b5r165pwoQJqlixosaOHauwsLAszRUWFqbg4GDVrFnTflCvcuXK+uWXXzioB9wG1q5dq3vvvVcvvviiPD09NX36dM2fP58mEbeZe++9N837/vzzT9WuXVuPPvqofv/9d8XHx2d6nitXruirr75SYGCgxo4dK2OMbDabvvjiC5pEZLOEhIRUl8fFxeVwJgAAAADcjZoCAACA5G71WobU/PTTT8maRKxevZomEQCQi8XExOjDDz9UQECAli1bpsDAQG3atIkmEbcZ6slufWkd15c4tg8AAADgOsukdxkI3FISEhL0zjvvaNq0abpw4UKWrvLhDGOMypcvr+DgYA0ZMkQeHh45Mi8AAMg7rl27psGDB+uLL76QJN13331asmRJnj4hNS4uTl26dNGvv/4qSRo3bpxGjRrl5qyQ13300Ud68cUXHVr3zjvvVOvWrVWtWjXdfffdqlKlivz8/FSgQAEVKFBA165d09WrV3XlyhWdOXNGu3bt0s6dO7Vq1Spt3749WayaNWtq6dKlFAIBt7j169fr2Wef1Y4dO+Tp6an+/ftr9OjRKl++vLtTgxscOXJE9erV08WLFzNc18/PT23atFFQUJACAgIUEBCg4sWL2z9z8uXLp6tXr+rq1asKDw/X3r17tXPnToWGhuq3335TTEyMPZa3t7e+/PJL9ezZMzt3D5IeeughLV26NMXy/PnzKyoqyg0ZAQAAAHA3agoAAACSuxVrGVKzYsUKderUSbGxsbrrrru0fPlyVa5c2d1pAQDSMGHCBL377ru6dOmSypQpo1GjRunJJ59Uvnz53J0a3IB6slvbuXPnVLJkyVTvGzJkiD755JMczggAAABAbkOjiNtQVFSUZsyYoU8++USHDh2SJJcWeNz4lKpevbqGDx+u3r17y9PT02VzAACAW9Pbb7+tUaNGKTExUS1bttQvv/yiggULujstp0VHR+vxxx/XokWL5O3trVmzZqlXr17uTgu3iDfeeEMTJ07Msfk6deqkefPmyd/fP8fmBOAe77//viZPnqy+fftq8ODBqlq1qrtTgptt2LBBnTt31vnz53NkvrJly+q7775Ts2bNcmS+213dunVTFPMkuXjxoooUKZKzCQEAAADINagpAAAASO5WqWVIzcqVK9WlSxdFRUWpRYsWWrBggYoWLerutAAA6ahbt658fHw0aNAg9erV65ZrYATnUU9269qxY4eCgoJSva9z585atGhRziYEAAAAINe57RpFXLt2TWvWrNGqVau0e/duHT16VFeuXJGnp6eKFCmiokWLqk6dOrrnnnvUsmXLW+bL/LRs3LhR3377rX799VeFhYXp5qdDRsUeqT19goKC1LlzZ3Xq1En169d3ab4AAODW9/vvv+uJJ57Q2bNnFRQUpJ9//jlPXcn8xIkTevjhh7VlyxZVqVJF33zzjRo1auTutHCL+fHHH/XSSy/p5MmT2TaHv7+/Jk+erGeeeSbb5gCQu5w9e1ZFixblpAwkc+TIET311FNasWJFts7Ts2dPffzxxxSf5pCLFy+qTJkyiouLS/X++fPn65FHHsnhrAAAAADkRtQUAAAAXJfXaxlSM336dA0dOlTXrl3TSy+9pMmTJ8vLy8vdaQEAMnDy5EmVLVvW3Wkgl6Ge7NY0ffp0vfDCC6neV6pUKR0+fFg+Pj45nBUAAACA3OS2aRRx4cIFTZ06VbNnz052FcQbd//mAoaCBQuqb9++Cg4OVoUKFXIsV3e5ePGiNmzYoB07dujQoUM6fPiwjh8/roiICEVFRSkqKkrGGBUsWFB+fn7y8/NTkSJFdPfddyswMFCBgYGqU6eOSpUq5e5dAQAAedzZs2f1/PPP64cfflDp0qX13XffqUWLFu5OK0OLFy/W008/rdOnT6tfv3766KOP5Ofn5+60cIuKjIzU1KlTNXXqVEVFRbksbv78+TVo0CCNHj1axYsXd1lcAEDetmTJEg0fPlx79uxxadxmzZpp0qRJatq0qUvjIm3x8fHq1auXfvjhhzTXqVy5stasWXNbfCcKAAAAwHHUFAAAgNtdXq1luNnFixf10ksvad68eSpXrpw+//xzPfjgg+5OCwAAZBH1ZLeWsLAwtWjRQmfOnElzncGDB2vGjBmy2Ww5mBkAAACA3OS2aBQxZ84cvfTSS7py5UqqV6uwLCvV5Un3+fv76+OPP9YTTzyR3akCAADgBgsXLtRLL72kEydOaOLEiRo+fLi7U0pVdHS0+vXrpx9++EE1atTQJ598opYtW7o7LdwmLl68qO+++07z5s3T+vXrMx2nfv366tmzpwYOHMjV3AEAqbp27Zp+//13zZ07VwsXLtTVq1czFad06dLq0qWLBg8erHr16rk4S9zswIEDunz5sk6cOKGQkBDNmTNHJ06cyHC7okWL6umnn1bjxo1Vrlw5+fv766677sqBjAEAAAAAAAAgd8srtQypWbp0qQYMGGBvFjFmzBgVLFjQ3WkBAAAXop4s74mKitLRo0d1/vx5HT16VIsWLdKiRYsUGxub4baNGjVSnz59VKNGDRUvXlxly5aloQcAAABwG7nlG0WMHDlSkyZNsjeCsCzLqe1v3G7atGl6+eWXXZ0iAAAA0hETE6MPPvhAy5Yt0+rVq92dTqoOHz6sNm3aaOTIkerTp488PT3dnRJuU8ePH9fGjRsVGhqqbdu26fjx47p8+bLCw8MVGRkpb29vFShQQCVLllTFihVVvXp1NWzYUM2bN1e5cuXcnT4AIA+JiorSpk2bFBoaqq1bt2rv3r26dOmSLl++rMuXL8uyLPn6+qpIkSK64447VKVKFdWrV09NmjRR/fr1nf6ODplXqVIlHTlyJMtxKlasqMOHD2c9IQAAAAAAAAC4BeSFWobUPPnkk4qPj9eoUaN05513ujsdAACQzagnyxtWr16t++67zyWxRo8erTFjxrgkFgAAAIDc75ZuFPH5559r8ODBkv6/QYSzu3vjdpZl6aefftLDDz/s0jwBAACQsZiYGPn4+Lg7jVTFx8fLsiwaRAAAAAAAAAAAAAAAcBvJzbUMqYmOjlb+/PndnQYAAAAAAAAAwAVu2UYRp0+f1l133aWoqChJ1xs95MuXT02aNFHt2rVVuXJllS1bVr6+vsqfP78sy1JkZKQiIyN19OhRHTp0SOvXr9fOnTslXW8YYYxR2bJl9e+//6pgwYLu3D0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAbumUveTx16lRFRkbKsiyVK1dOb7zxhvr27StfX1+n4hw7dkxTp07VzJkzlZCQoFOnTmnu3LkaMmRINmWee0RHR+vMmTOKiIhQbGys4uLi5O3tbW+uUbhwYRUpUsTdaQIAAAAAAAAAAAAAgBxGTQEAAAAAAAAAAAAAAO5jGWOMu5PIDqVKldL58+dVp04drVy5UkWLFs1SvDVr1qhDhw6KiYlRq1at9Pvvv7soU/czxmjr1q3666+/tHXrVu3evVv79u3T1atXM9y2QIECuuOOO1SpUiXVr19fjRs3VuPGjSn2AAAAAAAAAAAAAADgFkBNAQAAAAAAAAAAAAAAuY9bGkWEhoZq1apVeuWVV2RZlsvjHzp0SFWrVpVlWVq3bp0aN27skrjjx4/X6NGjVbZsWR0/ftwlMd1p5cqV+uabb7Rw4UKFh4fbl2fmKXHj79GyLDVp0kQ9evRQt27dVLp0aVekCwAAAAAAAAAAAAAAcgg1BQAAAAAAAAAAAAAA5F5uaRSxbt06NW/eXE2aNNHs2bMVEBDg0vibN2/WPffcI8uyFBUVJW9vb5fEXblypdq2bSsvLy/FxMS4JGZOM8Zo1qxZevfdd7V37177sps508Ajve09PDzUo0cPvfbaa6pZs2YmswYAAAAAAAAAAAAAANmNmgIAAAAAAAAAAAAAAPIGtzSKWL9+vZo1aybLsuTt7a3x48dr2LBhThUSpGffvn26++67ZVmWNm7cqAYNGrgk7gcffKChQ4eqdOnSOnnypEti5qQ//vhDL774ovbs2ZOsECOtx92Rp4Yj2yat0717d7333nv2q4GcPXtW586dczh/SYqIiNCWLVvk7++vwoULq0KFCi5rBAIAAAAAAAAAAAAAwM1iY2N17Ngx++2WLVuqcOHC7ksom1BTAAAAAAAAAAAAAACAc9xZU+CWRhGJiYmaPHmyxo0bp9jYWFmWpcaNG2v27NkKCAjIcnxjjIoWLaqIiAjVr19fK1eulL+/f5ZiHjx4UE2aNNH58+fVuXNnLViwIMt55pS4uDgNHz5cH3/8sYwxMsa4rCmHI5KeYpZlyd/fX++//7769eunMWPGaOzYsTmWBwAAAAAAAAAAAAAAWbVw4UJ16dLF3Wm4DDUFAAAAAAAAAAAAAAC4Rk7WFNhyZJabJ7XZ9Prrr2vLli2qX7++jDEKCQlRUFCQpk2b5tBVJ9JjWZYee+wxGWMUGhqqevXq6euvv9a1a9ecjhUZGan33ntP99xzj/1KFb169cpSfjnp/Pnzuu+++zR9+nQlJiZKSnnFjqRCD1eOG1mWJcuyZIzR5cuXNXDgQL3yyitZ/j0DAAAAAAAAAAAAAIDMo6YAAAAAAAAAAAAAAIC8yTJuPrKemJioyZMna9y4cYqNjZVlWWrcuLFmz56tgICATMc9ePCgatSoofj4ePvVLnx9fXXvvfeqVq1aqlixosqUKaP8+fPLx8dHHh4eio6OVlRUlE6dOqVDhw5p69at2rBhQ7IYtWvX1tatW3P06hmZdfbsWd1///3as2dPsit+3PgrL1SokKpXr64aNWqoSpUqKlWqlEqWLKkSJUrI29vbPjw8PHTt2jUlJiYqJiZGsbGxunr1qiIiIhQeHq5z587pzJkzOnbsmA4fPqx9+/bp4sWLyfK5cX7LslS/fn1t3rw55x4QAAAAAAAAAAAAAACyKCev/pGdqCkAAAAAAAAAAAAAAMC1crKmwO2NIpLs2rVLAwYM0JYtW2RZlry9vTV+/HgNGzYs000ZpkyZohEjRtivPCGlvPJFRm58ePLnz6/169erTp06mconJ8XFxally5bauHFjsmKK/Pnzq0OHDmrdurXuu+8+3X333dmWw8mTJ7V161atXbtWS5cu1c6dOyXJ/vuwLEsjRozQE0884XDM3bt3q3v37vbbCxcu1J133uny3AEAAAAAAAAAAAAAkKT9+/fr4Ycftt8ODQ1VvXr13JeQC1BTAAAAAAAAAAAAAABA1rmzpiDXNIqQpMTERE2ePFnjxo1TbGysLMtS48aNNXv2bAUEBGQq5rPPPqtPP/001StfOCKpAMHb21s//PCDOnbsmKk8ctrw4cM1bdo0e/6VK1fWa6+9pscff1x+fn5uyWn//v368MMPNWvWLMXExNiLTP755x9VqVLFoRi7du1SzZo17bd37typwMDA7EoZAAAAAAAAAAAAAHCbuxWPU1NTAAAAAAAAAAAAAABA1rnzOLUtR2ZxkM1m0+uvv64tW7aoQYMGMsYoJCREQUFBmjZtmtNNHiTpk08+0Ycffqj8+fPbrzjhzDDGqGrVqvrzzz/zTJOIffv26f3335dlWbLZbBozZoz27t2rwYMHu62gQ5LuvPNOffjhh9qxY4fq168vSYqJidHQoUPdlhMAAAAAAAAAAAAAALcTagoAAAAAAAAAAAAAAMj7clWjiCSBgYEKCQnRW2+9JS8vL8XExCg4OFjNmjVTWFiY0/Gef/557d+/Xy+88IIKFSokY0yykeTm5XfccYemTZumXbt2qWHDhq7cxWz1wQcf6Nq1a7LZbPrmm2/05ptvytPT091p2d15551atWqVGjZsKGOMfvnlF+3evdvdaQEAAAAAAAAAAAAAcMujpgAAAAAAAAAAAAAAgLwvVzaKkCSbzabXX39doaGhatCggYwxCgkJUVBQkKZNm5aswYMjSpcurQ8++ECnTp3S0qVLNWLECHXq1ElBQUGqWrWq7rrrLtWvX1/dunXTuHHjtHbtWh08eFBDhw6Vl5dXNu1l9vjpp59kWZYGDx6sbt26uTudVBUoUEDfffedfHx8JElfffWVmzMCAAAAAAAAAAAAAODWR00BAAAAAAAAAAAAAAB5X+65JEQaatSooZCQEE2ZMkVjx45VTEyMgoODNX/+fM2ePVsBAQFOxfP29taDDz6oBx98MJsydq/jx4/rzJkzsixLTz31lLvTSVelSpU0YMAAzZgxQytXrnR3OgAAAAAAAAAAAAAA3NKoKQAAAAAAAAAAAAAA4NZgc3cCjrDZbBoxYoRCQ0PVoEEDGWMUEhKioKAgTZs2TcYYd6eYa5w+fdr+c40aNdyYiWOSGnYcOnTIzZkAAAAAAAAAAAAAAHBro6YAAAAAAAAAAAAAAIBbQ55oFJGkRo0aCgkJ0dtvvy0vLy/FxMQoODhYzZo1U1hYmLvTyxW8vb3tP0dHR7sxE8f4+vpKkqKiotycCQAAAAAAAAAAAAAAtzZqCgAAAAAAAAAAAAAAuDXkqUYRkmSz2TRixAiFhoaqYcOGMsYoJCREQUFBmjZtmowx7k7RrcqXLy/LsiRJf/75p5uzydiOHTskScWLF3dzJgAAAAAAAAAAAAAA3NqoKQAAAAAAAAAAAAAA4NaQ5xpFJKlRo4Y2bNigt99+W15eXoqJiVFwcLCaNWumsLAwd6fnNkWKFFHNmjVljNG4ceOUmJjo7pTSFBcXp5kzZ8qyLNWtW9fd6QAAAAAAAAAAAAAAcEujpgAAAAAAAAAAAAAAgFtDnm0UIUk2m00jRoxQaGioGjZsKGOMQkJCFBQUpGnTpskY4+4U3aJ3796SpK1bt6pfv365trBj8ODB2rdvnySpQ4cObs4GAAAAAAAAAAAAAIBbHzUFAAAAAAAAAAAAAADkfXm6UUSSGjVqaMOGDXr77bfl5eWlmJgYBQcHq1mzZgoLC3N3ejlu8ODBKlasmCTp66+/VtOmTbV//343Z/X/Dh8+rLZt22ru3LmSpEKFCtkLUQAAAAAAAAAAAAAAQPahpgAAAAAAAAAAAAAAgLzvlmgUIUk2m00jRozQ1q1b1bBhQxljFBISoqCgIE2bNk3GGHenmGMKFSqkqVOn2vd548aNCgwMVP/+/bVt2za35bV+/XoNGjRI1atX1++//y5jjCzL0ltvvaWCBQu6LS8AAAAAAAAAAAAAAG4X1BQAAAAAAAAAAAAAAJD33TKNIpJUr15dGzZs0MSJE+Xl5aWYmBgFBwerWbNmCgsLc3d6OaZ///7q37+/vXAiPj5ec+fOVYMGDVSlShW9+OKL+vbbb7V3795sa6Jx7NgxLVy4UEOGDFHZsmXVvHlzffnll4qNjbXn1blzZw0ZMiRb5gcAAAAAAAAAAAAAAClRUwAAAAAAAAAAAAAAQN5mmew6op8L7NmzR/3799fmzZtlWZa8vb01fvx4DRs2TJZluTu9bJeQkKD27dvr999/l2VZyYo3btx/b29vlS9fPsUoXbq0fH195evrq/z589v/laSYmBj7uHr1qk6ePKkTJ07o+PHjOnTokLZu3aoLFy7Y57h5bmOMWrRooaVLl8rX19fhfdq1a5dq1qxpv71z504FBgZm6vEBAAAAAAAAAAAAACAjt+pxamoKAAAAAAAAAAAAAADIGncep/bMkVncpHr16tqwYYOmTp2qMWPGKCYmRsHBwZo/f75mz56tgIAAd6eYrTw9PbVkyRINHDhQX3/9dbJCjhuLLGJiYrR//34dOHDAZXPf3H/k5rm7du2qefPmycfHx2VzAgAAAAAAAAAAAAAAx1BTAAAAAAAAAAAAAABA3mVzdwLZzWaz6bXXXtPWrVvVqFEjGWMUEhKioKAgTZs2LUXxwa3Gy8tL8+bN09SpU+Xj42PfX8uyUgxjjMvGzbGl68UcPj4+ev/99/Xjjz9S0AEAAAAAAAAAAAAAgBtRUwAAAAAAAAAAAAAAQN50yzeKSFK9enWtX79eEydOlJeXl2JiYhQcHKxmzZopLCzM3ellu1deeUV///232rZtay+8uFlqhR6ZHTdKmqtr167avXu3XnzxxRzZZwAAAAAAAAAAAAAAkDFqCgAAAAAAAAAAAAAAyFs83Z1Aai5fvqyQkBCFhoZq//79Cg8PV2RkpAoWLKhChQqpTJkyatCggRo2bKjy5cs7HNdms+m1115T586dNWDAAG3atEkhISEKCgrS+PHjNWzYsBQFCbeSqlWr6tdff1VISIjeeustLVmyxH5fWvudWvHHjTLaLl++fHr88ccVHBysGjVqZDJzAAAAAAAAAAAAAACQnagpAAAAAAAAAAAAAAAg78hVjSJ++eUXzZo1S8uWLVN8fLxD2zRu3FhPP/20evXqJQ8PD4e2qV69utavX6+pU6dqzJgxiomJUXBwsObPn6/Zs2crICAgK7uR6zVu3Fg///yzjhw5om+++UbfffedduzYkWydpGINRxtn3Fj84eHhoaZNm6pTp07q2bOnypUr57rkAQAAAAAAAAAAAABAtqGmAAAAAAAAAAAAAACA3M8yGV3eIQeEhIRo6NCh2rRpk6SMrzhxM8uyVLduXc2ePVu1atVyats9e/ZowIAB2rRpkyzLkre3t8aPH69hw4Y5XNBwKzhz5ozWr1+v9evXa8eOHTp06JCOHTumuLi4dLezLEuVK1dWYGCgAgMDVadOHbVt21ZFihTJljx37dqlmjVr2m/v3LlTgYGB2TIXAAAAAAAAAAAAAAAcp6amAAAAAAAAAAAAAACA1LjzOLXbG0V89NFHevXVV5WQkGBvEOFMg4Yb08+fP78WLVqkNm3aOJVDYmKi3nnnHY0ePVqxsbGyLEuNGzfW7NmzFRAQ4FSsW4kxRmfPnlVERISioqIUFRUlY4wKFiwoPz8/+fn5qVChQsqXL1+O5URRBwAAAAAAAAAAAAAgJ3GcOnXUFAAAAAAAAAAAAAAAbnfuPE7tmSOzpOHDDz/Uyy+/LOl6c4ikBhHO9K64salEdHS0unTpojVr1qhBgwYOx7DZbAoODlanTp00YMAAbdq0SSEhIQoKCtL48eM1bNgwp5pX3Cosy1KpUqVUqlQpd6cCAAAAAAAAAAAAAAByEWoKAAAAAAAAAAAAAABwH7c1itixY4eGDx+eojlEoUKFVL9+fVWqVEl33HGH/Pz8lD9/fnl7eysmJkZRUVG6fPmyDh8+rP3792vr1q2Ki4uTdL0IITo6WgMHDtTWrVvl6enc7lWvXl3r16/XO++8ozFjxigmJkbBwcGaP3++Zs+erYCAANc+CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE5wW6OI999/X/Hx8bIsS15eXurTp48GDx6sevXqyWazORwnKipKK1as0LRp07R27VpJ0q5du/T999/riSeecDovm82m4OBgde7cWf3799emTZsUEhKioKAgjR8/XsOGDbM3twAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhJjndkcKHExER9//33sixL5cuXV2hoqP773/+qQYMGTjWJkCRfX1916dJFf/75pz7//HP79l9//XWWcqxWrZrWr1+vSZMmydvbWzExMQoODlazZs0UFhaWpdgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ4ZZGESdOnFB0dLQkadasWapRo4ZL4g4cOFAvvPCCjDH6559/shzPZrMpODhYW7duVaNGjWSM0YYNG1S3bl0XZAsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOActzSKOHPmjP3n5s2buzR2hw4dUsyRVdWqVdP69es1adIk+fj4KCYmxmWxAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHOWWRhGFCxe2/7x3716Xxj527Jgkyc/Pz6VxbTabgoODtXXrVt1zzz0ujQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAItzSKqFq1qooUKSJJGjp0qBISElwS98SJE3rrrbdkWZZq1arlkpg3q1atmtauXZstsQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANLjlkYRlmXpsccekzFGq1evVsuWLfXvv/9mOl5iYqK+/fZb3XPPPTp06JAkqWvXrq5KNwWbzS0P2y3rr7/+UnR0tLvTAAAAAAAAAAAAAAAAuQw1BQAAAAAAAAAAAAAApOTprolfe+01zZkzR3FxcdqwYYMCAwPVsGFDNWvWTDVq1FCFChVUvHhxFShQQF5eXrIsSwkJCYqNjdWlS5d07tw5HTx4UNu3b9cff/yhU6dOyRgjSSpVqpT69+/vrl2Dk1q1aqV//vlHNWrUcHcqAAAAAAAAAAAAAAAgF6GmAAAAAAAAAAAAAACAlNzWKKJy5cp666239Oqrr8qyLBljtGnTJm3evNnpWEkNIiTJZrNpxowZKliwoCvTRTaJjo5O9vsDAAAAAAAAAAAAAACQqCkAAAAAAAAAAAAAACAtNndOPmzYML388ssyxsiyLHvDCGeHZVmSJMuy9N5776lLly7u3C044cSJE/bfHwAAAAAAAAAAAAAAQBJqCgAAAAAAAAAAAAAASJ1bG0VI0rvvvqvPPvtMBQsWTNYwwplhjFHp0qX1888/64UXXnD3LsEJf/75p7tTAAAAAAAAAAAAAAAAuRA1BQAAAAAAAAAAAAAApM7tjSIkadCgQdq/f79eeeUVFS5cWMYY+0jNjfeXLFlS48aN0969e9WhQ4cczhxZsXPnTr3xxhvuTgMAAAAAAAAAAAAAAOQy1BQAAAAAAAAAAAAAAJA2T3cnkKREiRKaOnWq3n77bf32229atWqVQkNDdeDAAV28eFExMTHy8fFRsWLFdOedd6pBgwZq06aN7r//fnl4eLg7/VwjNDRUH3/8sbvTSFViYqLi4uIUERGhEydOaOfOnbp27Zosy3J3agAAAAAAAAAAAAAA3PKoKQAAAAAAAAAAAAAA4NaQaxpFJMmXL58eeughPfTQQ+5OJU+6evWqvvzyy1xfKGGMcXcKAAAAAAAAAAAAAADcVqgpAAAAAAAAAAAAAADg1mBzdwJwrZYtW6pBgwYyxuTqISnXF54AAAAAAAAAAAAAAHAroaYAAAAAAAAAAAAAAIBbA40ibkFjx46VdL1oIjcPAAAAAAAAAAAAAACQs6gpAAAAAAAAAAAAAAAg73NLo4gjR47o6NGj7pjaLf79919dvnw5x+Zr3769GjdubL/KRtK/N3PnlT8AAAAAAAAAAAAAAEDOo6YAAAAAAAAAAAAAAIC8z9Mdky5fvlzBwcHavXu3ypYt644UcsyCBQs0cOBA7d+/P0fnHTdunNq2bStJ9ittGGNkWZZKliypokWLKn/+/PLx8ZHNZpOHh0e255SQkKD4+HhduXJFJ0+ezNHmGQAAAAAAAAAAAAAA4DpqCgAAAAAAAAAAAAAAyNvc0ihiwIABevvttzVkyBAtWrTIHSnkiP379+vJJ59UcHCwihUrlqNzt2nTRs2bN9dff/0lSSpWrJg++ugjde7cWb6+vjmaS1p+/fVX9ejRQ1evXnV3KgAAAAAAAAAAAAAA3DaoKQAAAAAAAAAAAAAAIG+zuWPSfPnyadq0afr55581ceJEd6SQ7S5evKiOHTuqRIkSeuWVV9ySw7hx4yRdv/rHu+++q549e+aagg5JevDBBzVhwgR3pwEAAAAAAAAAAAAAwG2HmgIAAAAAAAAAAAAAAPIutzSKkKRHH31UDz74oEaNGqXvv//eXWlkiytXrqhdu3Y6cOCAvvjiC3l5ebklj5YtW+r++++XJAUGBrolh4y0a9fO3SkAAAAAAAAAAAAAAHDboaYAAAAAAAAAAAAAAIC8y22NIiRp9uzZKlq0qHr37q2vvvrKnam4zJkzZ9SqVStt3bpVr7zyiu6991635jNu3DgZY/Tvv/+6NY+0lCtXzt0pAAAAAAAAAAAAAABwW6KmAAAAAAAAAAAAAACAvMmtjSJKlSqlefPmyRijgQMH6vXXX1diYqI7U8qS1atXq2HDhtq+fbtatmypt99+290p6d5771Xbtm31ww8/uDuVVBUoUEDGGHenAQAAAAAAAAAAAADAbYeaAgAAAAAAAAAAAAAA8ia3NoqQpLZt2+qDDz5QYmKipkyZoubNm2vnzp3uTssp8fHxGj58uNq0aaPjx4/rzjvv1Pfffy+bze0Pr6TrVwBZt26doqKi3J1KqubMmaPy5cu7Ow0AAAAAAAAAAAAAAG471BQAAAAAAAAAAAAAAJD35IpOBs8++6zGjBkjY4xCQkJUt25dPffcczpx4oS7U8vQvHnzVK1aNb377rtKTExUhQoVtHLlShUvXtzdqdk1atRIx44dk6+vr7tTSVWfPn3k7+/v7jQAAAAAAAAAAAAAALjtUFMAAAAAAAAAAAAAAEDekysaRUjSm2++qfHjx8sYo8TERH366aeqUqWKevfurb/++svd6SUTGRmpWbNmqVatWurXr58OHz4sY4wCAgK0Zs0aVahQwd0ppuDt7e3uFAAAAAAAAAAAAAAAQC5ETQEAAAAAAAAAAAAAAHmLp7sTuNHIkSNVvnx5Pf3004qPj1d8fLy++eYbffPNNypbtqy6deumdu3aqXnz5ipQoECO5hYWFqZVq1Zp6dKlWrlypWJiYmSMsd/fpEkTLV68WMWKFcvRvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwO0jVzWKkKR+/fopICBATzzxhI4cOSJJMsboxIkT+vDDD/Xhhx/K09NTdevWVb169RQUFKTatWuratWqKlGiRJbnv3z5svbv3689e/Zoz5492rZtm7Zs2aILFy7Y10lqEGFZlowxevLJJ/Xhhx/Kx8cny/MDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkJdc1ipCkJk2aaNu2bRoyZIi+++47WZYl6f8bNMTHx2vTpk3avHlzsu18fX1VsWJFlSxZUsWLF1exYsXk6+srLy8veXl5ybIsJSQkKD4+XrGxsbp8+bLCw8MVHh6uU6dO6cSJE4qKikqRT9K80vXmEEkNIooUKaLPPvtMjzzySDY+GgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANflykYRklS4cGF988036t27t55//nkdOXLE3jBCut684cYGDpIUGRmp3bt3a8+ePU7Pd3OsG908r2VZ6tOnjyZPnqzSpUs7PRcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBm2NydQEYeeugh/fvvv5o0aZIKFSpkb+hgWVaqQ/r/JhLOjLTi3RyzadOmCgkJ0Zw5c2gSAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAclSubxQhSd7e3goODtaRI0c0adIklSlTxt644WbpNXzIqBlEapKaSDz88MP666+/9Ndff6lhw4bZubsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACpyhONIpL4+fnZG0bMnz9fnTt3lpeXV5pNIzIjKZYxRtWrV9eYMWMUFham+fPnq2nTpi6ZAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDM83Z1AZnh4eOjhhx/Www8/rMjISC1fvly//fab1q5dqz179mS6aUTRokXVtGlTNW/eXO3bt1dgYKCLMwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMi8PNko4kYFChRQ165d1bVrV0lSRESEdu/erT179ujIkSM6ffq0zp8/r+joaMXGxsrT01MFCxZUgQIFVLRoUVWpUkV33nmnAgICVLVqVTfvDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQNryfKOIm/n7+6tx48Zq3Lixu1MBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwKZu7EwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBjaBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQR9AoAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAII/wdHcCOSExMVHnzp3T+fPnFRERIT8/PxUrVkxlypRxd2oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOu2UbRezZs0fff/+9Vq9erY0bNyo2NjbFOoUKFVJQUJDatWunTp06qUaNGm7IFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwDG3XKOINWvWaNKkSfrtt9/sy4wxqa4bHh6uNWvWaM2aNXrjjTd0zz336LnnntMTTzwhy7JyKmUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH2NydgKtEREToySef1P3336/ffvtNxhj7sCwrzXHjeiEhIerbt69q1aqlpUuXunuXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkrklGkXs2LFDNWvW1OzZs1NtDiFJxphUt01tvd27d6tTp0565plnFBMTk2P7AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkJ483yhi/fr1atGihY4fP56sQcTNjSGSGkHcKLV1btz+s88+U9u2bXX16tVs3QcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABHeLo7gazYt2+fOnbsqCtXrqRoBJFWswg/Pz/5+/urUKFC8vDwUGRkpCIjI3XhwgXFx8cnW1eS1q1bpw4dOmjVqlXy8PDI/p0CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIQ55tFHHt2jX17NlT4eHhKZpEJDWIaNSokVq1aqW6deuqbt26uuuuu1Kse2O8AwcOaNeuXVqyZIkWL16s8+fPy7IsrVu3Tq+//rqmTJmS7fsFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQljzbKGLmzJnatm1bssYPxhiVLFlSgwcPVp8+fXTXXXc5HM/Dw0MBAQEKCAjQI488otjYWE2dOlUTJ05UdHS03n33XfXp00e1atXKjt0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIkM3dCWRGYmKiJk2aZG8SYYyRh4eHXnrpJYWFhWncuHFONYlIjbe3t/7zn/9o+fLl8vf3lzFGI0eOdEX6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmZInG0WsWLFCx48fl3S9SUTZsmW1adMmvffee/L393fpXM2aNdPMmTNljNHSpUvt8wIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOS0PNko4tdff7X/XLZsWW3YsEFBQUHZNl+PHj3UuHFjGWP0ww8/ZNs8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6cmTjSK2bNli/3nOnDmqUKFCts/Zo0cPGWO0bt26bJ8LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNXmyUcT+/ftlWZaaNGmi1q1b58icd911lyRpx44dOTIfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAzfJko4jw8HBJUvfu3XNsTm9vb0nS+fPnc2xOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAG+XJRhFJqlSpkmNzHThwQJIUGRmZY3MCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcKE82iihSpIgkydfXN8fm/PnnnyVJ+fPnz7E5AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbpQnG0UEBARIkvbs2ZMj823evFnLli2TZVkqW7ZsjswJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwszzZKKJRo0Yyxuinn37K9rkuXLigxx9/XImJiZKkmjVrZvucAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqcmTjSK6du0qSVqzZo3++OOPbJvn4MGDatmypQ4ePGhfdv/992fbfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOnJk40iGjdurGrVqskYo759+yZr5OAKiYmJmj59uurVq6c9e/bIsixJkpeXlx599FGXzgUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCoPNkoQpJGjRolSTp16pQaN26s7777Lssxr169qnfffVdVqlTRSy+9pIiICEmSMUaWZalXr14qWbJklucBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIjDzbKKJnz55q3ry5JOn8+fN64oknFBQUpE8++UTHjx93KIYxRvv27dPMmTPVuXNnlS5dWsOHD9fRo0ftzSGS+Pv766233sqWfQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCEp7sTyCzLsvTVV1+pfv36unTpkowx+vvvv/XCCy/ohRdeUJkyZVStWjWVL19efn5+8vb2VnR0tK5evaqIiAgdOnRIYWFhio2Ntcc0xthj37jMsix98cUXKlWqVI7vJwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJI82yhCkipWrKjly5erTZs2ioiIkPT/zR5OnjypU6dOpblt0no3urFBxI3eeecdPfLIIy7IGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIPNs7k4gq+rXr681a9aoatWqMsbIsiz7MMakOSQlW/fmJhHGGHl5eWnWrFkaOnSoO3YNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgmTzfKEKSateurdDQUA0ePFg2my3NRhCpNYZIWvdGxhg1aNBAISEhGjBgQI7uCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQFpuiUYRkuTn56dPP/1U27ZtU9euXe0NI1JrBHGjGxtGGGNUtmxZffTRR9q4caPq1KmTE6kDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4xNPdCbhazZo19eOPP+rYsWOaM2eOFi1apK1bt6bbMKJQoUJq3ry5+vfvry5dusjDwyMHMwYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHDMLdcoIkmFChX0n//8R//5z38UERGh7du3a9++fQoPD1dcXJyKFCmiYsWKKSAgQLVr15ZlWe5OGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIF23bKOIG/n7+6tFixZq0aKFu1MBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADINJu7EwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBjaBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQR9AowglPPvmkTp065e40AAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAbYpGEQ6KjY3V7NmzdenSJXenAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAblM0inDQvn37ZIxxdxoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOA2RqMIB02ZMkWWZbk7DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcBvzdNfEERERmj17tg4cOKCAgAD1799fBQsWdGjbo0ePZnN2Unx8vC5duqR9+/Zp1qxZ+uOPP2gUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3MotjSJ27dqltm3b6vTp0/ZlU6ZM0fLly1W9evUMt69UqRJNGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwG3H5o5Jn3/+eZ06dUrGGPs4fvy4nnvuOYe2L1OmTLJts3sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkBm5pFBESEiLLspINSdqwYYND2z/55JOSlCJGdg0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDcwC2NIsqUKZNimWVZKlu2rEPbDx48WB4eHvbbxhiX5QYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBbuaVRxPDhw5M1dzDGyBijkSNHOrR9uXLl1LFjR3sMy7LsMbJjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5Aae7ph0yJAh8vf315QpU3Tw4EHdddddGjlypB599FGnYixatEjS9UYTgYGB6ty5sypVqqQiRYoof/788vb2ls1mk4eHh1P5GWMUFxenixcvavfu3Zo3b54OHz7sVAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABXc0ujCEnq1auXevXqlent27Ztq6pVq+rgwYNq3769fv75Z9lsNhdm+P/eeOMNde7cWb///nu2xAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBE9nRWyCFPP/20JKlDhw7Z1iRCknx8fPTWW29lW3wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABH5OlGEQMHDpSXl5fOnz+f7XMFBgbKGJPt8wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQlTzeKKFq0qB577DGtXr062+fy9fVV5cqV5eXlle1zAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApMbT3Qlk1eTJk1WgQIEcmevAgQM5Mg8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBq8nyjiDJlyrg7BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBxhc3cCudHnn3+u+fPnyxjj7lQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs8mSjiNDQUFWpUkVVq1bNlvjGGD3xxBMKCgrS2rVrs2UOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ+XJRhExMTE6fPiwDh8+nC3xn3rqKa1fv15Hjx7V/fffr48++ihb5gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHBGnmwUkRPq1aunCRMmKCEhQS+//LLmzp3r7pQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBtjkYR6XjsscckScYYPffcczp58qSbMwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALczGkWkw7Is+7+RkZF6//333ZsQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4rdEoIh1ffvml/WdjjBYvXuy+ZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwG3P090J5CbGGF25ckVhYWH66aef9O6778qyLPv9R48edWN2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgdperGkWMHTtW48aNc3h9Y4w8PDyyLR9jTLJGESVKlMi2uQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKSqxpFDBs2TCVKlNDMmTP1zz//OLSNMSbb8klqEpHUMKJly5bZNhcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBGbO5O4EZ+fn569tlntWPHDv3xxx9q27atpOsNG24eSVK7z1XjRp6enho2bFiOPh4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3ylWNIm7UqlUr/frrr/r5559VqlQpGWMkScYY+885IWmu999/X0FBQTk2LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwM1ybaOIJA899JB27typTp06yRgjy7KS3Z/UOCK7RsOGDbVq1SoNGTLETY8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAdZ7uTsARRYsW1cKFC/Xss89q5syZsizL3jTiiy++cOlcHh4eyp8/v0qXLq1q1aqpWLFiLo0PAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQWXmiUYQkWZalGTNmyM/PT++88459eb9+/dyYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM6xuTsBZ02ZMkXdu3d3dxoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5Ls81ipCkWbNmqUKFCu5OAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIEflyUYRBQoU0OTJk2WMcXcqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOSZPNoqQpB49eujQoUPZFj82NlYRERE0owAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALlGnm0UYVmWKlasmG3x9+/fr4CAAN177706efJkts0DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgqDzbKCK7BQYGasWKFdq7d6+aNm2q/fv3uzslAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwm6NRRDpq1aqlzz//XEeOHFGbNm108uRJd6cEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuYzSKyMADDzwgSTp27Jh69Ojh5mwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDtjEYRN0lMTFRMTIwuXLigrVu36uWXX5YkGWO0fv16zZ07170JAgAAAAAAAAAAAAAAAAAAAAAAAAAAAACA25anuxNwhQULFmjhwoXavXu3Tp8+rcuXLysuLk7x8fEuiW9ZlowxMsZo5syZ6tOnj0viAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOCNPN4o4fPiwevTooS1btkiSjDHZMo9lWfZmEdu3b8+WOQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADKSZxtFnD17Vi1bttTx48eTNYiwLCtb5/X29s7W+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmxuTuBzHr11Vd17NgxSdebQySN1NzYSMIZN29nWZa6du2aqVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZ5enuBDLjxIkT+vbbb1M0hkivIURmmkVYlpVsu06dOum9995zOg4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAr5MlGEQsXLlRCQoK9UYQxRvnz51fLli1VvXp1lStXTgUKFJCPj48WL16sBQsWqH379urevbvDc0yaNElhYWHq27evunfvrqCgIJUtWza7dgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBDebJRxOrVq+0/e3t7a9y4cXr22Wfl6+ubYt06depowYIF2rt3r/r16+fwHNWqVVOzZs20dOlSvfXWWzSJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbmdzdwKZ8e+//9p//v777/Xqq6+m2iRCkoKCghQUFKRDhw5p5cqVDs9xzz336Pnnn9f58+f1xBNPyBiT5bwBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyIk82ijh58qQsy1KHDh3UsWPHDNcfNGiQjDGaPn26U/OMGjVK/v7+Wrt2rSZMmJDZdAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwiTzaKuHr1qiTp4Ycfdmj9Pn36yNfXV0uWLNHhw4cdnqdo0aLq37+/jDEaP368tm7dmolsAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXCNPNorw9PSUJFWqVMmh9f39/dWzZ08lJibqvffec2quxx9/XJJ07do1DRo0SMYYp7YHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwlTzZKKJw4cKSrjdvcNTzzz8vY4w+//xznTx50uHtAgMD7T///fffWrx4scPbAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuFKebBRRqlQpSdK2bdsc3iYoKEgtWrRQTEyMXn31VYe3i4+PT3b7hx9+cHhbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV8qTjSLq168vY4xmzpypqKgoh7cLDg6WMUbfffedfvzxR4e2+eWXX+w/G2O0adMmp/MFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwhTzZKKJp06aSpCNHjqhbt266fPmyQ9t16NBB9erVkzFGAwYM0MaNG9Nd//Tp0xo5cqQsy7IvO3XqVOYTBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyII82SiiW7du8vPzkyQtX75clStXVrdu3TRw4EANGjRII0aM0IoVK1Lddvz48ZKkyMhItW7dWv/9739ljEmxXkhIiFq0aKHjx48nW+7h4eHivQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCMp7sTyIyCBQvqqaee0rvvvivLshQeHq4FCxYkW2fq1Kl68803NXr06GTL27dvr/bt22vZsmWKiorSkCFDNGHCBLVr105lypRReHi4QkJCFBoamqyBRNLPVapUyf4dBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASEWebBQhSePHj9fixYt14MABWZaVrKlDkqRmEZZlJVs+c+ZMBQYG6urVqzLG6Pjx4/riiy/s9yfFunk7y7LUsWPHbNgbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAjNncnUBm5c+fX4sXL1apUqUkXW/icOOQpLi4OMXHx6fYtnz58po9e3ay7Ywx9pG0/GZ+fn568cUXs2uXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4P/buO8qq+t4b/2fPDB2lSJOgKCKixsRCLPEGFQ0ql1ijiIqCGo1o4vWJV43+JPYYjbmaiD52VNSo115iF/FqrCjitYT+UARFkA4DM/v3h2tGhyJTzpk9Z3i91tqLs8+c8/28915zxmSt73of+F4FWxQREdG7d+949dVXY9ddd61S8lDx71FHHRVNmzZd53uPOOKI+POf/1ylGGLNookKaZpGUVFRjB49Ojp06JDHKwIAAAAAAAAAAAAAAAAAAABYv5KsA9TVtttuG2+++Wb8/e9/jwcffDAmT54cm266aQwYMCDOOeec733v2WefHZ06dYrhw4fH4sWLIyKqlERUlEh07Ngx7r777jjwwAPzdyEAAAAAAAAAAAAAAAAAAAAAG1DwRREREcXFxXHcccfFcccdV+P3HnfccXHggQfGLbfcEo8//nhMmzYtFi5cGO3bt48f/ehHMXDgwBg2bFi0atUqD8kBgPoyZ86cKC8vzzpGQSkuLo7OnTtXec59rDn3MTeKioqiS5cuWcfInN+dmvMZzA33MTf8LfuW35+a8RnMDfcxN/wt+5bfn5rzOcwN9zE3/D37ht+dmvMZzA33MTf8LQMaCn/Da85/C3PDfcwN/5viG353as5nMDfcx9zwt+xbfn9qzuew7tzD3PC37Ft+f2rO5zA33Mfc8PfsG353as5nMDfcx9zwt+xbfn9qzucwN9zH3PD3rPFrFEURddWhQ4e44IIL4oILLsg6CgCQJ+Xl5f7PQA0VFRWt9Zz7WHPuI7nkd6fmfAZzw30k1/z+1IzPYG64j+Sa35+a8znMDfeRXPK7U3M+g7nhPgI0Lv6G15z/FuaG+0gu+d2pOZ/B3HAfyTW/PzXnc1h37iG55ven5nwOc8N9JJf87tScz2BuuI/kmt+fmvM5zA33Eapn7U8K6zVhwoRYuXJl1jEAAAAAAAAAAAAAAAAAAACAjZSiiBrYd999Y/LkyVnHAAAAAAAAAAAAAAAAAAAAADZSiiKqac6cObFgwYKsYwAAAAAAAAAAAAAAAAAAAAAbMUUR1TR27NhIkiTrGAAAAAAAAAAAAAAAAAAAAMBGTFFENT322GNZRwAAAAAAAAAAAAAAAAAAAAA2cooiqmHu3Lnx6KOPZh0DAAAAAAAAAAAAAAAAAAAA2MgpiqiGCy+8MFauXJl1DAAAAAAAAAAAAAAAAAAAAGAjpyhiA+6///644447so4BAAAAAAAAAAAAAAAAAAAAoCji+zzxxBMxbNiwSJIk6ygAAAAAAAAAAAAAAAAAAAAAiiLW584774yjjz46SktLs44CAAAAAAAAAAAAAAAAAAAAEBERJVkH+D7Tp0+PZ599Nt5999344osvoqysLDp16hQ77bRTHHjggbHDDjvkfGZZWVn853/+Z1x//fWRpmkkSZLzGQAAAAAAAAAAAAAAAAAAAAC10SCLIqZMmRLnnntuPP7441FeXr7O15xzzjmx7777xuWXXx577bVXTuZOmzYtBg8eHG+//baSCAAAAAAAAAAAAAAAAAAAAKDBKco6wJr+/ve/xy677BKPPvpolJWVRZqm6z1eeeWV6Nu3b1x88cV1nnvPPffELrvs8r0lEW3atIm2bdvWeRYAAAAAAAAAAAAAAAAAAABAbTSooojbbrstjj/++Fi8eHFlWcP3HRERZWVlcdlll8Xw4cNrNfPrr7+OQYMGxdChQ2PhwoWVc9M0rXxNmqbxb//2b/HBBx9E165dc3KtAAAAAAAAAAAAAAAAAAAAADXVYIoiXnnllTj99NOjvLy8ShFEmqbrPSpel6Zp3HzzzXHttdfWaOaLL74YO+20U/z3f/93lfUionLdoqKiuOSSS2LMmDGx5ZZb5vy6AQAAAAAAAAAAAAAAAAAAAKqrQRRFLFu2LIYMGRJlZWVrFURUlDeseVS8JuLbUocRI0bE1KlTNzivtLQ0zj777DjooINi1qxZlXO+K03T2GqrrWLs2LFx0UUXRVFRg7hVAAAAAAAAAAAAAAAAAAAAwEasQbQfXHvttTF79uwqBRBrFkJ894iIyp9XnEdErFixIs4777zvnTV+/PjYbbfd4q9//WuUl5evc500TeO4446L8ePHx1577ZXrywUAAAAAAAAAAAAAAAAAAAColZKsA5SXl8fNN99cWQoREVWKG5o2bRo777xzdOnSJVq2bBlz5syJiRMnxqxZsypf+933PPbYYzFz5szo1q3bWrOuueaaGDFiRJSWllaWUaw5c9NNN42RI0fGcccdl8/LBgAAAAAAAAAAAAAAAAAAAKixzIsixo4dG7Nnz65S2pCmaey8887x//1//18cdNBB0bJly7Xe9+6778bf/va3uOeee6q8t6ysLG699da45JJLKp+bMWNGnHDCCTF27NjKAorvvqdi5p577hn33XdfbLXVVjm+SgAAAAAAAAAAAAAAAAAAAIC6K8o6wNixYysfp2kaSZLEVVddFePGjYsjjjhinSURERF9+vSJu+66K8aMGRObbbZZRHxT/pCmaTzxxBOVr7v33nvjRz/6UWVJRJIka5VSFBUVxUUXXRSvvfaakggAAAAAAAAAAAAAAAAAAACgwcq8KOK9996LiG9LIkaNGhXnnntutd/ft2/fGDNmTHTu3LnyuQkTJsSnn34agwcPjhNOOCEWLlxYuf53pWkaW265ZYwZMyYuueSSKC4uzs1FAQAAAAAAAAAAAAAAAAAAAORB5kURkydPjoiIJEnirLPOiuOPP77Ga+ywww4xatSoyjKINE1j1113jQcffLDyuYrnK6RpGoMGDYrx48fH3nvvnbPrAQAAAAAAAAAAAAAAAAAAAMiXzIsipk6dGhERbdq0iYsvvrjW6/Tv3z9OPPHEyjKIFStWVJZEVKgoi2jVqlXceeedcf/990ebNm3qlB8AAAAAAAAAAAAAAAAAAACgvmRaFLF8+fJYvnx5JEkSJ5xwQmy66aZ1Wu///J//U/k4SZLKYogKaZrG7rvvHu+//36ceOKJdZoFAAAAAAAAAAAAAAAAAAAAUN8yLYpYsGBB5eOf//zndV5vp512it12261KOURFWUSSJPH73/8+Xn/99dhmm23qPAsAAAAAAAAAAAAAAAAAAACgvmVaFLFw4cLKxzvttFNO1tx///2rnKdpGt26dYuXXnoprrjiiiguLq712nPmzImysrK6RgQAAAAAAAAAAAAAAAAAAAColUyLIkpLSysfd+zYMSdr7rbbbpWP0zSNI488Mj788MPYZ5996rx2//7947PPPqvzOgAAAAAAAAAAAAAAAAAAAAC1kWlRxKpVqyofN2vWLCdr7rjjjpWP//SnP8VDDz0Ubdu2zcnaZWVlOVkHAAAAAAAAAAAAAAAAAAAAoDYaTFHEggULcrJmu3btKh/vvffeOVmzwpdffpnT9QAAAAAAAAAAAAAAAAAAAABqItOiiPLy8srHM2fOzMmabdq0yck6a3r33Xfjq6++ysvaAAAAAAAAAAAAAAAAAAAAANWRaVHEd/3rX//KyTotW7bMyTrftXz58vjNb36T83UBAAAAAAAAAAAAAAAAAAAAaqIk6wAVJkyYEEcddVRO15w9e3ZMmTKlRu9J0zRKS0tj6dKlMWvWrPjggw/innvuiSlTpkSSJDnNBwAAAAAAAAAAAAAAAAAAAFATDaYo4vrrr4/Ro0fndM1BgwblZJ00TXOyDgAAAAAAAAAAAAAAAAAAAEBdNJiiiMWLF8fixYtztl4uyx2SJFEWAQAAAAAAAAAAAAAAAAAAAGSuwRRFJEmSs7UqSh1yuSYAAAAAAAAAAAAAAAAAAABA1hpMUUQ+VBRG1JXCCQAAAAAAAAAAAAAAAAAAAKAhaJRFEYodAAAAAAAAAAAAAAAAAAAAgMaoQRVFpGmadYR1UjwBAAAAAAAAAAAAAAAAAAAANAQNpigiSZL46U9/Gn369Ilu3bpFq1atonnz5vVe0pCmaZSWlsbSpUtj9uzZ8d5778Wrr75arxkAAAAAAAAAAAAAAAAAAAAA1qVBFEVsuumm8dxzz8Xuu++edZR1Gjt2bBxyyCGxePHirKMAAAAAAAAAAAAAAAAAAAAAG7GirANERFx55ZUNtiQiIqJv377xxz/+MesYAAAAAAAAAAAAAAAAAAAAwEYu86KI4uLiOPbYY7OOsUFDhgyJkpKSrGMAAAAAAAAAAAAAAAAAAAAAG7HMiyI6duwYbdq0yTrGBrVu3Tq6du2adQwAAAAAAAAAAAAAAAAAAABgI5Z5UUTr1q2zjlBthZQVAAAAAAAAAAAAAAAAAAAAaHwyLYpo06ZN7L777llGqJGf/OQn0apVq6xjAAAAAAAAAAAAAAAAAAAAABupkiyH//CHP4zRo0dnGaFG7rjjjqwjAAAAAAAAAAAAAAAAAAAAABuxoqwDAAAAAAAAAAAAAAAAAAAAAFA9iiIAAAAAAAAAAAAAAAAAAAAACoSiCAAAAAAAAAAAAAAAAAAAAIACoSgCAAAAAAAAAAAAAAAAAAAAoEAoigAAAAAAAAAAAAAAAAAAAAAoEIoiAAAAAAAAAAAAAAAAAAAAAAqEoggAAAAAAAAAAAAAAAAAAACAAqEoAgAAAAAAAAAAAAAAAAAAAKBAKIoAAAAAAAAAAAAAAAAAAAAAKBCKIgAAAAAAAAAAAAAAAAAAAAAKhKIIAAAAAAAAAAAAAAAAAAAAgAKhKAIAAAAAAAAAAAAAAAAAAACgQCiKAAAAAAAAAAAAAAAAAAAAACgQiiIAAAAAAAAAAAAAAAAAAAAACoSiCAAAAAAAAAAAAAAAAAAAAIACoSgCAAAAAAAAAAAAAAAAAAAAoEAoigAAAAAAAAAAAAAAAAAAAAAoEIoiAAAAAAAAAAAAAAAAAAAAAApESdYB8mHKlCkxduzYmDVrVsybNy9+85vfRI8ePdb52rKysrjssstip512ir59+0bHjh3rOS0AAAAAAAAAAAAAAAAAAABA9TSaoohly5bFTTfdFCNHjozp06dX+dlRRx213qKIqVOnxiuvvBKXXnpplJSUxC9+8Ys488wzY7/99quP2AAAAAAAAAAAAAAAAAAAAADVVpR1gFx4+umnY6uttopzzz03pk2bFmmaVh4b0rNnz3j11Vdj3Lhx0a9fv3j00UfjgAMOiMMOOyymTp1aD+kBAAAAAAAAAAAAAAAAAAAAqqfgiyKuuOKKOPTQQ2PevHmRpmkkSVJ51MTOO+8czz77bNx7773RunXrePLJJ2PnnXeOxx9/PE/JAQAAAAAAAAAAAAAAAAAAAGqmoIsibr755rjooouivLy8SjlEmqa1XnPw4MHxwgsvROvWrWPx4sVxxBFHxJ///OdcRQYAAAAAAAAAAAAAAAAAAACotYItinjvvffiN7/5TZWCiAprntfU7rvvHjfeeGNEfFM6cd5558Vtt91WpzUBAAAAAAAAAAAAAAAAAAAA6qpgiyLOPffcWL16dZXn0jStctTFcccdF7vvvnskSRJpmsbw4cPjww8/rNOaAAAAAAAAAAAAAAAAAAAAAHVRkEURb7/9drzyyiuRJElEfFMQ0axZsxg6dGjcdNNN8fjjj8cLL7xQ5zmnnHJKpGkaSZLE6tWr47e//W2d1wQAAAAAAAAAAAAAAAAAAACorZKsA9TGU089VeV8zz33jFGjRkWvXr1yOqdv375Vzl977bX45z//GXvttVdO5wAAAAAAAAAAAAAAAAAAAABUR1HWAWrj5Zdfrny80047xQsvvJDzkoiIiC222GKt5x599NGczwEAAAAAAAAAAAAAAAAAAACojoIsipg5c2ZERDRt2jQeeeSRaNWqVV7mpGm61nOvvvpqXmYBAAAAAAAAAAAAAAAAAAAAbEhJ1gFq44svvogkSeLoo4+OHj165G3OjBkzKh8nSRJpmsasWbPyNi9Ly5cvj7lz58aiRYti5cqVUVpaGs2aNYuWLVtGixYtom3bttGuXbusYwIAAAAAAAAAGbCvAAAAAAAAAAAajoIsiqhw0EEH5XX9cePGrfXcl19+mdeZ+ZamaYwbNy5ee+21GDduXHz88ccxceLEWLJkyQbf26pVq9hyyy1jq622it122y323HPP2HPPPW30AAAAAAAAAIBGwr4CAAAAAAAAAGj4CrIoYrPNNovZs2dH165d8zrnnnvuWeu5pk2b5nVmvrz44otx//33x2OPPRZff/115fNpmlZ7jSVLlsTHH38cn3zySfzjH/+IiIgkSWKvvfaKQYMGxS9/+cvo0qVLrqMDAAAAAAAAAHlmXwEAAAAAAAAAFI6irAPUxrbbbhsREfPnz8/bjA8++CBeeOGFSJKkyvPdunXL28xcS9M0brvttthhhx3iwAMPjFGjRsWCBQsiTdPKI+KbTRnVPSrWrTjKy8vjjTfeiLPOOiu23HLLGDJkSHz00UdZXjYAAAAAAAAAUA32FQAAAAAAAABAYSrIooi999470jSNt956Ky/rr169OoYNGxZlZWWVz6VpGkmSxK677pqXmbn28ssvx0477RSnnXZafPrpp5UbMKqzSWN9R8S6N39U/Hz16tVx3333xY9//OMYPHhwzJkzJ8tbAAAAAAAAAACsh30FAAAAAAAAAFC4CrIo4rDDDouIiHvvvTdWrlyZ07XTNI1hw4bF+PHjKzcrfNe///u/53RerpWWlsZZZ50V/fv3j08++WStTRzrU91v/djQeys2dzz44IOx/fbbx1133ZWPywQAAAAAAAAAasG+AgAAAAAAAAAofAVZFLHbbrtFnz59Yvbs2XHZZZflbN1Vq1bF8ccfH/fee2/lBobvbmRo3759HHnkkTmbl2vz5s2L/fbbL2644YYoLy+PiFhrI0Z1vuGjpsd3fXdjx8KFC+Okk06K3/3ud2u9DgAAAAAAAACoX/YVAAAAAAAAAEDjUJJ1gNq68soro3///nHVVVfFdtttF0OGDKnTeu+8806cdNJJ8fHHH1c+V/GtGRX//v73v49mzZrVNXpefPHFF9GvX78q3/YREVU2UrRp0ya233772GGHHaJHjx7RuXPn6NSpU3Ts2DGaNWtWeRQXF0dZWVmUl5fHihUrYuXKlbFkyZJYtGhRfP311/Hll1/G3LlzY8aMGTFt2rSYOHFizJ8/v0qe786/7rrrYuXKlXHDDTfU3w0BAAAAAAAAACrZVwAAAAAAAAAAjUfBFkUccMABMWzYsLjzzjtj6NChMWHChBgxYkS0bt26RuuMHTs2br755njooYeirKxsrXKIiG82J/Tp0yf+4z/+Iw9XUnelpaVx6KGHxscff1zlmzdatGgRAwYMiP333z/222+/2G677fKWYfbs2TFu3Lj4n//5n3jmmWfio48+ioiozHLTTTdF796948wzz8xbBgAAAAAAAABgbfYVAAAAAAAAAEDjUrBFERERN954Y3z00UfxzjvvxLXXXhujRo2KY445JgYOHBg77rhj5evKyspi/vz5sXDhwvjyyy/j/fffj7fffjtee+21mDx5ckR8+w0Za5ZEpGkaXbp0iYcffjiKiorq/yKr4cILL4y33nqrMvvWW28d5513XgwePDg22WSTesnQtWvX6Nq1awwcODCuuuqqmDRpUvz1r3+N22+/PVasWBFpmsZ5550XAwYMiB49etRLJgAAAAAAAADAvgIAAAAAAAAAaGwaZvNBNTVr1iyef/752GOPPSJN0/jqq69i5MiRcfDBB8eWW24ZEd8UPey7777RsWPH6NmzZ+y1114xfPjwGDVqVEyaNCnSNK0shlhXSUTXrl3jpZdeim7dumV5qes1ceLEuO666yJJkigqKoqLL744Pvvsszj11FPrbTPHuvTs2TP++te/xvjx42O33XaLiIgVK1bE2WefnVkmAAAAAAAAANjY2FcAAAAAAAAAAI1PQRdFRES0adMmXnvttTjnnHMiIiqLH9YsfFjXUVEOUfG6iKjynoMOOijef//92H777ev/wqrp+uuvj7KysigqKor7778/RowYESUlJVnHqtSzZ8945ZVX4ic/+UmkaRpPPfVUfPzxx1nHAgAAAAAAAICNgn0FAAAAAAAAAND4FHxRRERESUlJXH311fHCCy/E3nvvXeVn3y2DWPNYU0WBxA9+8IO44YYb4plnnomOHTvW12XUysMPPxxJksSpp54av/zlL7OOs06tWrWKBx54IJo3bx4REXfffXfGiQAAAAAAAABg42BfAQAAAAAAAAA0Po2iKKJCv3794rXXXov33nsvTj755OjevXtl+cOGjhYtWsT+++8fo0ePjilTpsTw4cOzvpwNmjlzZsydOzciIn71q19lnOb7bbXVVjFs2LBI0zRefPHFrOMAAAAAAAAAQKNnXwEAAAAAAAAANE4lWQfIh1122SVuvfXWiIiYM2dO/POf/4wZM2bEggULYsGCBbFs2bLYdNNNo3379tGhQ4fYeeedY9ddd42SksK6HXPmzKl8vMMOO2SYpHoOOuiguOmmm2Lq1KlZRwEAAAAAAACARs++AgAAAAAAAABonAqrGaEWunTpEocffnjWMfKiWbNmlY+XL18eTZs2zTDNhrVs2TIiIpYtW5ZxEgAAAAAAAABo/OwrAAAAAAAAAIDGqSjrANRet27dIkmSiIgYO3Zsxmk2bPz48RER0aFDh4yTAAAAAAAAAEDjZ18BAAAAAAAAADROiiJq4OSTT47PP/886xiV2rVrFz/84Q8jTdO49NJLo7y8POtI61VaWho333xzJEkSu+yyS9ZxAAAAAAAAAKDRs68AAAAAAAAAABonRRHVtHz58hg1alQsWLAg6yhVHH/88RERMW7cuDjxxBMb7KaOU089NSZOnBgREQMGDMg4DQAAAAAAAABsHOwrAAAAAAAAAIDGR1FENU2YMCHrCOt06qmnxmabbRYREffdd1/svffeMWnSpIxTfWvatGnRv3//uOeeeyIiok2bNpWbUAAAAAAAAACA/LKvAAAAAAAAAAAaH0UR1XTVVVdlHWGd2rRpE9dcc02kaRoREW+99VbsuOOOMXTo0Hj//fczy/XGG2/EySefHNtvv3289NJLkaZpJEkSV1xxRbRu3TqzXAAAAAAAAACwMbGvAAAAAAAAAAAan5KsA+RDmqbx9ddfx8qVK2PVqlWVmx1qYtWqVbFgwYKYPHly3HXXXfHss89GkiR5SFt3Q4cOjbFjx8aoUaMiSZJYtWpV3HPPPXHPPfdE9+7dY+DAgfHTn/40dtlll+jVq1dermPGjBnx3nvvxXPPPRePP/54zJ07NyKi8t4nSRKHHHJInH766TmfDQAAAAAAAACsn30FAAAAAAAAANC4NIqiiHnz5sWoUaPixRdfjI8++ijmzp0b5eXlWceqV7fcckvMmDEjXnrppUiSpHIjxbRp02LkyJExcuTIiIho1qxZdOvWba2jS5cu0bJly2jZsmW0aNGi8t+IiBUrVlQeS5YsidmzZ8esWbNi5syZMXXq1Bg3blx89dVXlVm+W8xRkeVnP/tZ3HvvvfV4RwAAAAAAAACACvYVAAAAAAAAAEDjUdBFEStXroxLLrkkrr/++lixYkVEVN1MkCv5+KaMXCspKYmnn346TjrppLjvvvuqZP7uPVmxYkVMmjQpJk+enLPZa97zNWcfccQRMXr06GjevHnOZgIAAAAAAAAA1WdfAQAAAAAAAAA0HkVZB6it+fPnR9++feNPf/pTLF++PNI0jTRNI0mSnB+FomnTpjF69Oi45ppronnz5pUbLdZ1TRX3KxfHuu5XmqbRvHnzuO666+K///u/beYAAAAAAAAAgIzZVwAAAAAAAAAAjUNJ1gFq65hjjol33nknIqKgyhzqw+9+97s47LDD4owzzojnn38+Ita+R/m6ZxUbPI444oi49tpro3v37ut97RdffBFffvlljdafNGlSXSMCAAAAAAAAwEatEPYV2FMAAAAAAAAAAOtXkEURTz31VLz44ovr3JRQ8W0XuVSIRRTbbLNNPPvss/Hmm2/GFVdcEU8//XTlz9Z3PRu6dxt6X5MmTWLw4MFx7rnnxg477LDBjDfeeGNccsklG3wdAAAAAAAAAJBbDX1fgT0FAAAAAAAAALB+BVkUceedd671XJqm0b59+xg4cGDsuuuu0a1bt2jdunU0a9asVjPKy8tj5cqVMWvWrLjpppti3LhxdY2diT333DOefPLJmD59etx///3xwAMPxPjx46u8pmKjRnULMb678aO4uDj23nvv+MUvfhHHHHNM/OAHP8hdeAAAAAAAAAAgr+wrAAAAAAAAAIDCU5BFEW+99Vbl5oM0TSNJkhg6dGiMHDkyWrRokfN5J5xwQvTr1y/eeOONnK9dX7p37x7nn39+nH/++TF37tx444034o033ojx48fH1KlTY8aMGVFaWvq9ayRJEltvvXXsuOOOseOOO8aPf/zj6N+/f7Rr166ergIAAAAAAAAAyAf7CgAAAAAAAACgcBRkUcSXX34ZEd+WRBxwwAFxxx135G1ekyZN4rzzzotDDz00bzPqU+fOnePwww+Pww8/vPK5NE3jiy++iEWLFsWyZcti2bJlkaZptG7dOjbZZJPYZJNNok2bNtGkSZOc5Rg+fHgcddRRNXrPpEmT4rDDDstZBgAAAAAAAACgqoawr8CeAgAAAAAAAABYv4IsimjRokUsXry48vw///M/8z5z9913z/uMLCVJEp07d47OnTvX28xOnTpFp06d6m0eAAAAAAAAAFA79b2vwJ4CAAAAAAAAAFi/oqwD1EbPnj2rnPfp0yfvMzt16hRJkuR9DgAAAAAAAAAAAAAAAAAAAMD6FGRRxL777htpmlaeN2vWrF7mTpkyJXr16lUvswAAAAAAAAAAAAAAAAAAAADWVJBFESeccEKV8+nTp9fL3C233DJKSkrqZRYAAAAAAAAAAAAAAAAAAADAmgqyKOJHP/pRHHLIIZXnzz//fIZpAAAAAAAAAAAAAAAAAAAAAOpHQRZFRETccMMN0bZt24iIuPPOO+tlZklJSXz88cf1Mqu69ttvv3j00UejvLw8r3NWr14dkyZNirfffjvefPPN+N///d9YvHhxXmcCAAAAAAAAAHVjXwEAAAAAAAAAND4lWQeorW7dusVDDz0UBx98cHz44Ydx7733xnHHHZe3eYsWLcr7ponaePXVV2Ps2LHRrVu3OP300+NXv/pVbLbZZjlZ+9NPP4177703nn322Rg/fnyUlZWt9Zpu3brF/vvvH0ceeWQMGDAgkiTJyWwAAAAAAAAAoO7sKwAAAAAAAACAxqco6wB1sf/++8fo0aOjqKgofvvb38b/+3//L2+zPvroowa9WWHGjBlx4YUXxhZbbBHDhg2r01qffvppHHroobHjjjvGlVdeGe+9916sXr060jRd65gxY0bcddddccghh8Q222wTDz74YI6uCAAAAAAAAADIFfsKAAAAAAAAAKDxKOiiiIiIo48+Ou67775YunRpHHLIIbFkyZK8zPnLX/6Sl3VzJUmSSNM0VqxYEXfffXet17niiiti5513jqeeeqpy00bF+us7KkybNi0GDx4cffv2jQ8//LDO1wQAAAAAAAAA5IZ9BQAAAAAAAADQeJRkHSAXjjrqqOjUqVMcfvjhcdhhh8Vtt90WRUV168BYvXp1LF26NGbOnBl33XVXPPLII1U2LzREFZs6amP58uUxaNCgePrpp6ts4ljThtZP0zRef/312GuvveLOO++Mo48+ulZ5AAAAAAAAAIDcsq8AAAAAAAAAABqHRlEU8cILL1R+28Urr7wS22yzTcaJ6l+aprUusli9enUMHDgwxowZU2WdNR9HROyxxx5xyCGHRN++fWPrrbeODh06xPLly2Pu3Lnx1ltvxdNPPx2PPPJILF++PAYPHhwTJ06MCy+8MDcXCQAAAAAAAADUin0FAAAAAAAAANB4FHRRxLRp0+KEE06I119/vfK52n7zxcbstNNOi1deeSWSJFnvZo6DDjooLr300ujTp89a72/atGm0adMmevXqFUOGDInJkyfHOeecE48//niMGDEi2rdvH6effnq9XhMAAAAAAAAAkBv2FQAAAAAAAABAw1KUdYDamjhxYuy9997x+uuvR5qmlUfFpoRcH43VVVddFXfeeeda3/CRJEmkaRpt2rSJBx54IJ555pl1buZYl2222SYeffTRuOqqqyJJkjjrrLPipZdeyts1AAAAAAAAAAD5YV8BAAAAAAAAADQ8BVkUUVZWFsccc0x8/vnnEREbRaFDPvzv//5vjBgxYr3f9rHtttvGm2++GUcddVSt1j/33HPjz3/+c6xevTqGDBkSixYtyll2AAAAAAAAACC/7CsAAAAAAAAAgIapIIsiHnjggXj//ffX+raKise5Phqrs846K1avXh0Ra2/m6NGjR4wdOzZ69epVpxn/8R//ESeeeGLMmTMnRowYUefMAAAAAAAAAED9sK8AAAAAAAAAABqmkqwD1Mb9999f5TxJkkjTNIqLi6Nfv37xs5/9LLbZZpto27ZttGjRonKjQk2UlZXFypUrY8aMGTFy5MiYMGFCruI3CI888ki8/PLLlffuu5s52rdvH88991x07tw5J7OuvvrqePTRR+PGG2+M008/PbbbbrucrAsAAAAAAAAA5Id9BQAAAAAAAADQcBVkUcR7771XZQNCRMRuu+0Wf//732ObbbbJ+byhQ4fGAQccEK+//nrO187KZZddttZzFRs7rr/++pzex44dO8bxxx8fN954Y1x//fVx44035mxt8m/OnDlRXl6edYyCUlxcvNaGKPex5tzH3CgqKoouXbpkHQMAAAAAAIACY18BAAAAAAAAADRcRVkHqI358+dXOe/Zs2eMGTMmLyURERFNmzaNESNG5GXtLHzwwQcxfvz4Kt/6UfHvgAED4rjjjsv5zCOOOCIiIkaPHh0rVqzI+frkT3l5uaOGR0WBjfvoPjaUAwAAAAAAAGrCvgIAAAAAAAAAaNgKsiiiffv2EfHtN1Vccskl0apVq7zO3HXXXfO6fn0aNWpU5eMkSao8vvLKK/Mys3fv3hERsXTp0njxxRfzMgMAAAAAAAAAqDv7CgAAAAAAAACgYSvIoojevXtX+ab5/fffP+8z27dvv85vt28ovrsx4/uUlZXFvffeW+X1FYUbhxxySOy00055ydepU6fKxzZ0AAAAAAAAAED9sq8AAAAAAAAAABqPgiyKGDhwYJXzNm3a1MvcadOmRa9eveplVnUVFxevs8BifaUWEyZMiK+++mqdrxk6dGjO81X4+uuvKx+PHz8+b3MAAAAAAAAAgG/ZVwAAAAAAAAAAjU9BFkWceOKJ0bp168rz6dOn18vcLbfcMkpKSuplVnVNmjQphg8fHs2bN6/8Bo+IiG233TZuvfXWWLVqVZXXv/nmm5WPv/vtH61bt46DDz44bznffffdKpkBAAAAAAAAgPyzrwAAAAAAAAAAGp+CLIrYbLPN4uyzz648f/XVVzNMk63u3bvHDTfcENOnT48LLrgg2rZtG2maxpQpU+LXv/51bL311vFf//VfsWzZsoiIeOutt6q8v2ITSJ8+faJJkyZ5y/nAAw9Uzvvut4AAAAAAAAAAAPljXwEAAAAAAAAAND4FWRQREXHRRRdFnz59Ik3TuOWWW+plZs+ePRvst1Z06NAhLr/88pg+fXpcffXV0bVr10jTNGbPnh3nnHNOdO/ePS699NL4n//5n3W+f/fdd89btilTpsT9999f+U0jK1euzNssAAAAAAAAAGBt9hUAAAAAAAAAQONRsEURJSUl8fDDD8cPfvCDGDduXDz++ON5nbdixYqYMmVKlJaW5nVOXbVu3TrOOeecmDp1atxyyy3Rq1evSNM0vvrqq7jkkktiypQpEfHNN3B817bbbpu3TL/+9a+r3LeWLVvmbRYAAAAAAAAAsH72FQAAAAAAAABA4SvYooiIiC222CJefvnl6NKlS5x99tmxZMmSvM2aPn165TdXFIImTZrEKaecEp988kk8+OCD0adPn0jTNNI0jSRJ1rqWbt265SXHLbfcEi+++GKVeV26dMnLLAAAAAAAAACgeuwrAAAAAAAAAIDCVdBFERHffGPFK6+8EitXroxTTjklb3PuuOOOvK2dT0mSxC9/+ct4++234/nnn49+/fpVbuz4rq5du+Z89uLFi+P3v/995WaOis0kO+ywQ85nAQAAAAAAAAA1Z18BAAAAAAAAABSegi+KiIjo1atXvPrqq/H666/Hb3/725ysWVZWFvPnz4933303zjzzzPjzn/+ck3WzdMABB8SLL74Y7777bhx55JFVvo2jZcuWOZ/36quvxoIFC9Z6vn///jmfBQAAAAAAAADUjX0FAAAAAAAAAFAYSrIOUBvFxcXr/dnIkSNj5MiROZ9Z8a0VjcGuu+4aDz30UEyaNCn+9Kc/xejRo6NFixY5n7N69eq1nuvQoUMcf/zxOZ8FAAAAAAAAAOSGfQUAAAAAAAAA0LAVZR2gNtq2bRtpmtbr0Rj17Nkzbr311pg6dWp06NAh5+v/27/9W2y66aYR8U3RRklJSYwaNSpat26d81kAAAAAAAAAQG7ZVwAAAAAAAAAADVNBFkWcfPLJERGRJEm9HY1Zly5dokmTJjlft0OHDvHkk0/GAQccEIcccki8+uqrcfDBB+d8DgAAAAAAAACQP/YVAAAAAAAAAEDDUpJ1gNo4/fTT4y9/+UukaRoR33yrRGMvcyhUP/vZz+K5557LOgYAAAAAAAAA0ADZVwAAAAAAAAAANVeUdYDa2HrrrePAAw+sLIqoKIlI0zQvBwAAAAAAAAAAAAAAAAAAAEBDUJJ1gNo644wz4h//+EdEfFMQsdlmm0W/fv2iR48e0b59+2jRokU0b948ioqKori4uEZrp2kapaWlsWDBgvjXv/4Vjz32WCxYsCAflwEAAAAAAAAAAAAAAAAAAABQbQVbFHHwwQdHjx49YurUqbHHHnvEiy++GK1atcrLrD/96U9xwAEHxIQJE/KyPgAAAAAAAAAAAAAAAAAAAEB1FGUdoLaSJInTTjstIiKOPPLIvJVERER06NAh/uu//itv6wMAAAAAAAAAAAAAAAAAAABUR8EWRUREnHzyydGsWbNYsGBB3mf16dMn0jTN+xwAAAAAAAAAAAAAAAAAAACA9Snoooj27dvHoEGD4pVXXsn7rE022SS23nrraNq0ad5nAQAAAAAAAAAAAAAAAAAAAKxLSdYB6uqKK66IZs2a1cusyZMn18scAAAAAAAAAAAAAAAAAAAAgHUp+KKIrl27Zh0BAAAAAAAAAAAAAAAAAAAAoF4UZR2gkFx++eUxb968rGMAAAAAAAAAAAAAAAAAAAAAGylFEdW0evXq+MMf/hBffPFF1lEAAAAAAAAAAAAAAAAAAACAjZSiiGqaOnVqpGmadQwAAAAAAAAAAAAAAAAAAABgI6YooppuvvnmSJIk6xgAAAAAAAAAAAAAAAAAAADARqwkq8FlZWXx1FNPxeTJk6NXr14xYMCAKCpqOL0VZWVlsWDBgpg4cWLcfvvtcccddyiKAAAAAAAAAAAAAAAAAAAAADKVSVHEzJkzY+DAgTFhwoTK53bZZZd44oknomvXrht8f3FxcT7jAQAAAAAAAAAAAAAAAAAAADRIRVkMHT58eHz44YeRpmnl8f7778cZZ5xRrfe3adOmynvr4wAAAAAAAAAAAAAAAAAAAADIWiZFES+99FIkSVLlSNM0nn/++Wq9f+jQoRERa62RzwMAAAAAAAAAAAAAAAAAAAAga5kURbRt27ZGz6/p9NNPr1LekKZpDlIBAAAAAAAAAAAAAAAAAAAANGyZFEWceuqp6yx3OPPMM6v1/m233Tb69etXuUZFaUSapnk5AAAAAAAAAAAAAAAAAAAAABqCkiyGjhgxIkpKSuKaa66JRYsWRbt27eKCCy6I3/3ud9Ve49e//nW89NJLEfFNQUSHDh3i5z//eWy11VbRrl27aNGiRTRr1iyKioqiuLi4RvnSNI3S0tKYP39+fPzxx/Hkk0/GwoULa7QGAAAAAAAAAAAAAAAAAAAAQK5lUhSRJElceOGFceGFF8ZXX30Vm222WY3XOOyww2LzzTePOXPmxF577RUvvPBCtGzZMg9pI+bOnRsHH3xwjB8/Pi/rAwAAAAAAAAAAAAAAAAAAAFRHUdYBalMSERFRXFwcp5xySkREHHPMMXkriYiI6Ny5c1x33XV5Wx8AAAAAAAAAAAAAAAAAAACgOjIviqiLU089NYqKimLJkiV5n7XLLrvkfQYAAAAAAAAAAAAAAAAAAADA9ynooogf/OAHMXDgwHj55ZfzPmuTTTbJ+wwAAAAAAAAAAAAAAAAAAACA71OSdYC6uuqqq6KoqH76LsrKyuplDgAAAAAAAAAAAAAAAAAAAMC6ZFoUsWrVqvj88883+LpmzZpF586d1/mz7bbbLtexAAAAAAAAAAAAAAAAAAAAABqkTIsi3n777ejbt+/3viZJkhgwYEA88cQT9ZQKAAAAAAAAAAAAAAAAAAAAoGHKtCgiIiJN07Wea9++fZx88skxYMCA2G233aJ169YZJAOgoSkqKso6QsFxzwAAAAAAAAAAAAAAAAAAGpfMiyIiIpIkqXx88MEHx+233x6dO3fOMBEAWfvufxsqdOnSJYMkAAAAAAAAAAAAAAAAAADQcDSIoogKv/jFL+Kxxx7LOgYAAAAAAAAAAAAAAAAAAABAg1SUdYAKm2++edx9991ZxwAAAAAAAAAAAAAAAAAAAABosBpMUcSvfvWr2HTTTbOOAQAAAAAAAAAAAAAAAAAAANBglWQdoMLPf/7zrCMA0ICkabrWc6V/+EPEkiUZpClgrVtH00suyToFAAAAAAAAAAAAAAAAAAA50mCKIrbbbrusIwDQ0M2ZE7F4cdYpCssmm2SdAAAAAAAAAAAAAAAAAACAHCrKOkCFdu3aZR1hg+bMmRNlZWVZxwAAAAAAAAAAAAAAAAAAAAA2Ug2mKKKoqMFEWa/+/fvHZ599lnUMAAAAAAAAAAAAAAAAAAAAYCPV8NsZGpCysrKsIwAAAAAAAAAAAAAAAAAAAAAbMUURNfDVV19lHQEAAAAAAAAAAAAAAAAAAADYiCmKqKaJEyfGl19+mXUMAAAAAAAAAAAAAAAAAAAAYCOmKKKarrjiiqwjAAAAAAAAAAAAAAAAAAAAABu5kqwDNGTLly+PDz74IG699da4++67I0mSrCMBAAAAAAAAAAAAAAAAAAAAG7EGUxTRo0ePrCNUKi0tjaVLl8aiRYuyjgIAAAAAAAAAAAAAAAAAAABQqcEURUybNi3rCAAAAAAAAAAAAAAAAAAAAAANWoMpikiSJOsI3ytN06wjAAAAAAAAAAAAAAAAAAAAABu5oqwDNGRpmiqIAAAAAAAAAAAAAAAAAAAAABqMkqwDNGRJkmQdAQAAAAAAAAAAAAAAAAAAAKBSgymKSNM06wjrpTACAAAAAAAAAAAAAAAAAAAAaAgaTFHEnXfemXWESitXroylS5fG559/HuPGjYsxY8Y06CILAAAAAAAAAAAAAAAAAAAAYOPQYIoiTjzxxKwjrNe7774bBx98cMyfPz/rKAAAAAAAAAAAAAAAAAAAAMBGrCjrAIWgT58+cfXVV2cdAwAAAAAAAAAAAAAAAAAAANjIKYqopkGDBkWTJk2yjgEAAAAAAAAAAAAAAAAAAABsxBRFVFPLli2ja9euWccAAAAAAAAAAAAAAAAAAAAANmKKImqgVatWWUcAAAAAAAAAAAAAAAAAAAAANmINpiiirKws6wgbdNhhh0W7du2yjgEAAAAAAAAAAAAAAAAAAABspEqyDlBh2bJlsckmm2Qd43tddtllWUcAAAAAAAAAAAAAAAAAAAAANmJFWQeoMHfu3KwjAAAAAAAAAAAAAAAAAAAAADRoDaYoYsKECVlHAAAAAAAAAAAAAAAAAAAAAGjQGkxRxH333Zd1BAAAAAAAAAAAAAAAAAAAAIAGrUEURaRpGo888kg88cQTWUcBAAAAAAAAAAAAAAAAAAAAaLAaRFFEkiSRpmkcc8wx8dBDD2UdBwAAAAAAAAAAAAAAAAAAAKBBahBFERHflEWsWLEijjnmmDjssMNizJgxkaZp1rEAAAAAAAAAAAAAAAAAAAAAGowGURSRpmllKUSapvHEE0/E/vvvH23bto199tknLr744mwDAgAAAAAAAAAAAAAAAAAAADQAJVkO79WrV9x5550bfF3Hjh3rIQ0AAAAAAAAAAAAAAAAAAABAw5ZpUUTHjh3jxBNPzDICAAAAAAAAAAAAAAAAAAAAQMEoyjoAAAAAAAAAAAAAAAAAAAAAANWjKAIAAAAAAAAAAAAAAAAAAACgQCiKAAAAAAAAAAAAAAAAAAAAACgQJVkHqC/9+vWrcp4kSbz00ksZpQEAAAAAAAAAAAAAAAAAAACouY2mKGLMmDGRJElERKRpWvkYAAAAAAAAAAAAAAAAAAAAoFAUZR0AAAAAAAAAAAAAAAAAAAAAgOpRFAEAAAAAAAAAAAAAAAAAAABQIBRFAAAAAAAAAAAAAAAAAAAAABQIRREAAAAAAAAAAAAAAAAAAAAABUJRBAAAAAAAAAAAAAAAAAAAAECBUBQBAAAAAAAAAAAAAAAAAAAAUCAURQAAAAAAAAAAAAAAAAAAAAAUCEURAAAAAAAAAAAAAAAAAAAAAAVCUQQAAAAAAAAAAAAAAAAAAABAgVAUAQAAAAAAAAAAAAAAAAAAAFAgFEUAAAAAAAAAAAAAAAAAAAAAFAhFEQAAAAAAAAAAAAAAAAAAAAAFQlEEAAAAAAAAAAAAAAAAAAAAQIFQFAEAAAAAAAAAAAAAAAAAAABQIEqyDlCf0jTNOgIAAAAAAAAAAAAAAAAAAABArW00RRFTp07NOgIAAAAAAAAAAAAAAAAAAABAnWw0RRHdu3fPOgIAAAAAAAAAAAAAAAAAAABAnRRlHQAAAAAAAAAAAAAAAAAAAACA6lEUUQPbbLNNTJo0KesYAAAAAAAAAAAAAAAAAAAAwEZKUUQ1LViwIKZOnRqlpaVZRwEAAAAAAAAAAAAAAAAAAAA2Uooiqumf//xnJEmSdQwAAAAAAAAAAAAAAAAAAABgI6YoohoWLVoU559/ftYxAAAAAAAAAAAAAAAAAAAAgI1cSdYBcilN05g8eXLMmjUr5s+fHytXroxVq1ZFmqY1XmvVqlWxYMGCmDx5cjzxxBPx+eefR5IkeUgNAAAAAAAAAAAAAAAAAAAAUD2Noijiqaeeiv/7f/9vjBkzJpYvX57z9WtTNAEAAAAAAAAAAAAAAAAAAACQawVdFDFx4sQYOnRovPnmmxGRv0KHJEmURQAAAAAAAAAAAAAAAAAAAACZK9iiiPHjx8f+++8fCxYsqCxxSJIk41QAAAAAAAAAAAAAAAAAAAAA+VOUdYDaWLlyZRx55JExf/78iPimIEJJBAAAAAAAAAAAAAAAAAAAANDYlWQdoDbuuOOOmDJlylrlEGmaZpQIAAAAAAAAAAAAAAAAAAAAIP+Ksg5QGw899NBaz6VpGgceeGDccccd8cEHH8S8efNixYoVUV5eXqujrKwsli1bFhMnTowzzjgjg6sEAAAAAAAAAAAAAAAAAAAAqKok6wC18eGHH0aSJBHxTUFEUVFR3H777TF06NCczUiSJJo3bx7bbLNN/O1vf4vFixfHPffck7P1AQAAAAAAAAAAAAAAAAAAAGqqKOsAtbFo0aKI+KYkIkmSOO2003JaErEup59+el7XBwAAAAAAAAAAAAAAAAAAANiQgiyKaNOmTZXzU045Je8ze/fuHWma5n0OAAAAAAAAAAAAAAAAAAAAwPoUZFHED3/4wyqlDb179877zDZt2kSPHj2iadOmeZ8FAAAAAAAAAAAAAAAAAAAAsC4FWRRx8MEHVzlfsWJFvcydNGlS9OzZs15mAQAAAAAAAAAAAAAAAAAAAKypIIsiTjjhhGjWrFnl+eTJkzNMAwAAAAAAAAAAAAAAAAAAAFA/CrIookuXLnHmmWdWnj/66KP1Mve1116L5cuX18ssAAAAAAAAAAAAAAAAAAAAgDUVZFFERMRll10WO+64Y6RpGnfddVesXLkyr/PSNI199903pk6dmtc5AAAAAAAAAAAAAAAAAAAAAOtTsEURzZs3j6eeeio6deoUn3/+eVx66aV5nffll19GmqZ5nQEAAAAAAAAAAAAAAAAAAADwfQq2KCIionv37vHyyy9Hx44d4+qrr46XXnopb7PeeuutSJIkb+sDAAAAAAAAAAAAAAAAAAAAbEhBF0VEROywww4xZsyY+MEPfhBHH310fPbZZzmfsWzZsrjoootyvi4AAAAAAAAAAAAAAAAAAABATZRkHSAXevfuHW+++Wb89Kc/jf79+8cll1wSRUV168BYvXp1LF26NGbOnBkPP/xwTJkyJZIkyVFiAAAAAAAAAAAAAAAAAAAAgJor+KKIL7/8Mq677rq45557YtasWZGmaZx88sk5nZGmaU7XAwAAAAAAAAAAAAAAAAAAAKiNgi6KeOqpp2LYsGExf/78yjKHJElyXuyQjzUBAAAAAAAAAAAAAAAAAAAAaqpgiyKeeeaZOOKII2L16tUR8U2ZQ4XvPgYAAAAAAAAAAAAAAAAAAABoLAqyKGLhwoUxbNiwWL16tVIIAAAAAAAAAAAAAAAAAAAAYKNRkEURN998c3z55ZeVJRFpmlZ5DAAAAAAAAAAAAAAAAAAAANAYFWUdoDaefPLJKudJkkSaptGjR4+44oorYuzYsTFr1qxYunRplJeX1+pYvXp1LF26ND799NP41a9+ldGVAgAAAAAAAAAAAAAAAAAAAHyrJOsAtfHxxx9HkiQREZGmaSRJEqeddlrccMMNUVxcnJMZRUVF0aJFi+jVq1fcfPPNkaZp3H777TlZGwAAAAAAAAAAAAAAAAAAAKA2irIOUBvLli2LiG9LIvbff/+46aabclYSsS6nnXZa3tYGAAAAAAAAAAAAAAAAAAAAqI6CLIro3LlzlfPzzjsv7zN79+4daZrmfQ4AAAAAAAAAAAAAAAAAAADA+hRkUcRuu+1WpbShT58+eZ/ZqlWr2HrrraNp06Z5nwUAAAAAAAAAAAAAAAAAAACwLgVZFHH44YdXOS8uLq6XuZMnT46ePXvWyywAAAAAAAAAAAAAAAAAAACANRVkUcSgQYNiyy23rDyfPHlyhmkAAAAAAAAAAAAAAAAAAAAA6kdBFkU0adIkrrzyysrzxx9/vF7mzpgxI8rKyuplFgAAAAAAAAAAAAAAAAAAAMCaCrIoIiLi2GOPjSFDhkSapnHbbbfFqlWr8j5z6623js8++yzvcwAAAAAAAAAAAAAAAAAAAADWpWCLIiIibrnllthvv/1i1qxZ8de//jWvsxYvXhzl5eV5nQEAAAAAAAAAAAAAAAAAAADwfQq6KKJZs2bx1FNPxc9+9rO4+OKLY/LkyXmb9cknn0SSJHlbHwAAAAAAAAAAAAAAAAAAAGBDCrooIiKiRYsW8cwzz8Ruu+0WRxxxRCxZsiTnM8rLy+PSSy/N+boAAAAAAAAAAAAAAAAAAAAANVGSdYDaGDt27FrPnXfeeXHqqafGgQceGFdeeWUkSVKnGatWrYqFCxfGlClT4t57743x48fXeU0AAAAAAAAAAAAAAAAAAACAuijIooh99913vaUNs2fPjn79+tVzIgAAAAAAAAAAAAAAAAAAAID8K8o6QG1su+22kaZpvR0AAAAAAAAAAAAAAAAAAAAADUFBFkWcfvrpERGRJEm9HAAAAAAAAAAAAAAAAAAAAAANQUEWRQwbNixatmxZeZ6maYZpAAAAAAAAAAAAAAAAAAAAAOpHQRZFtGnTJo499tjKgogkSSJN07weAAAAAAAAAAAAAAAAAAAAAFkryTpAbZ1xxhlx2223RUREmqbRv3//OPTQQ6NHjx7Rvn37aNGiRTRv3jyKioqiuLi4RmunaRqlpaWxYMGC+Ne//hW33XZbvPbaa/m4DAAAAAAAAAAAAAAAAAAAAIBqK9iiiB//+Mex1157xZtvvhmDBg2K+++/Py9z9thjjxgyZEgcc8wx8dBDD+VlBgAAAAAAAAAAAAAAAAAAAEB1FGUdoC7OOOOMSNM0fvKTn+R91u9///u8zwAAAAAAAAAAAAAAAAAAAAD4PgVdFHHUUUdFp06dYurUqXmf1bt370jTNO9zAAAAAAAAAAAAAAAAAAAAANanoIsimjRpEqecckrMmjUr77OaNWsWw4YNi3bt2uV9FgAAAAAAAAAAAAAAAAAAAMC6lGQdoK4uueSSKC4urpdZF198cXTq1KleZgEAAAAAAAAAAAAAAAAAAACsqSjrAHVVXyURaZrGVlttFZ999lm9zAMAAAAAAAAAAAAAAAAAAABYU8EXRdSXzz//PNI0zToGAAAAAAAAAAAAAAAAAAAAsBFTFFFN//jHPyJJkqxjAAAAAAAAAAAAAAAAAAAAABsxRRHV8NZbb8W5556bdQwAAAAAAAAAAAAAAAAAAABgI1eSdYBcKSsri3feeSc++uijmDVrVsyfPz9WrlwZq1atijRNa7zeqlWrYsGCBTF58uT417/+FWmaRpIkeUgOAAAAAAAAAAAAAAAAAAAAUD0FXxTxxRdfxNVXXx133HFHLFy4MOfr16ZkAgAAAAAAAAAAAAAAAAAAACAfCroo4qGHHorTTjstFi5cmLdChyRJIkJhBAAAAAAAAAAAAAAAAAAAAJC9gi2KuP/++2PIkCFRXl4eEd8WOgAAAAAAAAAAAAAAAAAAAAA0VgVZFDF37tw47bTTory8fL0FEWma5mSWAgoAAAAAAAAAAAAAAAAAAACgoSjIooiRI0fGkiVL1ipxqCiHaNu2bXTr1i1at24dzZo1q9WM8vLyWLlyZcyePTtmzpxZ58wAAAAAAAAAAAAAAAAAAAAAdVWQRRFPP/10lfM0TaN169Zx4YUXxqBBg2KrrbbK6byHH344TjzxxFi+fHlO1wUAAAAAAAAAAAAAAAAAAACoiYIsipg4cWIkSRIR35REbLLJJvH666/HD3/4w7zMO/LII+PDDz+Myy+/PC/rAwAAAAAAAAAAAAAAAAAAAFRHUdYBaqO0tDQivimJSJIkLrrooryVRFQ49thj87o+AAAAAAAAAAAAAAAAAAAAwIYUZFFEp06dqpwfccQReZ/ZvXv3SNM073MAAAAAAAAAAAAAAAAAAAAA1qcgiyJ23XXXKqUNW2yxRd5nNm/ePE466aRo165d3mcBAAAAAAAAAAAAAAAAAAAArEtBFkUceuihVc7nzZtXL3Nvu+222HzzzetlFgAAAAAAAAAAAAAAAAAAAMCaCrIoYvDgwdGxY8fK848//jjDNAAAAAAAAAAAAAAAAAAAAAD1oyCLIpo3bx5//OMfK8/vu+++epl7+eWXx7x58+plFgAAAAAAAAAAAAAAAAAAAMCaCrIoIiLipJNOiqOOOirSNI0HH3wwZs+endd5q1evjj/84Q/xxRdf5HUOAAAAAAAAAAAAAAAAAAAAwPoUbFFERMRdd90VP/3pT2Pp0qUxfPjwvM6aNWtWpGma1xkAAAAAAAAAAAAAAAAAAAAA36egiyKaN28ezz77bOy1117x5JNPxrXXXpu3Wc8//3wkSZK39QEAAAAAAAAAAAAAAAAAAAA2pKCLIiIiWrduHS+88EIcdNBBcf7558ejjz6a8xkfffRRXHDBBTlfFwAAAAAAAAAAAAAAAAAAAKAmSrIOkAstW7aMa6+9NgYMGBDHHntsDBo0KIqK6taBsXr16li6dGnMnDkzPvjgg1i1alUkSZKjxAAAAAAAAAAAAAAAAAAAAAA1V/BFES+99FKMGDEi3nzzzYiISNM07rnnnpytn6ZpztYCAAAAAAAAAAAAAAAAAAAAqIuCLoo4//zz45prromIbwsdkiTJeblDPtYEAAAAAAAAAAAAAAAAAAAAqKmCLYr44x//GFdffXXleZIk63wMAAAAAAAAAAAAAAAAAAAA0FgUZFHE5MmT4+KLL95gIUSapnWepXQCAAAAAAAAAAAAAAAAAAAAaCgKsihi5MiRsWrVqkiSJNI0rSxzqCiGaNq0aXTv3j3atm0bLVq0qFXZQ1lZWaxcuTJmzZoVs2fPzml+AAAAAAAAAAAAAAAAAAAAgNooyKKIF198sbL84btlESeeeGKceuqpsccee0RRUVHO5t1///1x0kknRWlpac7WBAAAAAAAAAAAAAAAAAAAAKipgiyKmDZtWuXjNE2jqKgo7r777jj22GPzMm/w4MExa9asOO+88/KyPgAAAAAAAAAAAAAAAAAAAEB1FGUdoDbKy8sj4puSiCRJ4rTTTstbSUSFQw89NK/rAwAAAAAAAAAAAAAAAAAAAGxIQRZFdOvWrcr5qaeemveZ3bt3jzRN8z4HAAAAAAAAAAAAAAAAAAAAYH0Ksihin332qVLasN122+V9ZtOmTWPYsGHRrl27vM8CAAAAAAAAAAAAAAAAAAAAWJeCLIoYNGhQlfPFixfXy9zbb789Nt9883qZBQAAAAAAAAAAAAAAAAAAALCmgiyK6NevX+yxxx6V559++mmGaQAAAAAAAAAAAAAAAAAAAADqR0EWRURE/O1vf4smTZpERMS9995bLzNHjx4dixYtqpdZAAAAAAAAAAAAAAAAAAAAAGsq2KKIPn36xNVXXx1pmsZ9990X8+bNy+u8NE3jxBNPjJkzZ+Z1DgAAAAAAAAAAAAAAAAAAAMD6FGxRRETEWWedFeeee24sWbIkLrjggrzO+uqrryJN07zOAAAAAAAAAAAAAAAAAAAAAPg+JVkHqKurrroqysrK4i9/+UsceeSRceCBB+ZlzjvvvBNJkuRlbQAAAAAAAAAAAAAAAAAAAIDqKPiiiIiIa665JpIkiWOPPTZef/316N27d07XnzFjRpx99tk5XRMAAAAAAAAAAAAAAAAAAACgpgqyKOLSSy9d67nWrVtHy5YtY5999onhw4dHkiR1mrFq1apYuHBhTJkyJcaMGRPLli2r85oAAAAAAAAAAAAAAAAAAAAAdVGQRREXX3zxeksb0jRdZ5FEXaRpmtP1AAAAAAAAAAAAAAAAAAAAAGqjKOsAtdG3b99I03SdR5Ik6/1ZbY/1lVIAAAAAAAAAAAAAAAAAAAAA1KeCLIo444wzIiIiSZK1jvU9X5cDAAAAAAAAAAAAAAAAAAAAoCEoyKKII444Irp27Zp1DAAAAAAAAAAAAAAAAAAAAIB6VZJ1gNooLi6OU045JS699NJIkiQiItI0rfx5ixYtokWLFtG8efMoKiqK4uLiGq2fpmmUlpbG119/HStWrMhpdgAAAAAAAAAAAAAAAAAAAIDaKsiiiIiI0047La688sooKyuL5s2bx0UXXRSHHnpo9OjRI5o1a5azOTNmzIhbbrklrrrqqigvL8/ZugAAAAAAAAAAAAAAAAAAAAA1VZR1gNrafPPN47DDDouIb0ojzj///Nh+++1zWhIREbHFFlvEZZddFhdddFFO1wUAAAAAAAAAAAAAAAAAAACoqYItioiIOOOMMyJN09h8883zPuuEE07I+wwAAAAAAAAAAAAAAAAAAACA71PQRRH77LNP7LjjjvHhhx/mfdYWW2wRaZrmfQ4AAAAAAAAAAAAAAAAAAADA+pRkHaCuzjvvvJgyZUre5xQXF8ddd90V3bp1y/ssAAAAAAAAAAAAAAAAAAAAgHUp+KKI448/vt5mDRkypN5mAQAAAAAAAAAAAAAAAAAAAKypKOsAAAAAAAAAAAAAAAAAAAAAAFRPSdYB6sOsWbNi5syZMW/evFi0aFFssskmsdlmm8UOO+wQbdq0yToeAAAAAAAAAAAAAAAAAAAAQLU02qKIZ599Nh544IF49dVXY/r06et9Xffu3ePAAw+MQw45JA466KBIkqQeUwIAAAAAAAAAAAAAAAAAAABUX1HWAXLtrrvuih133DH+/d//Pe6+++6YNm1apGm63mPatGlxyy23xMCBA6N79+5xxRVXxJIlS7K+DAAAAAAAAAAAAAAAAAAAAIC1NJqiiOnTp8fPf/7zOOmkk+KTTz6pLIJIkmSDR8VrZ86cGSNGjIgePXrEjTfemPUlAQAAAAAAAAAAAAAAAAAAAFTRKIoinnvuufjRj34UL7/8cqRpGhFRWQIREZXPrc+apRHz5s2L3/zmNzFgwICYN29e3vMDAAAAAAAAAAAAAAAAAAAAVEfBF0U8+uijccghh8TixYsjTdMqBREVvnuepuk6j+++tqIw4rnnnou+ffvG559/Xm/XAwAAAAAAAAAAAPz/7N13dBRVw8fx36aQQhISei+igBQB6Ra6IiigggoqICpWrMhrQ0VRsaD4IEURRUFsWFBBUBApolIFQem999DT7/tHDoGQ3bB9d3a/n3NyHpjZnblZfL7c2R1uAAAAAAAAAAAA4EhUoAfgiUWLFunWW29VZmZmgcUhJOVbACIiIkKVKlVSsWLFlJSUpGLFiikyMlInTpzQiRMntGfPHm3btk05OTmSziwusWbNGrVv316LFi1S0aJF/fONAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2GHZhSLS0tJ06623Kj09vcAiEcYYxcbGqkuXLmrdurUaNmyoSy65RHFxcec95urVqzVt2jRNnjxZK1eulM1m05o1a3T//fdrwoQJvvyWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAChUR6AG466233tKmTZvyLRJhjFHt2rU1btw47dmzR1988YXuu+8+NWvW7LyLREhSbGysGjZsqEGDBmnFihWaMGGCSpQoIWOMJk2apPnz5/vyWwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACiUJReKyMjI0DvvvJO3SIQxRklJSRo+fLiWL1+uO++8U0lJSR6f5/bbb9e8efNUvnx5SdKgQYM8PiYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC7LLlQxLRp03Tw4EFJuYtE1K1bV6tWrdIjjzyiyMhIr56rVq1amjBhgiTp999/1/r16716fAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGdZcqGIn3/+Oe/XtWrV0u+//64KFSr47Hxt27ZVu3btJEmTJ0/22XkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKY8mFIpYvXy5JioiI0GeffaakpCSfn7Nbt24yxuivv/7y+bkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsseRCEZs2bZLNZlP79u3VoEEDv5yzWrVqkqRVq1b55XwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADnsuRCEUePHpUkde3a1W/ntNlskqSDBw/67ZwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABns+RCEZGRkZKkqlWr+u2ca9askSSdOnXKb+cEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4myUXiihevLikMwtG+MM333wjSSpatKjfzgkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA2Sy4UUbt2bUnSP//845fzzZgxQ/PmzZPNZlPFihX9ck4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBzWXKhiObNm8sYo88//9zn59q4caP69OmT9/v69ev7/JwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2WHKhiJtuukmS9Pfff+urr77y2Xn+/PNPtWzZUvv378/bdtVVV/nsfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIWx5EIRdevWVZMmTWSM0b333qtFixZ59fipqal64okn1Lp1a+3evVs2m02SVLRoUd1www1ePRcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICzLLlQhCQNHjxYknTkyBG1bt1ar7/+utLT0z065saNG/Xwww+rUqVKGj58uDIzM2Wz2WSMkc1m07333qukpCQvjB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMB1ll0oomPHjrrhhhskSWlpaXrmmWdUpUoVDRw4UL///rvS0tLOe4xdu3Zp5syZevrpp3XJJZeoRo0aGjVqlE6cOJG3OMRp5cqV0/PPP++z7wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOB8ogI9AE988MEHWrZsmbZt2yZjjPbt26e3335bb7/9tiIjI1W5cmVVrFhRiYmJiomJ0alTp3T8+HEdPXpUW7Zs0dGjR/OOZYzJ+/XZC0QYYxQdHa0vvvhCiYmJfv3+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAzmbphSKKFy+u2bNnq2XLltq5c6dsNlvegg9ZWVnatGmTNm/eXOB5Zy8KcbazF4g4/bjIyEh9+umnuuKKK7z/DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALggItAD8FS1atW0cOFCXXbZZTLGyGaz5fsyxhT4klTgcWcvMiHlLhKRkpKin376STfddFOgvj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA8UYEegDeUL19ec+fO1ZtvvqmhQ4fq2LFjstlskpT3v/acXljitLMXi7jhhhv07rvvqnz58r4dfAAcOnRIy5cv13///af169drz5492rt3r44ePar09HRlZGQoJiZG8fHxiouLU3JysqpUqaLKlSuratWqatSokapVqxbobwMAAAAAAAAAAAAAAPgA9xUAAAAAAAAAAAAAABDcQmKhCEmKjIzUU089pb59++rNN9/URx99pNTUVEmOF4s4e/vpBSKaNWumQYMG6dprr/X5mP1p/vz5+vrrrzV79mytXr067/s9m71tjl67UqVKqXnz5urcubNuvPFGpaSkeH3MAAAAAAAAAAAAAADAP7ivAAAAAAAAAAAAAAAA64gI9AC8rUyZMho2bJh27NihCRMmqFu3bkpOTpYxxu6XJNWpU0f9+/fXkiVL9Oeff4bMIhGHDx/W66+/ripVqqh169YaOXKk/v33X+Xk5Dh8LaSCC2jY+9q3b59+/PFH3XPPPSpbtqw6d+6sX3/9NRDfJgAAAAAAAAAAAAAAcAP3FQAAAAAAAAAAAAAAYE1RgR6Ar8THx+v222/X7bffLknatm2b1q9fr9TUVGVkZCglJUUlSpTQRRddpOTk5MAO1svS09M1fPhwvfbaazp27FiBn+jh6Kd5uPqY08fNzMzUTz/9pJ9++kmNGjXSkCFD1KFDB/cGDwAAAAAAAAAAAAAAfIr7CgAAAAAAAAAAAAAAsLaQXSjiXJUrV1blypUDPQyfW7JkiW6//XatX78+74YLZ27OcMe5PyHk9Pk7deqk7t2763//+5/Kli3rk3MDAAAAAAAAAAAAAADXcV8BAAAAAAAAAAAAAADWFxHoAcB73n33XV1++eV5N3PYbDaHN3MYY9z6cuTscxlj9PXXX6tRo0ZavHixT75XAAAAAAAAAAAAAADgGu4rAAAAAAAAAAAAAAAgNEQFegDwjv/7v//TW2+9VeBGjnNvwihSpIgqV66sMmXKqHTp0ipVqpRiYmLyviIjI5Wdna2cnBylpaUpPT1dx48f19GjR5Wamqr9+/dr7969OnDgQIExnHve3bt3q3Xr1poyZYquuuoq378IAAAAAAAAAAAAAADALu4rAAAAAAAAAAAAAAAgdLBQRAh48cUXNWzYMEm5N1WcvokjMjJSjRo1Ups2bdS8eXNdfPHFuvDCCxUREeHxOdPT07VlyxatX79e//zzj5YtW6YFCxZo7969eeOQpFOnTummm27SggULVKdOHY/PCwAAAAAAAAAAAAAAXMN9BQAAAAAAAAAAAAAAhBYWipB05ZVXqm3btnr22WdVpEiRQA/HJdOmTdNLL72UdyOHMUbNmzfXXXfdpe7du6tYsWI+OW9MTIxq1qypmjVr6rrrrsvbvmzZMn3zzTf68MMPtW/fPtlsNh09elQ333yzli9frujoaJ+MB77jjRuAws3pG5rOxuvoOnuvoxIT/T8Qq+M1y8P/D11Hz7yD19E7eM1y8Tq4jv8Pegevo3fwmp3Ba+Ea/j/oHbyO3sFrdgavhev4/6F38Dp6B69ZLl4H1/H/Qe/gdfQOXjM4i/sK4Gv0yHX8XegdvI7ewWuWi9fBdfx/0Dt4Hb2D1+wMXgvX8f9Dz/Eaegev2Rm8Fq7j/4fewevoHbxmuXgdXMf/B72D19E7eM3O4LVwHf8/9A5eR+/gNQt9NnP6x0T42ZYtWzRixAi3nluvXj317dvXa2OZOHGi7r//flWsWFHjxo3TFVdc4bVj+9KpU6d00UUXadeuXZKkWrVqaeTIkWrbtm2AR5b7k0GGDRuml19+WRkZGZJyf0LJoEGD8h6zb98+7d+/36Xj/vfff7r55pvzfj9lyhRdeOGF3hk0AAAAAAAAAAAAAADn2LBhg66//vq83y9dulSXXnpp4AbkAivfV8A9BQAAAAAAAAAAAACAYBfIewoCtlDEggULdOWVV9r/ifHnMMYoKipKV199tW677TZdf/31iouL8+p4Vq1apW7dumnz5s16/fXX9dhjj3n1+L7w7rvv6pFHHpHNZtONN96oTz/9VDExMYEeVj7z5s3Tddddp+PHj6tYsWLavn27EhISJEmDBw/Wiy++GOARAgAAAAAAAAAAAADgvClTpqhr166BHoZTrHxfAfcUAAAAAAAAAAAAAACsxp/3FET45Sx2NG3aVF999ZUaNGggY0yBLyl3gYgiRYqof//+2rp1q6ZOnaqePXt6fZEISapbt64WLlyopk2b6oknnlCvXr2UnZ3t9fN404QJEyRJjRo10pdffhl0N3NIUsuWLfXBBx9Iko4ePaqJEycGeEQAAAAAAAAAAAAAAIQH7isAAAAAAAAAAAAAACA0BWyhiOjoaHXv3l0LFy5Uu3btJEk2my3vyxijHj16aNOmTRoxYoTKlSvn8zElJydr1qxZuvbaa/XZZ5/p1ltvVU5Ojs/P645jx45p2bJlstlsGjRokCIiAvZHeV633HKLWrVqJUmaNm1agEcDAAAAAAAAAAAAAEDo474CAAAAAAAAAAAAAABCl80YYwI9iK+++ko9evSQzWaTJCUmJmrUqFG67bbbAjKejIwMXXPNNZo7d65uv/12ffLJJwEZR2FWrlyp+vXry2az6eDBg0pOTg70kAr18ccf684771T58uW1Y8cOSdK+ffu0f/9+l45z9OhRLVmyRElJSUpOTlalSpWC8ieeAAAAAAAAAAAAAABCQ3p6urZv3573+1atWgX9Z/SS9e8r4J4CAAAAAAAAAAAAAECwC+Q9BVF+Oct5nP3NFytWTDNnzlSjRo0CNp4iRYro+++/V7NmzfTpp5/qyiuv1N133x2w8diTnp6e9+v4+PgAjsQ5VatWlSQdOHAgb1vp0qVVunRpl4/VokULbw0LAAAAAAAAAAAAAIDzuvTSSwM9BJdZ/b4C7ikAAAAAAAAAAAAAAFhBoO4piAjIWc/xwQcfSJLi4uI0Y8aMgC4ScVpiYqImTpyoyMhIPfroo1q3bl2gh5TP2TdDrFmzJoAjcc6uXbskSQkJCQEeCQAAAAAAAAAAAAAAoY/7CgAAAAAAAAAAAAAACF0BXyhixowZWrdunWw2m4YMGaKmTZsGekh5GjVqpPvuu08nT57U008/Hejh5FO5cmWVKlVKkvTee+8FeDTn9/XXX0uSqlevHuCRAAAAAAAAAAAAAAAQ+rivAAAAAAAAAAAAAACA0BXwhSJGjhwpSWratKkee+yxAI+moIEDByoqKkpTpkzR0qVLAz2cfK677joZYzR27Fj9+OOPgR6OQ1OmTNGUKVNks9nUpk2bQA8HAAAAAAAAAAAAAICwwH0FAAAAAAAAAAAAAACEpoAuFLF//37NmDFDNptNTz31VCCH4lClSpXUtm1bSWcWtQgWjz76qGw2m3JycnTzzTdr1KhRgR5SARMnTtStt96a9/u+ffsGcDQAAAAAAAAAAAAAAIQP7isAAAAAAAAAAAAAACA0BXShiKlTpyonJ0dVq1ZV165dAzmUQnXt2lXGGE2ZMkWZmZmBHk6eevXq5d0gkZ6erocfflht27bVnDlzAjswSfPnz1eHDh10xx13KC0tTTabTT179lTNmjUDPTQAAAAAAAAAAAAAAMIC9xUAAAAAAAAAAAAAABCabMYYE6iT33LLLfr666/1wAMP6N133w3UMM5r6dKlatKkiWw2m6ZOnaqOHTsGekh5UlNT1bhxY23evFnGGNlsNklS3bp1deONN6pz585q2LBh3nZfWrhwob777jt999132rBhgyTljalcuXL6+++/VapUKZ+PAwAAAAAAAAAAAAAA5OK+AgAAAAAAAAAAAAAAQk9AF4qoUaOGNm7cqM8//1w333xzoIZxXqdOnVLRokVls9n0/PPP64UXXgj0kPJZu3atLrvsMqWmpkrKvYlCUt5NHHFxcapXr54uueQSValSRRUrVsz3FR8f7/S5cnJytHv3bu3YsUObN2/WsmXLtHTpUv399986cuRIgfMbY5SYmKhff/1VjRs39uJ3DQAAAAAAAAAAAAAAnMF9BQAAAAAAAAAAAAAAhJaALRRx6tQpJSYmyhij//77TzVr1gzEMJyWkJCgU6dOqUuXLvruu+8CPZwClixZoi5dumjv3r15287+oy3sJ38ULVpU8fHxio+PV1xcXN7/SlJaWlre1/Hjx7V//37l5OQUOIa9cxljVLx4cU2bNk3NmjXz+HsEAAAAAAAAAAAAAADu4b4CAAAAAAAAAAAAAABCR8AWitiyZYsuuOAC2Ww27d27VyVLlgzEMJxWrlw57du3T7Vq1dK///4b6OHYtW3bNl1//fVavnx5gRs4XP1jPvumDFcef/b5mjRpoq+++kpVqlRx6dwAAAAAAAAAAAAAAMD7uK8AAAAAAAAAAAAAAIDQEBGoE6empub9OiUlJVDDcFp6erqMMfnGHWwqV66sxYsX6+WXX1ZMTEyBn8bhzNdpxhiXnn/28+Lj4/X6669rwYIF3MwBAAAAAAAAAAAAAECQ4L4CAAAAAAAAAAAAAABCQ8AWisjMzMz79alTpwI1DKcdPXpUknTkyJEAj6RwkZGReuaZZ7R69Wrdc889KlKkiMOf3nHuTRuS4xs3zscYo8TERP3f//2f1q9fr4EDByoqKsor3xMAAAAAAAAAAAAAAPAO7isAAAAAAAAAAAAAAMD6bMbRp/0+tn79etWsWVM2m01btmxRpUqVAjEMp+zevVsVKlSQJEVHRys9PT3AI3Le7t27NXbsWH355Zdas2ZN3nZnbtIozNn/2dSpU0e9evXSfffdp6SkJI+OCwAAAAAAAAAAAAAA/If7CgAAAAAAAAAAAAAAsJ6ALRSxf/9+lSlTRjabTdOnT9fVV18diGE4Zdq0aercubMkKTk5WYcOHQrwiNyzYsUKzZgxQ3/88Yf+/PNPHThwwK3jlC1bVvXr11fHjh3VpUsXVa1a1bsDBQAAAAAAAAAAAAAAfsd9BQAAAAAAAAAAAAAAWENUoE5cokQJxcbGKj09XUuWLAnqhSL++uuvvF8nJiYGcCSeqV+/vurXr5/3+127dmnz5s3asmWLduzYoaNHj+rkyZM6efKkjDFKSEhQYmKiEhMTlZKSopo1a6pOnTpKSUkJ4HcBAAAAAAAAAAAAAAB8gfsKAAAAAAAAAAAAAACwBpsxxgTq5C1atNDChQvVtGnTfIsxBJuLL75Ya9eulc1m02WXXab58+cHekgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAMRQTy5I0aNZIkLV68WOvXrw/kUBxaunRp3iIRklSzZs0AjwgAfG/9+vV69NFHlZycnNc/q5g3b55uvvlmRUdHq3Xr1oEeDoAAo2cAQglNAxAKaBmAUEHPAFgZDQMAAN7AnAJAKKBlAEIJTQMQKugZgFBAywBYHR0DrCMqkCdv27atRo8eLUl69dVXNX78+EAOx64hQ4ZIkowxstlsuuSSSwI8IgDwjZycHE2bNk0jR47UzJkzZYwJ9JCcduLECX366acaNWqUVq5cGejhaM6cOSpdurRq164d6KEAYYmeeQ89AwKPpgEIBbTMc9nZ2Tp48KBSU1OVmpqq6OhoJScnq0yZMoqPj3fqGBkZGVq0aJEqVKigatWq+XjEQGiiZ56jZ0Dg0DAAAOANzCm8h8/hgMChZd5Dy4DAo2kAQgU98xyfwwGBR8s8R8uAwKJjgDUFdKGIa6+9VomJiTp27Jg+/fRTPfbYY0G1EMMff/yhH374QTabLS9q7dq1C/CoAMC7Dh06pA8//FBjxozR5s2bAz0cl6xfv16jR4/W+PHjdeTIkUAPR5K0f/9+XXPNNWrYsKH+/PPPQA8HCCv0zLvoGRBY4dy0JUuWKC0tzStjiYyMVHR0tKKjo5WUlKSUlBQVK1bMcivbAlYVzi3zVFpamqZNm6bZs2dr6dKlWrFihd02RkRE6IILLlDDhg11zTXX6LrrrlPp0qXtHvOHH37QTTfdpEceeUTvvPOOj78DILTQM/fRMyDwwrlhy5cv1/Hjxz0eR0REhKKiohQdHa2iRYsqISFBJUqUUExMjMfHBgDAKsJ5TuELfA4HBAYt8y5aBgRWODeNewqA0BLOPfMUn8MBwYOWuY+WAcEhnDvGfQUICSbAevXqZWw2m7HZbObiiy82x48fD/SQjDHGHD161FSvXt3YbDYTERFhbDabqVixYqCHBQS1KlWqGElOf1WvXt1kZ2cHZKw5OTmmZs2aLo23SpUqARmrr+zevdvceeedJi4u7rzfe7BZunSp6dChg7HZbIWOu1WrVn4f2yuvvJJ3/mXLlvn9/PAOemYt9Mw36FnooGnWQtNc/2/W1a/Y2FhTs2ZNc8MNN5hXXnnFLF682OTk5PjnRYLbaJm10DL3LVu2zPTq1cskJia61biIiAjTqVMn89NPP+VrW0ZGhrn00kuNJPPII4/4ZOxwDj2zFnrmPnoWmmiYtdAwYzp37myqV69uSpUqdd5jufOVmJhoLr74YtOpUyczYMAA88knn5h169b550UCAAtjTmEtzCl8g8/hrI+WWQst8w1aFjpomrXQNO4pgGP0zFromfv4HC600TJroWXuo2Whi45ZCx3jvgKEhggF2OOPPy5JstlsWrt2rXr06KGMjIyAjik7O1t9+vTRpk2bZLPZZIyRzWZTnz59AjouINht3LhRqampWrFihd555x1VqFDhvI//5ptv/DS6/H744QetXbu20Md07dpVM2fO1MGDB5WTk6MtW7b4Z3B+Eh0drXXr1unJJ5/UyJEjdfnllwd6SE6LiopSZGSkhg8frjFjxqhWrVqBHpKk3L8/3nvvvbzfjxkzJoCjgSfombXQM++jZ6GFplkLTcv9bzAzM1MHDx7Ub7/9pp49e3p1nGlpaVq7dq2+++47Pfvss2rSpIkqVaqkQYMGad++fV49F7yHllkLLXPdypUrdcMNN+jSSy/VxIkTdezYsbx9TZo00ZAhQzR9+nRt2bJFR44cUUZGhvbu3av//vtPn3/+uR544AFVrVpVOTk5+umnn9SpUyfVqlVLw4YN05dffqlOnTpp2bJlfvleUDh6Zi30zHX0LLTRMGuhYbn/HWzYsEH79u3Tnj179Morr6hIkSJeG+exY8e0evVq/fTTT3rrrbfUp08f1ahRQxUrVtT999+vBQsWeO1cABBKmFNYC3MK7+NzuNBAy6yFlnkfLQstNM1aaBr3FMAxemYt9Mx1fA4XHmiZtdAy19Gy0EfHrIWOcV8BQkSgV6owxpjrr7/e2Gw2ExERYSIiIkybNm1MampqQMaSnZ1tbrnllnzjsdlsJioqymzdujUgYwKs6tChQ6ZRo0aFrorUpEmTgIztiiuuKHRcjz76aEDGFUjHjx83pUqVssSqX+das2aNX1cvdOTrr7/Od/6iRYsG7O8zeBc9sxZ65jl6FtpomrXQtFxDhw51+N9FiRIlTP/+/c1HH31klixZYrZs2WIOHTpkMjMzzZEjR8y2bdvM0qVLzbhx48x9991nKlas6PBYsbGxZvDgwSYzM9P7Lwi8ipZZCy1zLDMz0wwePNhERUXlO35ERITp1auXWbNmjdPHys7ONt9++61p2rRpof8Nslp+cKFn1kLPHKNn4YmGWQsNyzV58mSH/11ERUWZhg0bmn79+pn333/fLFiwwKxdu9YcPHjQZGVlmWPHjpnt27ebuXPnmpEjR5pbbrnFJCcnF/rfWuPGjc2sWbO8/6IAQAhhTmEtzCk8x+dwoYmWWQst8xwtC200zVpoWi7uKYA99Mxa6JljfA4X3miZtdAyx2hZ+KJj1kLHcnFfAawmKP4funLlShMdHZ23KENERISpWLGimT59ul/HsW3bNnP55ZfnG8fp/7377rv9OhYgVCxbtqzQv8gkmdmzZ/t1TAsXLix0PNHR0ebo0aN+HVOwuP322y05mTPGmOrVq/vsotRZrVu3LjCG//3vf34dA3yHnlkLPfMMPQt9NM1aaFruhwQpKSleeQMvKyvLfP/996Zhw4aFvuG2d+9el8cJ/6Jl1kLLCtq6davdD8Fq1Khhli1b5vZxs7OzzbBhw0xcXJzd15wPQYMPPbMWelYQPQtvNMxaaFguRzf7u3O8tLQ08/XXX5smTZoU+t9dx44dzZ49e9waLwCEA+YU1sKcwjN8Dhe6aJm10DLP0LLQR9OshaZxTwEco2fWQs8K4nM4GEPLrIaWFUTLQMeshY7l4r4CWEmEgkDdunX17LPPyhgjm80mY4x27typa6+9VjfccIOWLVvm0/NnZGRo+PDhatCggf7888+8cZxWtGhRvfzyyz4dAxCqGjZsqIoVKxb6mDfeeMNPo8n15ptvFrq/Tp06SkxM9NNogku1atUCPQS3Va5cOaDnX7VqlebMmVNg+5gxY/w/GPgEPbMWeuY+ehYeaJq10DQpKipKzZo188qxIiMj1aVLFy1cuFDPP/98vuv/05YsWaJWrVpp7969XjknfIOWWQsty++///7T5ZdfrqVLl+bb3rFjRy1ZskQNGzZ0+9gREREaMGCAZs+erWLFink6VPgBPbMWepYfPQMNsxYalqtRo0ZeO1ZMTIy6deumRYsWafLkySpfvrzdx02fPl0NGzbUvHnzvHZuAAglzCmshTmF+/gcLrTRMmuhZe6jZeGBplkLTeOeAjhGz6yFnuXH53A4jZZZCy3Lj5ZBomNWQ8dycV8BrCQoFoqQpEGDBunSSy/NW6Th9IIRP/zwg5o0aaJ27drpww8/VGpqqtfOuW3bNr3yyiuqXr26nnjiCR0+fDjfIhGnfz18+HCVKVPGa+cFwk3NmjUL3T9jxgytXLnSL2PZtGmTvvvuu0IfU6lSJb+MJRglJycHeghuS0pKCuj5R44caXf7mjVr9Ntvv/l5NPAVemYd9Mx99Cx80DTroGm5qlSp4rVjSVJ0dLRefPFFvfvuu3b3r1mzRr169ZIxxqvnhXfRMuugZWcsX75cV155pXar15JQAAEAAElEQVTs2JFve8uWLfXtt9967QOm5s2ba9asWQGfX8I59Mw66NkZ9Ayn0TDroGG5zncTkru6d++uVatW6ZprrrG7f/fu3WrXrp2mTp3qk/MDgNUxp7AO5hTu43O40EfLrIOWuY+WhQ+aZh00LRf3FMARemYd9OwMPofDuWiZddCyM2gZzkbHrIOO5eK+AlhJ0CwUERkZqW+//VYVKlTI23Z6sQhjjObMmaN77rlHZcuW1RVXXKEnnnhCX3/9tVatWqVjx46d9/g5OTnavHmzpk6dqqeeekotWrTQBRdcoOeff147d+7Mt0CFdGaRiJ49e+quu+7y2fcNhIOSJUvm/dreyrqS/1b+Gj58uLKzswsdS0JCgl/GEoxiY2MDPQS3FSlSJGDnPnLkiD799FOH+0ePHu3H0cCX6Jl10DP30LPwQtOsg6bl8tWb+A8++KAeeeQRu/tmzpypDz74wCfnhXfQMuugZbn27t2rLl266NChQ/m2ly9fXlOmTPH669S4cWONGjXKq8eEb9Az66BnuegZzkbDrIOG5SpatKjXjnWulJQUTZs2Tf369bO7PysrSzfddBP/eAoA7GBOYR3MKdzD53DhgZZZBy1zDy0LLzTNOmhaLu4pgCP0zDroWS4+h4M9tMw6aFkuWoZz0THroGO5uK8AVhI0C0VIUuXKlfXzzz8rJSUlb9vpxRtOLxiRkZGhP//8U8OHD9ctt9yi+vXrKzk5WSkpKapZs6YaNGigFi1aqHXr1mrRooXq16+vatWqKS4uThdeeKG6du2qN998U4sWLVJOTk6BBSLO1q5dO3300Uf+fAmAkBQTE5P3644dO9p9zBdffKHt27f7dByHDh3S+PHjJeX+xd++fXu7jwvkh2mBFh0dHeghuC2Qf27jx4/XiRMnHO6fMmWKdu/e7ccRwVfomXXQM/fQs/BC06yDpuWKi4vz2rHO9fLLL+dbuPJsr776qjIzM312bniGllkHLZMyMzN144032v3vcezYsfneE/Wm22+/XT169PDJseE99Mw66Bk9Q0E0zDpoWC5f39gSERGh999/X3feeafd/Wlpabr++uu1detWn44DAKyGOYV1MKdwD5/DhQdaZh20zD20LLzQNOugabm4pwCO0DProGd8DgfHaJl10DJaBvvomHXQsVzcVwArCaqFIiSpdu3amjVrlipUqCBjTN7204s5nL1oxNlfR44c0fr16/XPP/9o0aJFmj9/vhYtWqSVK1dq69atyszMLPCcsxeIOPtcxhi1adNGU6ZMCeuoA95y9kIs9957r91Ve7OysvT222/7dBxjxozJ+6CqZ8+eKl++vE/PZ0VRUVGBHoLbIiIC81eaMea8Kw9mZWVp7NixfhoRfImeWQc9cx09Cz80zTpoWi5Hq/Z6Q0JCgvr06WN339atWzV//nyfnRueoWXWQctyVzz/448/Cmzv3Lmzrr32Wq+cw5G33nor34dtCD70zDroGT1DQTTMOmhYLl9eX559jvfee0+tWrWyu//o0aPq3bu3cnJyfD4WALAK5hTWwZzCdXwOFz5omXXQMtfRsvBD06yDpuXingI4Qs+sg57xORwco2XWQctoGeyjY9ZBx3JxXwGsJOgWipCkBg0aaMmSJWrRokW+BRxOO3vRiHO/JOVbDKKwx59+7OnHnP79Pffco59//lnx8fH++HaBsJKUlKR77rnH7r5x48bp8OHDPjlvenq63n333bzfP/HEEz45j9X5YxLjK4H6EHTGjBnasGGDJKlWrVrq1q2b3cd98MEHys7O9ufQ4GP0LLjRM9fRs/BG04IbTfOPrl27Otz366+/+nEkcBctC27h3rKNGzfq5Zdftrvvueee8/j451O+fHn169fP5+eBd9Cz4EbP6BkKR8OCW7g3zN+io6M1ceJEFStWzO7+efPmacSIEX4eFQBYA3OK4MacwnV8DheeaFlwo2Wuo2XhjaYFN5rmH9xTEBroWXAL957xORycRcuCGy2jZTg/Ohbcwr1j/sZ9BfCGoP0vv3Tp0po7d66GDBmimJiYAgtGnL0YxNn7HC0I4eg5Zy8QkZiYqI8//ljvvfeepVe+AYLdI488oujo6ALbjx8/rtGjR/vknBMnTtTevXslSR07dlTdunV9ch6En5EjR+b9un///urfv7/dx+3cuVPff/+9v4YFP6FnCCX0DDQN4a5q1aoO923atMl/A4FHaBmC1eOPP660tLQC21u3bq0mTZr4ZQxPP/0073laCD1DsKJncAYNA86oVKmSw5vhJOmVV17R8ePH/TgiALAO5hQIJXwOF75oGUIJLQNNQ7jjnoLQQc8QrPgcDq6gZQhWtAzOomPAGdxXAE8F7UIRkhQVFaVnn31Wq1atUufOnSUp3wIPZy8Ece4iEPa+HD1Pknr27Kl///1XvXv39ve3CYSdihUrqmfPnnb3vfvuu3YvCjxhjNHbb7+d9/uBAwd69fgIXxs3btSMGTMk5a5o16dPH7Vu3Vq1a9e2+3hfXawgcOgZQgU9g0TTgJSUFIf7Dh486MeRwBO0DMHo33//1Y8//mh336233uq3cZQvX15XX321384Hz9AzBCN6BmfRMCC/e+65x+E/JDhw4EC+n1oDADiDOQVCBZ/DhTdahlBByyDRNIB7CkIHPUMw4nM4uIqWIRjRMriCjgH5cV8BPBHUC0WcdsEFF+j777/XypUr1adPH0VHRztc/OF8X9KZRSUiIyPVs2dPLVu2TJMmTVKFChUC+W0CYeWJJ56wu33v3r365JNPvHquadOmafXq1ZKkRo0aqU2bNl49PsLXqFGjlJOTI0nq27evEhISJEkPPPCA3cfPnj1b69at89v44B/0DKGAnuE0moZwtn//fof7EhMT/TgSeIqWIdgMGzYs733Ms0VHR6tbt25+Hcttt93m1/PBM/QMwYaewRU0DDijSJEiDn/SriQNHz5cWVlZfhwRAFgHcwqEAj6HAy1DKKBlOI2mIZxxT0FooWcINnwOB3fQMgQbWgZX0THgDO4rgCcssVDEabVr19b48eO1d+9eTZo0STfddJOSk5PzFn5w5is+Pl6dOnXS6NGjtXv3bk2aNEn169cP9LcGhJ169erpmmuusbtv2LBheR8secOwYcPyfu1oEukrf/75pwYOHKhWrVqpXLlyio2NVWxsrMqWLasrrrhCjz76qGbMmKHs7GyfjWHdunV69dVXdfXVV6tSpUqKi4tTfHy8qlWrphtvvFGffPKJMjIyfHZ+SVqyZIkGDRqkNm3aqGLFioqLi1NcXJyqVKmiyy+/XM8995wWLlzo0zF428mTJzV+/HhJuQsWnT0Z6927d94HomczxmjMmDF+GyP8g57RM3qGUELTaJrVm+aJZcuWOdxXvXp1P44EnqJltCyYWpaamqrPPvvM7r7GjRurePHifh3P9ddfr3r16vn1nHAfPaNn9Mwxehb8aBgNC6aGBYPTPwzBnv3792v27Nl+HhEAWANzCuYUVp9T8DkcJFpGy2gZQgtNo2lWb5onuKcgtNAzehZMPeNzOLiLltEyWuYYLbMGOkbHgqljwYD7CuA2EwK2bdtmpk2bZoYPH26ef/5588gjj5i77rrL3Hfffebxxx83b7zxhvniiy/MqlWrTFZWVqCHC4SdPn36GElGkvntt9/ytv/6669528/9mjx5slfOvWTJkrxjVq1aNV8Dzh7X2V99+vTx6JzZ2dnms88+M7Vq1XL4/Z37VbFiRTNy5EiTmZnp4Xd8xtq1a03nzp2NzWY77/mrV69uZs2aZcaPH293v7tmzpxpmjRp4vTr0KZNG7N48WK3zmXvz7NVq1Zuj/183n///bzzdOrUqcD+++67z+73mJycbE6ePOmzccG36Bk9o2f0LJTQNJpmtaa98MILdsfnrUY6+m9Pkpk6dapXzgHvo2W0LNhbNmnSJIdjeuyxx9waD0ITPaNn9AxWRsNoWLA37Fy+vr50pHXr1g5fm7vuusun5wYAK2BOwZzCanMKZ/A5XPihZbSMltGyUELTaJrVmsY9BXCEntGzYO8Zn8PBGbSMltEyWB0do2PB3rFzcV8BrCQkFooAENwcTeaMMebSSy+1+xdX06ZNvXLuW265Je+Y//vf/xyOy1uTuS1btpiWLVvmO17Lli3NiBEjzMyZM833339vhg8fblq0aGH33A0bNjRr16718Ls2ZtSoUaZIkSJ5x7XZbOaaa64x77//vvnll1/M559/bh555BFTrFixvMdERUWZDh06eGUyd+rUKXPnnXfmPb98+fLmiSeeMF9//bWZPXu2+fTTT83tt9+eb4xnj2PMmDEun9PfH4LWq1cv7zzTp08vsH/lypUOJ2bjxo3z2bjgW/SMntEzehZKaBpNs1rTfPmG25YtW+x+31LuG6/efNMV3kXLaFmwt+ymm25yOJf68ssvXR4LQhc9o2f0DFZGw2hYsDfsXIG6oeO1115z2NLy5cv79NwAYAXMKZhTWG1O4Qw+hws/tIyW0TJaFkpoGk2zWtO4pwCO0DN6Fuw943M4OIOW0TJaBqujY3Qs2Dt2Lu4rgJWwUAQAnytsMvf55587/Mvr3Me6avPmzSYyMtJIMikpKeb48eMOx+WNydySJUtM8eLF845Trlw588svvzh8/C+//GLKlStX4PzJycnm999/d2sMxhgzYMCAfMerXLmymTNnjt3HHjt2zNx2220O/wzcmcwdPnzYNG3aNG8S+dRTTzlcHX79+vX5Pkw8++ull15y6bz+/BB0zpw5eee46KKLTE5Ojt3HXXnllXa/t0aNGvlkXPA9emYfPaNnsCaaZh9NC96m+eoNt+zsbNO+fXuHr/P777/v0fHhW7TMPloWPC1LSUlx+L2vWLHCpXEgtNEz++gZPYM10DD7aFjwNOxcgbqhY9asWYX+Oezbt8+n5weAYMecwj7mFME7pzgfPocLT7TMPlpGy2BNNM0+mha8TeOeAjhCz+yjZ8HTMz6HgzNomX20jJbBOuiYfXQseDp2Lu4rgJWwUAQAnytsMpeVlWWqVKli9y+ujh07enTehx9+OO9YzzzzTKHj8nQyt2LFinwraJUoUcKsW7fuvM/bunWrKV++fIExJCQkmGXLlrk8jsGDB+c7TrVq1czWrVvP+7zHHnvMK5O5jIwM07x587znjR8//rzPOXr0aL7nnP6y2Wzmhx9+cPrc/vwQtHv37nnnOHc1ubN98cUXDl/ThQsX+mRs8C165hg9o2ewHprmGE0Lzqb54g239PR006tXL4evcYcOHRze8IbgQMsco2WBb9nWrVsL/d5TU1OdHgNCHz1zjJ7RMwQ/GuYYDQt8w+wJ1A0dBw4cKPTPobAbhAAgHDCncIw5RXDOKc6Hz+HCEy1zjJbRMlgPTXOMpgVn07inAI7QM8foWeB7xudwcBYtc4yW0TJYAx1zjI4FvmP2cF8BrISFIgD4XGGTOWOMeeeddxz+5bVy5Uq3znno0CGTkJBgJJmYmBize/fuQsflyWTuyJEj5qKLLsp3jEmTJjn9/GXLlpmoqKgC46hQoYI5fPiw08eZOnWqsdlsec+PiooyixYtcuq5GRkZ5tJLL/V4Mjdw4MC85zz++ONOP2/NmjUmNja2wHlLlChhjh075tQx/PUh6I4dO/L+vBITE83Ro0cdPjYjI8OULVvWaxcNCDx6Vjh6Rs9gLTStcDQt+Jrm7Tfc5s2bV+jr26xZM6e/TwQOLSscLQtsy6ZOnerw+05KSnL6e0B4oGeFo2f0DMGNhhWOhoX+9aUrihYt6vDPYcSIET4/PwAEM+YUhWNOEXxzisLwOVz4omWFo2W0DNZC0wpH04KvadxTAEfoWeHoGZ/DwRpoWeFoGS1D8KNjhaNjoX+N6QruK4CrIgQAAXbXXXcpJSXF7r433njDrWO+9957On78uCSpV69eKlu2rNvjO5//+7//0/r16/N+X69ePfXs2dPp5zds2FAPPvhgge07d+7U448/7tQxjh07pvvuu0/GmHzjatKkiVPPj46O1osvvujcgB2YPXu2hg0bJkkqUaKEXnjhBaefW7NmTfXo0aPA9oMHD2rMmDEejcvbxowZo6ysLElSnz59lJiY6PCx0dHR6tevn919X375pQ4dOuSTMSJw6Bk9o2cIJTSNplmlaTt37tTkyZO1ZMkSbd++XUePHlVmZqaMMcrOztbJkye1Z88eLVu2TJMnT9ZTTz2lunXrqmXLllq2bJndY951112aM2eOEhIS/PzdwNtoGS0LZMvWrVvncF/p0qV9em6EHnpGz+gZrIyG0TCrXF/6Q4UKFRzuO3z4sB9HAgDWw5yCOYWV5hR8DgdHaBkto2UIJTSNplmladxTgPOhZ/SMz+EQCmgZLaNlsDo6Rsesco3pD9xXAFexUASAgEtISND9999vd98XX3yh7du3u3S8jIwMvfvuu5Ikm82mAQMGeDxGR1auXKlx48bl29avXz/ZbDaXjvPiiy/avQAaP368fvvtt/M+/5lnntGOHTvyfl+kSBE9+uijLo2hU6dOqlKlikvPOdsLL7yQN5ns0aOHkpKSXHp+s2bN7G4fNWqU22PytoyMDH3wwQeScv/b6t+//3mfc++99yoyMrLA9rS0NI0fP97rY0Rg0TN6JtEzhA6aRtMkazRtw4YNuvnmm9WkSRNVrlxZxYoVU5EiRRQREaGoqCgVLVpU5cqVU6NGjXTzzTfr9ddf17///mv3WC1bttTvv/+ucePGKTY21s/fCXyBltEyKXAtK+wN+bi4OJ+eG6GHntEziZ7BumgYDZOscX3pD4X9w6ojR474cSQAYD3MKZhTSNaYU/A5HApDy2iZRMsQOmgaTZOs0TTuKcD50DN6JvE5HKyPltEyiZbB2ugYHZOscY3pD9xXAFexUASAoPDQQw8pJiamwPbMzEwNHz7cpWNNmjRJu3fvliRdd911qlWrllfGaM+LL76o7OzsfNu6du3q8nGKFSume+65x+6+1157rdDnrl+/XqNHj863rVu3bipVqpRLY4iIiFCrVq1ces5py5Yt0++//573+2uvvdblY5QvX97u9q1bt2rDhg1ujcvbvvrqK+3bt0+SdPXVV6tmzZrnfU6FChXUpUsXu/vee++9fCu1ITTQM3pGzxBKaBpNs0LTvCEyMlJPPvmkPv30U11++eWBHg68jJbRskC1rLA35PkQFO6gZ/SMnsHKaBgNC5fry/MprJtHjx7140gAwJqYUzCnsMKcgs/hcD60jJbRMoQSmkbTrNA0b+CegtBHz+gZn8MhFNAyWkbLYHV0jI6FyzXm+XBfAVzFQhEAgkLZsmXVq1cvu/s++OADpaamOn2st956K+/XAwcO9HRoDm3btk1TpkzJt61cuXKqXLmyW8dz9P3/8ssvDlcnlqQRI0YoJycn3zZ3JlOSVL9+fbeed+5ksm7dui4fo2jRog73zZs3z+Xj+cLp1eSk3AsQZz344IN2t2/YsEG//PKLx+NCcKFn9IyeIZTQNJpmhaZVr15dX3zxhWbNmqX58+fnfc2bN08zZszQt99+q3fffVcDBgxQy5Yt7f5Uj+zsbL3++uuqXLmymjdvrrFjxyo9PT0A3w18gZbRskC17Pjx4w732ftACzgfekbP6BmsjIbRMCtcX/rDuX+WZ4uKivLjSADAmphTMKewwpyCz+FwPrSMltEyhBKaRtOs0DTuKYAz6Bk943M4hAJaRstoGayOjtExK1xj+gP3FcBVLBQBIGgMGDBANputwPbjx48XmCw4Mn369LyJT7NmzXTllVd6dYxn++STTwqs+OXJCmM1atRQ06ZN7e776quv7G4/cuSIPv744wLbmzRp4tYYihcv7tbzfv3113y/r1y5smw2m0tf7du3d3j8nTt3ujUub1qyZIkWLVokKfeDg44dOzr93Hbt2jlcWd/Z/7ZhLfSMnjlCz2BFNI2mORIMTZOkihUr6pZbblG7du10xRVX5H1deeWV6tChg2644Qb1799fw4YN09y5c3X48GF9+eWXatu2rd3jLVy4UPfee69q1qxZ4M1bWBcto2WO+LJl0dHRDvdx4xjcRc/omSP0DFZAw2iYI8FyfekPp06dcrgvPj7ejyMBAOtiTsGcwpFgmFPwORycRctomSO0DFZE02iaI8HQNIl7CuA8ekbPHOFzOFgJLaNljtAyWAUdo2OOBMs1pj9wXwFcxUIRAIJGrVq11LlzZ7v7RowYobS0tPMeY9iwYXm/fuKJJ7w2Nnu+//77AtsqVqzo0TFbt25td/ucOXPsbp86dWqB1fcSEhJ00UUXeTQOV+zevVtbtmzx6TkOHDjg0+M74+yV8vv376+ICNf+Cn3ggQfsbp82bZq2b9/u0dgQfOgZPXOEnsGKaBpNcyQYmuaO2NhY3Xzzzfr11181e/ZsVa9e3e7jtm7dqhtuuEHPPvusn0cIX6BltMwRX7assDfkT5486bPzIrTRM3rmCD2DFdAwGuaIVa8v3VHYT7kpU6aM/wYCABbGnII5hSPBMKfgczg4i5bRMkdoGayIptE0R4Khae7gnoLwRc/omSN8DgcroWW0zBFaBqugY3TMEateY7qD+wrgqqhADwAAzjZw4ED98MMPBbbv3btXn3zyie69916Hz122bJlmz54tKXc18xtvvNFn4zxy5IiWLVtWYHtiYqJHx23YsKHd7QsXLlRWVpaiovJn294kr2TJknZXT/OVP//8s8C23377rcBYPVG2bFmvHcsd+/fv15dffilJKlq0qPr27evyMfr06aNnnnlGJ06cyLc9Oztb77//vl5++WWvjBXBg57RM3voGayKptE0ewLdNG9o06aNli9frm7duumXX36x+5hXX31VJUuW1GOPPebn0cHbaBkts8eXLSvs2EePHvXZeRH66Bk9s4eewSpoGA2zJxSuL51hjCn0p5xUqVLFj6MBAGtjTsGcwp5Azyn4HA6uomW0zB5aBquiaTTNnkA3zRu4pyD80DN6Zg+fw8FqaBkts4eWwUroGB2zJxSuMZ3BfQVwBwtFAAgqV1xxhZo3b66//vqrwL633npL/fr1c7hK+dkrfj3++OMur2buiuXLl8sYU2B7TEyMR8d1NJlLT0/X/v37Va5cuXzb7U3mihUr5tEYXGVvpfe6deuqZMmSfh2HL33wwQdKT0+XJPXu3dut17hYsWK67bbbNHbs2AL7xo0bpxdeeEHR0dEejxXBg57Rs2BEz+AumkbTQllCQoK+//57tWzZUosXL7b7mCeeeEItW7ZUo0aN/Dw6eBMto2X+VrlyZYf7du3aZfdDG8AZ9Iye+Rs9gzfRMBoWzrZv366MjAyH+2vVquXH0QCAtTGnYE4RjPgcDq6iZbQsGNEyuIum0bRQxj0F4YWe0TN/43M4+AIto2X+RsvgbXSMjoUz7iuAO3xXOgBw08CBA+1uX79+vb777ju7+7Zt26bJkydLyl31yp3VzF2xfv16u9tPnTrl0XEvuugihyt2HThwIN/v09LStGHDhgKP83TlMVcdPny4wLYjR474dQy+lJ2drffeey/v92PGjJHNZnPry94HoFLuqnbffvutv74l+BE9o2fBhJ7BUzSNpoWy2NhYTZw40eGHETk5ORowYICfRwVfoGW0zJ/q1q3rcF9WVpa2bt3qx9Eg1NAzeuZP9AzeRsNoWLiy99NkTouPjy+0twCAgphTMKcIJnwOB3fRMloWTGgZPEXTaFoo456C8ELP6Jk/8TkcfIWW0TJ/omXwBTpGx8IV9xXAHSwUASDoXH/99brwwgvt7nvzzTftbn/nnXeUlZUlSXrggQcUFxfns/FJUmpqqt3tx48f9+i4ERERDidjR48ezff7/fv3233cyZMnPRqDq+xN5hyNzYq+//57uyubedvo0aN9fg74Hz2jZ8GEnsFTNI2mhbqaNWvq9ttvd7h/7ty5Wrt2rR9HBF+gZbTMn2rVqqWiRYs63P/vv//6cTQINfSMnvkTPYO30TAaFq7s/cSb0y6//HJFRkb6cTQAYH3MKZhTBBM+h4O7aBktCya0DJ6iaTQt1HFPQfigZ/TMn/gcDr5Cy2iZP9Ey+AIdo2PhivsK4A4WigAQdCIiIhyurLtw4ULNnTs337YjR45o3LhxknJX7e3fv7/Px5iRkWF3+7kTLnckJSXZ3X7uJO/cVcC8OQZX2Js8/v33334dgy+9++67eb8eO3as5s+f79HXkCFD7J5n3rx5XACHIHpGz4IJPYOnaBpNCwd33XVXoft//PFHP40EvkLLaJk/RUVFqVWrVg73//77734cDUINPaNn/kTP4G00jIaFq2nTpjnc17VrVz+OBABCA3MK5hTBhM/h4C5aRsuCCS2Dp2gaTQsH3FMQHugZPfMnPoeDr9AyWuZPtAy+QMfoWLjivgK4g4UiAASlPn36qFSpUnb3vfHGG/l+//777+vYsWOSpDvuuMPh87wpJSXF7vbNmzd7fOxixYrZ3V6iRIl8vz916pTdxx06dMjjMbjC3uRz0aJFfh2Dr/z777+aM2eOJOniiy9Wv379dMUVV3j0NWDAAIf//bBifmiiZwXRM/+jZ/AWmlYQTQstLVq0UHx8vMP9//33nx9HA1+hZQXRMt+57rrrHO4798MqwFX0rCB65jv0DN5GwwqiYaFtzZo1WrVqld190dHR6tatm59HBAChgTlFQcwp/I/P4eApWlYQLfM/WgZvoWkF0bTQwj0F4YOeFUTPfIfP4eArtKwgWuY7tAy+QMcKomOhjfsK4C4WigAQlOLi4hyu3jV9+vS8v/QyMzM1YsQISbmrhT3++ON+Gd+5E6vT1q1bp+zsbI+OHRkZWWBbsWLFVKFChXzbHE0oDx06pD179ng0BlcUL168wLb58+f77fy+NHLkyLxfP/jgg145ZlxcnO644w67+yZOnKjjx4975TwIHvQsP3oWGPQM3kLT8qNpoScyMlIXXnihw/3+/DOE79Cy/GiZb910002Kioqyu2/x4sXasmWLfweEkELP8qNnvkXP4G00LD8aFvref/99h/u6deumsmXL+nE0ABA6mFPkx5wiMPgcDp6iZfnRssCgZfAWmpYfTQs93FMQPuhZfvTMt/gcDr5Cy/KjZb5Fy+ALdCw/Ohb6uK8A7mKhCABB68EHH7S78q4xRm+++aYk6fPPP9fOnTslSV27dtVFF13kl7HVqFHD7vb09HRt2LDBo2OfOHGiwLYGDRoU2OZoQilJS5cu9WgMrihZsmSBbRs3bsxbZd5T69evV1ZWlleO5YojR45o4sSJkqTExET17t3ba8e+//77ZbPZCmw/duyYPv30U6+dB8GDnp1Bz+gZrI+mnUHT/N80fyhatKjDffbeeIU10bIzaJlvW1ayZEnddNNNdvcZY/Lmaf5mjAnIeeF99OwMekbPYD007AwaFprXl6ft379f48aNs7svIiJCTz31lJ9HBAChhTnFGcwp+BwO1kXLzqBltAzWR9POoGmh+Z4P9xSED3p2Bj3jczhYFy07g5bRMlgTHTuDjoXmNeZp3FcAT7BQBICgVaJECfXt29fuvs8//1zbt2/XsGHD8rYNHDjQX0PTJZdcomLFitndN3v2bI+ObW8y16FDhwLbSpQoobi4OLvHmDdvnkdjcIW9iaZU+CpWrrjrrrv00ksveeVYrhg/fnzen0WfPn2UmJjotWNfdNFFateund19Y8aM8dp5EDzo2Rn0jJ7B+mjaGTTN/03zh7179zrcV758eT+OBL5Ey86gZb5v2f/93//ZvRFWkt577z2lpaX5fAxnmzhxoq688krl5OT49bzwDXp2Bj2jZ7AeGnYGDQvN68vTXnzxRYc/Kfe2225T/fr1/TwiAAgtzCnOYE7B53CwLlp2Bi2jZbA+mnYGTQvN93y4pyB80LMz6Bmfw8G6aNkZtIyWwZro2Bl0LDSvMU/jvgJ4goUiAAS1xx9/3O4Ku5mZmbrpppu0cuVKSdLll1+uFi1a+G1cERERuvLKK+3umzZtmtvHzcrK0sGDBwts79y5c4FtkZGRatasmd3jfPrpp8rOznZ7HPbG5cill15qd3W2yZMna+HChR6dd/ny5Zo/f77q1q3r0XFcZYzR6NGjJUk2m00PPvig189x//33293+zz//6Pfff/f6+RB49CwXPaNnCA00LRdN82/T/OHEiRN5qwrb07x5cz+OBr5Gy3LRMt+3rEGDBurRo4fdfbt27dKoUaN8PobTVq1apfvuu0+tW7dWRARvDYcKepaLntEzWBMNy0XDQu/68rTff//d4T9+KlmyZL6blgAA7mNOkYs5BZ/DwdpoWS5aRssQGmhaLpoWeu/5cE9B+KFnuegZn8PB2mhZLlpGy2BddCwXHQu9a8zTuK8AnuJvOgBB7YILLtCNN95od9/ZE4UnnnjCX0PKc8cdd9jdPnv2bB09etStY27cuFGZmZn5tjVr1szhZKZly5Z2t+/atUs//PCDW2OwJyMjw+G+6OhouxPp7Oxs3XnnnUpPT3f7vE899ZQiIyPVqlUrt4/hjhkzZmj9+vWSpHbt2qlWrVpeP0eXLl0crh7NivmhiZ7RM3qGUELTaFogmuYP06ZNc/jaREdHq2PHjn4eEXyJltEyf7bsjTfeUFJSkt19L7/8srZu3erzMRw+fFjdunVT+fLlNWjQIJ+fD/5Dz+gZPYOV0TAaFqrXl5K0Z88e3XrrrQ5/StH777+v0qVL+3lUABCamFMwp+BzOIQCWkbLaBlCCU2jaaH6ng/3FIQfekbP+BwOoYCW0TJaBqujY3QsVK8xJe4rgHewUASAoDdw4MBC99eoUUNdunTx02jO6Nq1qypUqFBg+6lTpzR27Fi3jvnvv/8W2PbAAw84fLyjia4kDRgwQCdOnHBrHOc6depUofv79u1rd/t///2nO+64w60VyD7//HP9/PPPuu6661SmTBmXn++Jt99+O+/XvlgpX5KioqIcXhB8/fXX2r17t0/Oi8CiZ/SMniGU0DSa5u+mOXoDzFuMMRo+fLjD/d27d1fZsmV9Ogb4Hy2jZf5qWcWKFTVixAi7+1JTU9WzZ89CV9z21KlTp9S5c2dt3LhR48aNU2xsrM/OhcCgZ/SMnsHKaBgNC7XrS0k6evSounTpou3bt9vd/+yzzxb65wsAcB1zCuYUfA6HUEDLaBktQyihaTQt1N7z4Z6C8EXP6BmfwyEU0DJaRstgdXSMjoXaNabEfQXwHhaKAOBzZ68YVdjqUY40adKk0FWfBgwYoIgI13PmaCzOjjEqKkpPPfWU3X0jRoxw6+Jl2rRp+X5fq1Yt3XbbbQ4fX79+fbVr187uvs2bN2vAgAEuj8Ge1NTUQvfffPPNqlixot19X3zxhXr37l1gNbPCLFq0SPfee68kqX///k49xxjj1LbzWbFihWbNmiVJKlOmjK677jqXj+GsXr162d2ekZGhkSNH+uy8cB89cx49y0XP6Fkwo2nOo2m5Atk0SR6tJuuMMWPG6K+//rK7LzY2Vq+88opPzw/30DLn0bJcgWxZnz59dM8999jd9+eff+rWW2/1yQeh6enpuuWWW7RgwQK99tprIbuyttXRM+fRs1z0jJ4FExrmPBqWK9SvLw8cOKD27dtr8eLFdvf369dPQ4YM8ekYAMCKmFM4jzlFLj6H43O4YETLnEfLctEyWhbMaJrzaFquUH/Ph3sKrIueOY+e5eJzOD6HC0a0zHm0LBcto2XBho45j47lCvVrTO4rgFcZAPCxrl27GklGkvnuu+/cOsbUqVPzjnH2V+nSpc2pU6c8HtfZX127dnX6GNnZ2aZx48Z2j/O///3PpfGcOnXKlCxZMt8xfvjhh/M+75dffrF7/tNfgwYNcur8hw8fNpdddpndY3z77bfnff7IkSMLHUf9+vXNsmXLznucTz/91CQmJhpJ5rrrrnNq7MYY06NHjwLnbNGihdPPP61Lly55z7/nnntcfr6ratasaff1KlasmDl48KDPzw/X0DPn0LNc9IyeBTua5hyalivQTTPGmLvvvtvu99CqVSu3jne2KVOmmKioKIev0zvvvOPxOeAbtMw5tCxXMLQsIyPDtGnTxuH3cv3115sjR464dWx7jhw5kne+nj17eu248D565hx6loue0bNgQ8OcQ8NyBUPD+vXrZ/d78Mb15eLFi02VKlUcvk6PPvqoycnJ8fg8ABCKmFM4hzlFrkDPKfgcDo7QMufQsly0jJYFO5rmHJqWK9BNM4Z7CuAYPXMOPcsVDD3jczjYQ8ucQ8ty0TJaFozomHPoWK5g6Bj3FcBKWCgCgM81bdo07y+q0aNHu3WMnJwcU7t27QJ/8b300kteGdfZX02aNHHpOH///beJiYkpcJzExESzfv16p48zZMiQfM+/++67nX7uXXfdVehEqnfv3oVeRK1YscLUrVvX4fNbt25tsrKy8h6/b9++AsfIyckx11xzTaHjiIyMNNdcc42ZNGmSWb16tTl+/Lg5ceKEWbNmjRk7dmy+P5OEhASzYcMGp1+DDh06FDjfxRdf7PTzjTFm/vz5+Z4/YcIEl57vjjvuuMPh6zVgwACfnx+uoWfOoWf0jJ5ZA01zDk0LfNNOa9++vd3xe/KGW1ZWlhk6dKgpUqSIw9fnrrvucvv48D1a5hxaFjwtM8aY48ePm3bt2jn8Xi644ALz+++/u33805YsWWIuvvhiI8l069bNZGRkeHxM+A49cw49o2f0LDjRMOfQsOBp2NVXX213/J5cX6amppoBAwaYyMhIu8dOSEgwkyZNcvv4ABAOmFM4hzlF4OcUfA6HwtAy59AyWkbLrIGmOYemBb5pp3FPARyhZ86hZ8HTM2P4HA4F0TLn0DJaRsuCFx1zDh0Lno5xXwGshIUiAPhURkaGKVq0aN5fWPfdd5/bx/roo4/y/eUXHx9vDhw44JVxnf1VtGhRly8MPvzwQ7vHuvjii83+/fvP+/z58+ebuLi4vOdddtll5sSJE06f//jx46ZGjRqFTqTKlStnnn/+ebN8+XJz5MgRc+jQITNv3jxz991356103KRJE4fPr169uunYsaOpUqWKqVWrlt1x7N2715QvX77QcTj79c033zj9/RtjTNWqVQscIy4uzuk/y1OnTplatWrle/5nn33m0hjc8fDDDzt8DaKioszSpUt9PgY4h57RM3pWOHpmLTSNplmlaaedOHEib2XYc79atGhhMjMzXTreqVOnzIQJE8yll15a6Pc7YMAAVmQNYrSMllmtZWc7deqU6dmzZ6Hj7NKli1m8eLHLx966dat56KGH8l772267zeVOwr/oGT2jZ/bRM2ugYTTMag07ceKESUpKsjumZs2amfT0dJeO999//5knn3zSFCtWzOH3euONN5pNmza5dFwACDfMKZhTWGVOwedwKAwto2W0rHC0zFpoGk2zStNO454COELP6JnVenY2PofDabSMltEy+2iZddAxOma1jnFfAayGhSIA+NSIESPy/aVVunRpc/jwYbeOlZ6ebsqVK5d3rP79+7s9rnfffbfQicT48eNdPuZbb71l91gXXHCBWbhwocPnffHFF/kmD5dddlmhK3Q5snHjRlOhQgW3J0/PPvusGT9+fKGPiY2NNffee2+hq5n9+++/pkyZMh5N5F577TWXvvfffvvN4bHee++98z4/KyvL3HzzzQWe26ZNG59eKNr74PXcr8qVKzPRCxL0jJ7RM8fomfXQNJpmhaadlpOTY+69995CxxYTE2MaNGhgevXqZYYOHWrGjh1rvvrqK/Pzzz+b2bNnm++++858/PHHZtCgQaZDhw6FvtEmyVStWtVMnz7dpe8X/kfLaJmVWubI2LFjHX7YdPqrZs2a5tlnnzU//vij2blzZ4GbzU6cOGEWL15sRo0aZa6++uq8D2zi4uK8Mkb4Hj2jZ/QsFz2zJhpGw6zUsOzs7PP+FJUiRYqYRo0amd69e5tXXnnFTJw40cyYMcPMnTvXzJw503zzzTdm2LBh5s477zQXXnihw+NERkaa66+/3syfP9+l7xUAwhVzCuYUVphT8DkczoeW0TJa5hgtsx6aRtOs0LTTuKcAhaFn9MxKPXOEz+FAy2gZLctFy6yLjtExK3WM+wpgRSwUAcAn9uzZY55//nkTGRlZ4C+xunXrml9++cWtD5eGDh2a9xehOx8M7d271wwePDjvgqCwv7CHDh3q8qpiX3/9td0VoyIiIsy1115r3nvvPTNz5kwzdepUM3z4cNOiRYu8x9hsNvP44497tNretm3bTIMGDVyaOEVFRZl33nnHGGMcTuZSUlLMM888Y/bu3evUOLZu3WoaN27s8iQuMjLSpcnXoUOHzJQpU0zZsmXP+2e5fv36Ait2bdq0ybz33numfv36Dp9/2WWXmU8++cSsW7fOKx+I5uTkmAMHDpiZM2eatm3bOvW6JCUlmUGDBpmlS5e6tBocvIOe0TN6Zh89syaaRtOs0LTt27ebzZs3m+XLl5sJEyaYyy67zOUxu/MVFRVlWrdubSZMmMCq0kGOltEyK7TMFbt27TJ33nmniYiIcOp7iYiIMMnJyaZMmTImPj7e7mO6du1qVq9e7faY4B/0jJ7RM3pmZTSMhlmhYZs3bzarV682CxcuNB9++KFp2rSpy2N29fu74oorzOuvv262bt3q/B8sAIQx5hTMKawwp+BzOJwPLaNltMw+WmZNNI2mWaFp3FMAZ9AzemaFnrmCz+HCEy2jZbSMllkdHaNjVugY9xUgFLBQBACvufrqq02dOnVMhQoVjM1mO+9fbPHx8ebCCy80derUMaNGjXLqHIcPHzYJCQnmpptu8tm4zv6y2WymYsWKpnbt2ubqq6926ny7du0yffv2NUWKFHH6HJ06dTJ///23099TYdLS0sxzzz3n8ELo3In1ggUL8p577mSuUqVK5u233zbHjh1zeRyZmZnmzTffNMWLF3fqdbjiiivMsmXLnD6+q3+Wp7/69u1rjDFmyJAhLj83IiLCTJo0yeXX4mzemBR+/PHHHo0B50fPctGzXPTMPnpmHTQtF03LFexNM8aYKlWqeKUx53YvLi7OFCtWzJQrV87Uq1fPtG/f3vTp08e89tprZtq0aW6vTgz/oGW5aFkuK7TMHZs3bzZPP/20KV++vFvnT0pKMr169TKLFi3yaBzwLXqWi57lomf0zGpoWC4alssKDSvsH0C58xUVFWUSExNNqVKlTK1atUz79u1N3759zZtvvmlmz55tUlNTXX4dASAcMafIxZwiV7DPKfgcDo7Qsly0LBcts4+WWQdNy0XTcgV704zhngI4Rs9y0bNcVuiZO/gcLvTRsly0LBcto2VWRMdy0bFcVugY9xUgFNiMMUYA4AXr1q1TRkaGW88tXbq0Spcu7dRjt2zZomLFiiklJcXn4zpbkSJFVKNGDacfv2fPHn3zzTeaPXu2Vq1apV27dunUqVMqWrSoSpYsqfr16+vyyy/XTTfdpMqVK3s8vnMdPHhQEydO1IwZM/TPP/9o//79ioyMVKVKldSsWTPdfPPNuu666xQREZH3nI8//lh9+/ZVvXr19MQTT6hnz56Kjo72aBynTp3SN998o2nTpmnZsmXasWOHMjIyVKpUKVWoUEGtWrXSDTfcoMsvv9yl465atcqt8aSkpKhChQrat2+f9u3b5/LzK1asqOTkZLfOLbk/bm+OAedHz/KjZ7noWX70zDpoWn40LVewNg1whJblR8tyhXLLVq5cqV9//VX//POP1q5dq23btunYsWM6ceKEoqOjVaxYMSUnJ6tGjRpq0KCBmjZtqvbt2ysmJsYr54fv0LP86FkuekbPrIKG5UfDcoVywwAAvsGcIj/mFLmCdU7B53BwhJblR8ty0bL8aJl10LT8aFquYG0aUBh6lh89yxXKPeNzuNBEy/KjZbloGS2zEjqWHx3LFcodA4IBC0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABYRMT5HwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBgwEIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFsFCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbBQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWwUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFsFCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbBQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWwUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFsFCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbBQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWwUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFsFCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbBQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWwUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFsFCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbBQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWwUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFsFCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbBQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWwUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFsFCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABbBQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWERXoAQBAKDl06JAOHjyow4cPq2jRoipevLhKly6tyMjIQA8NANxG2wCEAloGwKroF4BQRNsAhAp6BgAA5syZo4SEBDVu3DjQQ8nnwIED+vfff7Vx40YdOnRIJ06ckDFGd9xxh6pWrRro4QGwAPoGIBTQMgBWRb8AhCLaBiAU0DIAwYiFIgDAA1lZWZo8ebJ++OEHzZ07V7t37y7wmKJFi6pFixa66qqrdPfdd6t48eJOH3/Xrl3atGmTx+O02WyKiopSVFSU4uLilJCQoGLFiqlYsWIeHxtA6PF12yRp3759WrdunbeG7BVNmjRRTExMoIcBwEtoGQCr4joTQChibgYgVNAzAABw2vTp0/XCCy9o8eLF6tOnjz7++OOAjic7O1vz5s3Td999p1mzZmn16tX59ickJKhatWq64YYbCjzvzz//9Pj8NptNERERioqKUkxMjIoWLarExESVKFGCRbQAiwmVvp32+++/+2OYTqtcubIqV64c6GEAIY+W+RYtA3wnVPrFtSaAs4VK205jbgaEJ1rmW7QM8IzNGGMCPQgAsKJJkybpueee0+bNm51+Tnx8vB588EENGTLEqZsqP/74Y7388svKyMjQ3r17lZGR4cmQCyhSpIjKli2rKlWq6KKLLlK9evXUpEkTNW7c2Cs3fX788cfq27evR8eIjo5WTEyMYmNjVapUKZUpU0ZVq1ZVvXr11LhxY7Vo0ULR0dEejxVALn+0TfJOH7xt8+bNeaslVq1aVVu3bnX7WBEREYqJiVFMTIwSExNVpkwZlStXThdffLEuueQStW7dWhUqVPDSyAGci5ZVlUTLACviOvP8uM4ErIe5WVVJzM2AUEDPqkqiZwAAzJo1S88//3y+f/ASyJtCjx49qrFjx+rdd9/Vtm3b8raXLFlS1157rTp06KCmTZuqevXqdp9/7NgxNWzYUMYYHTx4UEeOHPHq+Gw2m4oXL67KlSvrggsuUJ06ddSwYUNddtllKl26tNfO4YnT85PY2FgVK1ZMZcqUUfny5VWnTh3Vr19frVu3VsmSJb0yViCYhVrfTvO0Ed72wgsvaPDgwZKkwYMH68UXX/ToeEWKFFFMTIzi4uJUunRplSlTRtWrV1e9evXUtGlTNW7cWBEREV4YOWANtMw/aBngfaHWL641udYEpNBr22nMzZibIbzQMv+gZYCHDADAJadOnTJ9+/Y1kvK+YmNjzb333mt++ukns3v3bpOenm4OHz5s/v77bzNs2DBTtWrVfI+vX7++2bBhg0vnTU9PNz/++KOpVatWvmP54is2NtZ06tTJjB8/3hw/ftzj1ywjI8Ns2rTJjBw50pQtW9arY01KSjJ33HGHWbZsmcfjBMKZv9s2fvx4n7fM1a/NmzcXGGdqaqqZM2eO6d69u9fP16BBAzN69Ghz4sQJL/9pAuGLltEywKq4znQd15lA8GNuxtwMCBX0jJ4BAGCMMXPmzDEtW7a0+3dXnz59/D6enJwcM378eFOmTJl8Y6lZs6b59NNPTXp6ulvHXb16tenVq5df5hj16tUzzz33nMvvaTl6PQ4ePGimT59u2rZt69VxRkREmMsvv9x8+umnJiMjw+OxAsEm1PsW6Oupc79eeOGFAmNMS0sza9asMa+++qpJSkry6vlKlixpHnroIbNu3Tov/QkBwYmW0TLAqkK9X6dxrVnwi2tNhLJQb1ug52LMzQD/oGW0DLASmzHGCADglOzsbF1//fWaOnVq3ramTZvqq6++UpUqVRw+LzMzU48++qhGjx6dt61y5cqaP3++Kleu7NIYUlNTVbduXe3cudPu/sqVK6tx48Zq1KiRGjVqpPLly6tEiRIqWbKkcnJydPz4cW3fvl3r1q3TH3/8oVmzZum///5zeL6UlBQ99dRTeuihhxQXF+fSWO3Zvn27Lr30Uh04cMDu/ri4ONWrV0+XXHKJypYtq2LFiunYsWNav3695s+frx07djg8dq9evTRs2DCvrQYLhItAtM3eT0a84YYbdNttt6levXoqU6aM4uPj7f4kZ0c/VbFKlSrasmWL3fNlZWXp8OHDWrt2rWbOnKkPPvhAu3fvzveYs38yoj1PPfWUXn/9dYf7K1eurIYNG6p69eoqVaqUjDHau3evli9frgULFigrK8vu8ypUqKB33nlH3bt3d3hsAOdHy3LRMsB6uM7kOhMIRczNcjE3A6yPnuWiZwCAcPbHH3/o+eef16+//urwMf7+6WF79uzR7bffnm9MsbGxGjJkiB599FFFRUV5fI7+/ftr1KhRdvclJCTo0ksvzXu/qEaNGipRooRKlCih+Ph4nThxQvv379fGjRu1dOlSzZ07V7/99psyMzPtHs9ms6l79+565ZVXdNFFF3k8dmOMbrvtNn3++ecOz1e9enU1bNhQVapUUcmSJZWVlaVdu3Zp6dKlWrRokRzdTlerVi2NGTNGrVu39nicQKCFS9/O/emIF154oR5++GFddtllqlSpkooVK6YiRYrY/SmKjn6y4m+//Wa3A8YYnThxQtu2bdOff/6pTz75RPPnz8/3mLN/OqI9K1asUNOmTZWRkWF3f1JSkurXr6+6deuqVKlSSkxMVGpqqtauXas5c+Y4fJ88MjJSDz30kIYMGaKEhASH5weshpbRMsCqwqVf5+Jak2tNhLZwaRtzs1zMzRCqaBktAywpEKtTAIBVPfLII/lWkGrevLlLP9Hq3J86VrduXbdWAR00aJDDVa3s/WSv81mxYoW56667THR0tMPjVqhQwfz0008uH9uegQMHOjzPpk2bHD4vJyfH/Prrr+byyy93+PyKFSuapUuXemWcQLgIRNvO/smIMTEx5ttvv3X6fI5+qmKVKlWcPsbhw4dN586dXernkSNHTGRkpN1z9+7du9DnHjhwwAwePNjEx8c77NdDDz1kMjMznf4eAORHy2gZYFVcZ3KdCYQi5mbMzYBQQc/oGQAgfC1cuNB06NDB4d9PZ3/586eH/frrr6Z06dL5zn/BBReYlStXevU8GzZscPj92vvJXudz8OBB884775iKFSs6PG5UVJQZMGCAV36S6r///uvwPM8//3yhz92+fbt59NFHTVRUlN3nR0REmKFDh3o8RiBQwq1v516fnDp1yq3nnv3122+/OX2M0aNHmyJFirjU0JtuusnhuXNychw+Lysry3z77bembt26Dp9fp04ds3HjRqfHDwQrWkbLaBmsKtz6dS6uNbnWRGgKt7YxN2NuhtBEy2gZLYOVRQgA4JRly5bp3Xffzft9XFycPv/8c8XHxzt9jBEjRiglJSXv96tWrdIbb7zh8lgaNWrk8nMKc8kll2jcuHFas2aNOnToYPcxO3fu1LXXXqvnnntOOTk5Hp2vWbNmDvc5Wlns9L62bdtq/vz5GjJkiN3H7NixQ61bt9bSpUs9GiMQLoKhbR9//LFuuOEGpx/vDcnJyfr+++/VqVMnp5+TlJSkiy++2O6+wtolSSVKlNALL7ygFStWqEaNGnYf8+677+qOO+5wuGo0AMdoGS0DrCoY+nUa15lcZwLeEgxtY26Wi7kZ4Bl6Rs8AAOErLS1N1157rWJiYjRhwgQtXrxYH3/8sUqUKBHQcX3yySe65pprtG/fvrxtTZs21eLFi1W3bl2vnqt69eoqVqyY145XvHhxPfLII9q4caOGDBmi2NjYAo/JysrSW2+9pZYtW2r79u0ena927dpKTEy0u+9885OKFStq+PDh+uOPP1SmTJkC+3NycvT000/rmWee8WiMQCCEc986duyojz/+2G5/fOn+++/XhAkTXHqOu+93R0ZG6oYbbtDSpUt133332X3Mv//+qyuvvFJbtmxxaUxAMKFltIyWwarCuV+nca3JtSZCTzi3jblZLuZmCAW0jJbRMlgdC0UAgJMGDRqU7x+u9OzZU1WrVnXpGAkJCerTp0++bSNGjFB2drZLx6lYsaJLj3fWBRdcoBkzZuh///ufoqOjC+w3xujll19Wr169PPpHPJUqVfJkmLLZbBo0aJBefPFFu/uPHTuma665Rrt37/boPEA4CHTbrrvuOvXo0cOl83mLzWbThx9+qOLFizv9HE/7deGFF2ru3LkqX7683f2TJk3SoEGDPDoHEI5oGS0DrCrQ/Tob15lcZwLeEui2MTfLj7kZ4D56Rs8AAOErNjZWmzdv1vfff69evXqpcePG6tOnT75FpPxt6NChuuOOO5SZmZm3rUWLFvr1119d+jvbFb54v6hIkSIaNGiQFi1apAsvvNDuY/766y81b95cmzZt8uhcno6/SZMmmj17thISEuzuHzp0qD744AOPzgH4W7j2LTY2VmPHjj3vP97zlVtuuUW33nqr04/39PqqSJEiGjNmjPr27Wt3/65du9ShQwedOHHCo/MAgULLaJlEy2BN4dqvc3GtybUmQku4to25WX7MzWB1tIyWSbQM1sZCEQDghMOHD2vWrFn5trVr186tY7Vu3Trf7/ft26d58+a5dIyiRYu6dW5nPfzww5o6dari4uLs7v/ss8/0wAMPuH18R6upuuq5555T8+bN7e47cOCA7r77bq+cBwhVwdC2Rx991K3zeUvZsmV11113Of14b/SrbNmy+vDDDx3uf/311/XXX395fB4gXNAyWgZYVTD062xcZ+biOhPwTDC0jblZQczNANfRM3oGAIC9f7DRpUuXgNww+cYbbxT4iaLVq1fXDz/84PAflniDL98vqlevnhYtWqQmTZrY3b9r1y61b99eu3btcvsc3pif1K5dW2+++abD/Y8//rg2b97s8XkAfwrHvnXv3t1niyU769lnn3X6sd56v3v06NGqUqWK3X3r1q3T//3f/3nlPEAg0LLAoGWA58KxX+fiWpNrTYSecGwbc7OCmJvB6mhZYNAywDtYKAIAnDB//vx8q3BJUokSJdw6lr3JxPr16106RmxsrFvndsXVV1+tH3/80e5PfJWk999/X++8845bx46JifFgZGfYbDYNHTrU4f6ffvpJCxYs8Mq5gFAU6LYlJCQUuFE+EDp16uT0Y73Vr2uuuUatWrWyuy87O1vPPfecV84DhANalouWAdYT6H6di+vMXFxnAp4JdNuYmzE3A7yFnuWiZwAA5Fe0aFGVLl3ar+ccPXq0nnzyyXzbUlJSNG3aNJUsWdKn5/b1+0UpKSmaNWuWGjRoYHf/5s2b1bVrV2VlZbl1fG/NT/r166fq1avb3Xf8+HG9+uqrXjkPEEih3rfOnTt79XjuqF27tsMb0M/lrX7FxsZq8ODBDve///772rp1q1fOBQQDWuZ7tAzwjVDv17m41szFtSZCXai3jbmZfczNEGpome/RMsA7WCgCAJywY8eOAtvcXU3U3updhw4dcukY/lqRrF27dho1apTD/U8//bT+/fdfl48bEeG9v35at26tiy++2OH+kSNHeu1cQKgJdNsaNGigyMhIt87nTY0aNXK6q97sV2E/MXvWrFlau3at184FhDJalouWAdYT6H6di+vMM7jOBNwX6LYxN2NuBngLPctFzwAAKKh48eJ+O9fs2bP18MMPF9g+adIk1axZ0+fn98f7RUlJSfrhhx9UpkwZu/uXLFmiF1980a1je2t+EhkZqXvuucfh/okTJ+rIkSNeORcQSKHct0aNGnn9mO5w9JOtz+XN66uePXsqJSXF7r7s7Gy99957XjsXEAxome/RMsA3Qrlf5+JaMxfXmggHodw25mbMzRA+aJnv0TLAcywUAQBOOHz4cIFtixcvdutYx44dK7DN0RtRwaBfv3668cYb7e5LS0tTr169lJOT4+dR5delSxeH+3799Vc/jgSwlkC2rVSpUmrTpo1b5/K2xMREderUyWsrDDqrY8eODn+atpR70zuA86NluWgZYD1cZ3KdCYQi5ma5mJsB1kfPctEzAAAKiouL88t5tm/frh49eig7Ozvf9ltvvVUdO3b0yxj8pVKlSho7dqzD/UOHDtWSJUv8OKKCCnuvKD09Xb///rsfRwP4Rqj2rXnz5qpUqZLXj+uOtm3bqmLFin49Z0xMjK6++mqH+7m+QqihZb5HywDfCNV+BRLXmkDghWrbmJsxN0N4oWW+R8sAz7FQBAA4ITk5ucC2L774Qunp6S4fa/369QW2XXHFFe4My29GjRqlokWL2t33999/66uvvvLziPJr2rSpw3379+/X9u3b/TgawDoC2bZrr71WL730ksvn8ZWpU6eqXLlyfj1nYmKiatWq5XD/smXL/DgawLpo2Rm0DLAWrjO5zgRCEXOzM5ibAdZGz86gZwAA5BcbG+uX8/Tu3Vv79+/Pt6148eIaPny4X87vb126dFG3bt3s7svOztagQYP8PKL8atWqpaSkJIf7mZ8gFIRq3/78808VKVLEJ8d21f3336+7777b7+ct7P3u5cuXB3zhZsCbaJnv0TLAN0K1X4HGtSYQWKHaNuZmzM0QXmiZ79EywHMsFAEATqhdu3aBbYcPH9Ybb7zh8rHmzp2b7/ctWrTQRRdd5PbY/KFs2bJ65JFHHO5/6aWXAjoBuuCCCwrdv2/fPj+NBLCWcG9bMCisX7QLcA4tCzxaBrgn3PvFdSYQmsK9bcGAuRngHfQs8OgZACBYRUT4/larDz/8UHPmzCmw/eWXX1bp0qV9fv5AGTJkiMPX9+eff9aff/7p5xHlV61aNYf7mJ8gFNC30FXY9VVWVpYOHz7sx9EAvkXLQhctQ6ijX77DtSYQOLQtdDE3QzihZaGLliGUsFAEADihWbNmdn/S6SuvvKJVq1Y5fZy0tLQCPxX1+eef93h8/vDQQw8pKirK7r7Vq1dr6tSpfh7RGQkJCYXuz8rK8tNIAGuhbYFXWL9oF+AcWhZ4tAxwD/3iOhMIRbQt8JibAd5BzwKPngEAglVkZKRPj3/w4EENHDiwwPaKFSvqrrvu8um5A+3iiy9Wp06dHO5/8803/TiagpifINTRt9DF+90IJ7QsdNEyhDr65TtcawKBQ9tCF3MzhBNaFrpoGUIJC0UAgBPi4+PVvXv3AtvT09PVqVMn7dy506njDB8+XAcOHMj7fc+ePXXNNdd4bZy+VLZsWXXu3Nnh/i+++MKPo8nv6NGjhe4vU6aMn0YCWAttC7zC+kW7AOfQssCjZYB76BfXmUAoom2Bx9wM8A56Fnj0DAAQroYNG2b3p1Q9/PDDKlKkSABG5F/9+vVzuG/69Ok6duyYH0eTH/MTwDPh3rdAKqxfERERKlmypB9HA1gbLQscWgZ4Jtz7xbUmEJrCvW2BxNwM8B5aFji0DKGEhSIAwElPP/203ZXAtm/frrZt22rDhg2FPn/ZsmV66aWX8n5/6aWXaty4cV4fpy917drV4b4ff/xRaWlpfhzNGXv37nW4z2az8UYZUAjaFliF9atcuXJ+HAlgbbQssGgZ4D76xXUmEIpoW2AxNwO8h54FFj0DAISjgwcPauTIkQW2x8TEqG/fvgEYkf9dddVViouLs7svLS1N33//vZ9HdAbzE8B99C2wCutX6dKlff6TMYFQQcsCi5YB7qNfXGsCoYi2BRZzM8A7aFlg0TKEEhaKAAAn1axZU88884zdfevWrVPz5s01d+5cu/t37typ66+/Pu8fuFx22WWaNWuW4uPjfTZeXyjsJ50dP35c8+fP9+NozliwYIHDfY0bN3b45h4A2hZIJ0+e1PLlyx3uv/LKK/03GMDiaFng0DLAM/SL60wgFNG2wGFuBngXPQscegYACFdjxozR8ePHC2y/9tprw+YnV8XFxalVq1YO90+fPt2Pozljw4YN2rdvn8P9zE+AwtG3wCrs/W76BTiPlgUWLQPcR7+41gRCEW0LLOZmgHfQssCiZQglLBQBAC54/vnn1a5dO7v7Dh48qKuuukofffRRvu0HDhzQVVddpe3bt0uSevTooZkzZyolJcXn4/W2MmXKqGLFig73F3bjpi9NnTrV4b5OnTr5cSSANYV72wLll19+UUZGht19cXFxatOmjZ9HBFgbLQsMWgZ4Ltz7xXUmEJrCvW2BwtwM8D56Fhj0DAAQjowxGj9+vN19PXr0yPt1Tk6OfvvtNw0aNEgtW7ZU1apVFR8fr+TkZNWpU0e9evXSjz/+qMzMTH8N3esaN27scF8wvldUtWpV1a5d24+jAayFvgVWenq6Zs6c6XA/73cDzqFlgUXLAPfRrzO41gRCB20LLOZmgHfQssCiZQg1UYEeAABYSVRUlL799lu1atXK7ptCmZmZuuuuu7RmzRq99tpr2rdvn6666iqtXr1aMTExGjZsmPr37+//gXtRgwYNtGPHDrv7AvFG2YwZM7RixQq7+2JjY3XnnXf6eUSA9dC2wHjttdcc7uvbty8/pRpwES0LDFoGeI5+cZ0JhCLaFhjMzQDvo2eBQc8AAOFo3rx52rRpU4HtMTEx6tSpk44dO6Zx48Zp5MiRdh936tQpHTlyRP/9958+/fRT1axZU6NGjXK46FUwa9CggcN9a9euVVpammJjY/02noyMDL399tsO9z/wwAN+GwtgRfQtsMaPH+/wp1SXLl1a3bt39/OIAGuiZYFFywD30a8zuNYEQgdtCyzmZoB30LLAomUINRGBHgAAWE1SUpJmzpyphg0bOnzMm2++qS5duujKK6/UqlWr1LhxYy1dujQkbgitXLmyw31r1qzx40ikI0eO6KGHHnK4/6GHHip0vADOCPe2+duoUaO0cOFCu/sSEhL0/PPP+3lEQGigZf5FywDvCfd+cZ0JhKZwb5u/MTcDfIee+Rc9AwCEq++++87u9pYtW+rHH39UrVq19Pjjj2vTpk2KjIxU+fLlVbZsWYfHW7t2rdq3b2/JvzsLe+8lOztb69ev9+NopGeffVbbt2+3u69SpUqFvpcEgL4F0rZt2zRo0CCH+1944QUlJCT4cUSAddGywKFlgGfo1xlcawKhg7YFDnMzwHtoWeDQMoQiFooAADeULFlSs2fPVvPmzR0+Ztq0adqwYYNatWqlv/76S3Xq1PHjCH2nYsWKDvcdPnzYb+M4efKkbrnlFm3YsMHu/gYNGjDBBVwUzm3zpxkzZujxxx93uH/MmDEqU6aMH0cEhBZa5h+0DPC+cO4X15lA6ArntvkTczPA9+iZf9AzAEA4+/XXX+1uX7BggXr27Kk9e/bopptu0k8//aRjx45p586d2r17tw4dOqSxY8eqSpUqdp8/ZMgQy/3jksLeK5L8+37Rhx9+qGHDhtndFx0drU8++cSvP3EWsCL6FhgHDhzQ9ddfr4MHD9rdf8011+jee+/186gA66JlgUHLAM/RrzO41gRCB20LDOZmgHfRssCgZQhVLBQBAG5KTk7W7NmzdcMNNxT6uLlz5+rBBx9UZmamn0bmW4mJiQ73HTlyxC9jWL9+vdq0aaOff/7Z7v5KlSpp6tSprOAFuCFc2+YP2dnZ+t///qfOnTsrIyPD7mNeeukl3X777X4eGRB6aJnv0DLAt8K1X1xnAqEtXNvmD8zNAP+iZ75DzwAA4W7fvn1atWqV3X0nT55Up06dtHLlSn311Vfq2LGj4uLi8vanpKSoX79++ueff9SxY0e7xxg5cqTGjRvnk7H7QmHvFUn+eb8oLS1NzzzzjO6++267+202mz744AO1adPG52MBrIy+BcbSpUt12WWX6e+//7a7v379+vrqq68UGRnp55EB1kTLAoOWAZ6jX/lxrQmEBtoWGMzNAO+iZYFByxDKWCgCADwQFxenr7/+WnfddVehj3v//ffVpk0b7du3z08j852zJ5jnOnr0qMfHf+GFFzRmzBjNnj1bW7Zs0cmTJ5WVlaU9e/bol19+0T333KO6detq0aJFdp/frl07LVq0SBUqVPB4LEC4Cse2eWrBggUaPHiwJk+erBUrVujAgQPKysrS8ePHtWbNGo0YMUINGjTQo48+qqysrALPj4+P1/jx4/Xcc88FYPRAaKJlrqNlQHAIx35xnQmEvnBsm6eYmwHBiZ65jp4BAHB+K1assLs9Ojpa33//vaZNm6batWsXeoykpCR99913atq0qd39Dz/8sNauXevxWP2hsPeKJM/fL/rhhx/06quvasqUKfr33391+PBhZWdn68iRI/rnn380dOhQXXzxxRo6dKjd55csWVLTpk1Tnz59PBoHEA7om/c98sgjGjdunObPn6/t27crLS1NmZmZ2rlzp6ZMmaIePXqoSZMmWr9+vd3n9+jRQ/Pnzz/vP5QEcAYt8z5aBvgH/cqPa00gNNA272NuBvgfLfM+WoZwFxXoAQCA1c2dO1dTp05VVFSUGjdurL/++svu4xYsWKAWLVpo+vTpqlGjhp9H6T05OTkO90VFef7XyoQJEzRhwgSXn1etWjUNGDBA999/vyIiWAcJ8FS4tc1TGzZs0Isvvujy8yIjI9WtWze9+OKLqlWrlg9GBoQ3WuYaWgYEj3DrF9eZQHgIt7Z5irkZELzomWvoGQAA57dmzRq726tUqaIuXbo4fZyYmBhNnDhRl1xyidLT0/PtO3XqlF5++WVNnDjRo7H6Q2HvFUmev1/0999/O/yJYYWJjY3V7bffrsGDB7OgKOAk+uZ9I0aMcOt5devW1dNPP61bb73VyyMCQh8t8z5aBvgH/cqPa00gNNA272NuBvgfLfM+WoZwxx3OAOCBYcOG6aqrrtLhw4f1zTffaMGCBXryyScdPn7Tpk1q0aKFwxtHreDUqVMO98XHx3t8/HfeeUdPPPGE2rdvX+gbXjabTXXq1NG9996rb7/9VuvXr9eDDz7IP94BvCAc2+aptm3b6u2339Ztt92mBg0aFNrD5ORkdezYUa+88oo2btyoL7/8kpvdAR+gZa6jZUBwCMd+cZ0JhL5wbJunmJsBwYmeuY6eAQBwfo5+glXVqlVdPlaNGjV0xx132N33xRdfaOvWrS4f098Ke69I8vz9oltuuUVDhw7VTTfdpDp16qhIkSIOH1u6dGldf/31evvtt7Vt2zZ98MEH/MMdwAX0zfs++eQTPfzww2rVqpXKlCnj8HGRkZG69NJL9fDDD2vmzJlauXIlN7wDbqJl3kfLAP+gX/lxrQmEBtrmfczNAP+jZd5HyxDuPP+RfAAQhrKzs9W/f3+99957stls+uSTT/JW7XrttddUu3Zt9evXTxkZGQWee+jQIXXo0EEzZsxQixYt/D10j6WmpjrcV9hkylldu3bNN7lNT0/Xrl27dPjwYaWnpysxMVEpKSkqUaKEYmNjPT4fgDPCuW2eqlSpkh577LF82w4cOKC9e/fq+PHjioyMVEpKSt6XzWYL0EiB0EfL3EfLgMAK535xnQmErnBum6eYmwHBhZ65j54BAHB+Bw8etLvd3X8k8sQTT+iDDz4o8NNSs7Ky9N133+nRRx9167j+Uth7RZLn7xfVqlVLTz31VN7vjTHat2+f9u3bp5MnTyo6OjpvbpKcnOzRuYBwR9+8r3fv3urdu3fe70+ePKldu3bpyJEjyszMVFJSUt773YX940QAzqNl3kfLAP+gX/lxrQmEBtrmfczNAP+jZd5HyxDuWCgCAFyUnZ2tHj166Ouvv5YkPfLII7rtttvyPaZ3796qUqWKrr/+ertvLB09elQdOnTQggULVK9ePX8M22u2b9/ucF+VKlW8fr6YmBhVq1ZN1apV8/qxAZwR7m3zhZIlS6pkyZKBHgYQVmiZ99EywD/CvV9cZwKhKdzb5gvMzYDAoGfeR88AAMjv2LFjdreXLVvWreNdeOGFatWqlX777bcC++bMmRP0N4UW9l6R5P33i2w2m8qUKeOVBUsB5EfffC8+Pl4XXnhhoIcBhDRa5nu0DPAN+pUf15pAaKBtvsfcDPA9WuZ7tAzhJiLQAwAAKzHGqE+fPnk3hF5wwQV67bXX7D62VatWmj9/vsqXL293/7Fjx9S5c2cdPnzYZ+P1hY0bNzrcV6tWLT+OBIC30DYAoYCWAbAq+sV1JhCKaBuAUEHPAACAP5w8edLu9hIlSrh9zM6dO9vdvnDhQreP6S+FvVeUkpLCP7IBLIS+AQgFtAyAVdGv/LjWBEIDbQMQCmgZAG9joQgAcMGrr76qSZMm5f3+lVdeUUxMjMPH161bV/Pnz1fVqlXt7t+6dasGDhzo7WH61N9//+1wX9OmTf04EgDeQtsAhAJaBsCq6BfXmUAoom0AQgU9AwAA/hAdHW13e1JSktvH7NChg93t+/fvV05OjtvH9Ydly5Y53NekSRM/jgSAp+gbgFBAywBYFf3Kj2tNIDTQNgChgJYB8DYWigAAJy1cuFDPP/983u8rVKig7t27n/d5F1xwgX777TdVrlzZ7v4PP/xQS5cu9do4fWnNmjVKTU21u89ms6lly5b+HRAAj9E2AKGAlgGwKvrFdSYQimgbgFBBzwAAgL8ULVrU7vYiRYq4fcwaNWrYfX52drbD92KCxV9//eVwX6tWrfw4EgCeom8AQgEtA2BV9Cs/rjWB0EDbAIQCWgbA21goAgCc9NBDD+VbRevGG29UVFSUU8+tWrWqfvnlF5UsWdLu/mHDhnlljL42bdo0h/saNWqkChUq+HE0ALyBtgEIBbQMgFXRL64zgVBE2wCECnoGAAD8pUyZMna3p6enu33MqKgo1axZ0+6+jIwMt4/ra/v379fixYsd7u/atasfRwPAU/QNQCigZQCsin6dwbUmEDpoG4BQQMsAeBsLRQCAE+bMmVPgDaJ27dq5dIyaNWvqm2++sXsj6XfffadTp055NEZ/mDx5ssN9PXv29ONIAHgDbQMQCmgZAKuiX7m4zgRCC20DECroGQAA8Kfq1avb3X7o0CGPjuvoZtMSJUp4dFxf+uabb/It1nW2evXqqU6dOn4eEQBP0DcAoYCWAbAq+nUG15pA6KBtAEIBLQPgbSwUAQBOmDRpUoFtdevWdfk4LVu21ODBgwtsT09P1x9//OHO0Pzmn3/+0cKFC+3ui4uLU9++ff08IgCeom0AQgEtA2BV9IvrTCAU0TYAoYKeAQAAf3I0z9i8ebNHx01MTCywLSkpSdHR0R4d15fGjh3rcN+DDz7ox5EA8Ab6BiAU0DIAVkW/zuBaEwgdtA1AKKBlALyNhSIAwAnz588vsK1s2bJuHWvgwIGqUqVKge0bNmxw63j+8sorrzjcd//99yslJcWPowHgDbQNQCigZQCsin5xnQmEItoGIFTQMwAA4E/NmzdXRETBW7hWrVrl0XGLFi1aYJs7i1/5y/Tp0/X333/b3VehQgX17t3bzyMC4Cn6BiAU0DIAVkW/cnGtCYQW2gYgFNAyAN7GQhEA4IQdO3YU2BYbG+vWsYoUKaI77rijwPZDhw65dTx/WLx4sSZPnmx3X3Jysp599lk/jwiAN4R72wCEBloGwKrCvV9cZwKhKdzbBiB00DMAAOBPSUlJatasWYHty5cvV0ZGhtvHPX78eIFtV155pdvH86Xs7Gw9/fTTDve/9NJLiouL8+OIAHgDfQMQCmgZAKuiX1xrAqGItgEIBbQMgLexUAQAOMEYU2Bbamqq28dr2bJlgW3JycluH8+XMjIydOedd9p9DSTprbfeUvHixf08KgDeEM5tAxA6aBkAqwrnfnGdCYSucG4bgNBCzwAAgL/dcsstBbalpaXp999/d/uY9uYvbdu2dft4vvT6669rxYoVdve1atVKffv29fOIAHhLuPcNQGigZQCsKtz7xbUmEJrCvW0AQgMtA+BNLBQBAE4oW7ZsgW179uxx+3gVKlQosK1cuXJuH8+X+vfvr1WrVtnd16VLF915551+HhEAbwnntgEIHbQMgFWFc7+4zgRCVzi3DUBooWcAAMDfbr31Vrs/xXTq1KluH3PNmjX5fl+1alW1b9/e7eP5yty5czV48GC7+5KTk/XRRx/JZrP5d1AAvCac+wYgdNAyAFYVzv3iWhMIXeHcNgChg5YB8CYWigAAJzRt2rTAtj///NPt46WlpeX7fUREhC677DKnn5+Tk+P2uV0xdOhQffDBB3b31a5dWxMnTnTruI5+auz59gHwrmBrmxU4ahTtAgKHlrmOlgHBIdj6xXUmAG8ItrZZAXMzIDjRM9fRMwAAPFOqVCm7P8n0s88+U1ZWlsvH27FjR4GFru6//35FRDh/q5g/3i9atWqVbrzxRmVmZhbYFxkZqS+++EIXXHCBW8dmfgIEh2DsW7Dj/W4g+NAy19EyIDgEY7+41gTgqWBsW7BjbgYEH1rmOloGOBY6/08HAB/q2rVrgW0//vij28dbu3Ztvt9ffvnlKl26tNPPT09Pd/vcznrppZf0zDPP2N13wQUX6KefflJSUpJbx87IyHBrHwDvCra2OctRA/3RD0fnoF1A4NAy19EyIDgEW7+4zgTgDcHWNmcxNwNwLnrmOnoGAAgX9m7Q9NY/cnn22WeVmJiYb9vevXs1efJkl4/1zTff5Pt9hQoVdP/997t0DF+/X7R06VK1adNGhw4dKrAvIiJCH374oTp06OD28ZmfAK4Jp745o7AG+rojvN8NuI+W5UfLAOsIp35xrQmEj3BqmzOYmwHWRMvyo2VAcGKhCABwQvfu3QusHDp16lStX7/ereN99dVX+X4/cOBAl55/+PBht87rjGPHjqlHjx564YUX7O6vXbu25s2bpypVqrh9jpMnTzrcd/z4cbePC8A1wdY2Z504ccKl7d7kqF+0CwgcWuY6WgYEh2DrF9eZALwh2NrmLOZmAM5Fz1xHzwAA4cLeTyP11g2I5cuX15AhQwpsHzx4sN3zOpKdna33338/37Z33nmnwA2n5+PL94s++eQTXXnllTpw4ECBfTExMfrss8/Up08fj87B/ARwTTj1zRmFXUf5+hqL97sB99Gy/GgZYB3h1C+uNYHwEU5tcwZzM8CaaFl+tAwITiwUAQBOiIqK0ptvvplvW05Oju6++25lZ2e7dKy//vpL3377bd7vr776anXu3NmlY2zdutWlxzvDGKNvvvlGtWvX1pdffmn3Mb169dKiRYtUoUIFj861d+9eh/u2b9/u0bEBOC/Y2uas3bt3291+9OhRn19cOuoX7QICh5a5jpYBwSHY+sV1JgBvCLa2OYu5GYBz0TPX0TMAQLg4duxYgW1Hjx712vEffvhhXXPNNfm2rVu3Ti+++KLTx3jzzTe1evXqvN/feOON6t69u0vjyM7O1o4dO1x6jjM2bNig6667TnfccYdOnTpVYH/16tX1xx9/6JZbbvH4XMxPANeES9+c5ej6SpJ27drlk3OexvvdgPtoWX60DLCOcOkX15pAeAmXtjmLuRlgTbQsP1oGBCcWigAAJ91444164IEH8m2bN2+e7r//fuXk5Dh1jM2bN6tbt24yxkiSqlWrpgkTJrg8ll9//dXhviNHjrh0rCNHjujDDz9Uw4YN1b17d7tvwFWvXl3ffvutJkyYoKJFi7o83nP9/fffDvctXbrU4+MDcF4wtc1Zy5Ytc7hv+fLlPjtvZmam/v33X7v7Vq9eXegKhQB8i5Y5j5YBwSWY+sV1JgBvCaa2OYu5GQB76Jnz6BkAIJzYu9Fx586dXju+zWbTp59+qosuuijf9tdee03ffffdeZ//008/6YUXXsj7fe3atfXxxx+7PI4///zT7j+ukXJvjD09v3GGMUZz5szR7bffrlq1amnatGkFHhMTE6P/+7//099//61LL73U5fGea/fu3Q5vGuW9IsC+cOmbswJ1fSXxfjfgCVqWHy0DrCNc+sW1JhBewqVtzmJuBlgTLcuPlgFBygAAnJaZmWl69eplJOX76tixo9m0aZPD5+Xk5JjJkyebEiVK5D2nXLlyZu3atS6PYebMmSY6OrrAGM7+qlq1qunatat58sknzXvvvWd++OEHM3v2bPPbb7+ZqVOnmrFjx5qBAweaK664whQpUsThcWrVqmVGjRpl0tPTPXnZ8jl06JCpVq2aw3NWqlTJHDlyxGvnA3B+wdA2Zy1evNhEREQ4bEifPn18du7hw4cX2t63337bZ+cGcH60zDm0DAg+wdAvrjMBeFswtM1ZzM0AFIaeOYeeAQDCxfTp0+3+XRcREWFWrFjh1XNt27bNVKlSJd95YmJizMcff2z38Tk5OWb06NEmJiYm7/E1a9Y0u3fvdvncqamppkGDBoX+/Z6UlGRatWpl7rvvPvPWW2+ZL7/80sycOdPMnTvXzJgxw3z22WdmyJAhpnv37qZUqVIOj5OYmGgefPDBQudW7njkkUcKHf+3337r1fMBVhcufXNWWlqaadKkicOGlChRwhw4cMAn5968ebNJTk52eO7GjRt79f11IJTQsvxoGWAd4dIvrjWB8BIubXMWczPAmmhZfrQMCF4sFAEALsrJyTFPPvlkgRsuY2JizPXXX2/ee+89M23aNDNr1izz5ZdfmieffNJcfPHF+R7bpk0bs2fPnvOe69ChQ2b16tVmxYoVZurUqaZfv34mMjKy0DeZPP2qUqWK6d+/v/ntt9+8+rplZ2ebWbNmmbp16553DPXq1TOzZs0yWVlZXh0DAMf82TZ3HD9+3Hz00Uf5bq539NW7d2+v3nS/Z88e88wzz5y3vxEREebZZ5/12WsA4PxomWO0DAhuXGe6h+tMILgxN3OMuRlgLfTMMXoGAAgHx44dM2vWrDEjRowwiYmJDv++K126tBk3bpxZt26dOXHihFfOvXPnTtOsWbMC52rWrJl55513zM8//2x++ukn89ZbbxX4xzbXXnutOXz48HnPkZ2dbVavXm3+++8/M3/+fPP666+bChUq+PS9ovj4eNO1a1fz0UcfmaNHj3rltTpt8+bNpl+/fucdQ2xsrHn77bedeo2AUBXqfXNHTk6OWbhwoWnZsuV5O1KrVi0zbdo0k5GR4ZVzp6enm2+++cZUrlz5vOdu2bKlWbhwocnJyfHKuQEro2UF0TLAGkK9X1xrnv81AkJRqLfNHczNAOuhZQXRMiD42YwxRgAAl61YsUJPPvmkfv75Z6efc/HFF+vJJ5/U7bffrsjIyPM+/p133tFjjz3myTDziYiIUExMjOLi4pSYmKgKFSqoYsWKql69ui699FI1atRI1apV89r5vv/+ez377LPKzMzU7t27dezYMZeen5CQoPLlyys6OloPPPCAHnjgAa+NDYB9/mibswYNGqQpU6boxIkT2rVrlzIyMlx6fqlSpVSyZElFRETol19+Ufny5Z1+bocOHbRz506lpqZq9+7dysnJcfq5NptNFSpUULFixSRJq1atcmncADxHy3LRMsB6uM48P64zAethbpaLuRlgffQsFz0DAISLCRMmqE+fPh4dY86cOWrVqpVHx0hPT9drr72mt99+W0ePHj3v4y+88EK9+OKLuvXWW506fmpqqlJSUjwa47mKFCmiuLg4xcfHq3Tp0qpYsaKqVKmiSy65RI0aNdIll1yiIkWKeO18devWlTFGhw4d0p49e1x6bmRkpCpWrKiEhARVqFDBpbkeYFXh0jdnLV68WH379lVWVpb27t2r1NRUl54fFxen8uXLKzY21uX3nEePHq3Ro0crLS1Nu3bt0qlTp1w6d3JyssqUKaOoqCi98sor6tq1q0vPB6yMluVHywDrCJd+ca3JtSbCS7i0zVnMzQBromX50TLAWlgoAgA8tGHDBk2fPl2//PKLtmzZov379+vQoUMqWrSoSpQooUqVKqlly5Zq27atWrZsKZvNFugh+01qaqp27NjhlWOVLl1apUuX9sqxAJxfMLRt586dOnz4sFeOVbNmTUVHRzv9+HXr1rl8g70jdevW9cpxALiOltEywKqCoV/BiutMwLqCoW3MzQB4Az2jZwCA8OCN9yCqVaumokWLemU8hw4d0uTJkzV9+nStXLlS+/btU3p6upKSklS9enU1adJEXbp0Ufv27RUREeGVc1qFtxafKlKkiGrUqOGVYwHBjL7ld+LECW3evNkrx3L1Ped9+/Zp3759Xjl3xYoVlZyc7JVjAVZAy/KjZYB10C/r4FoTcB5ty4+5GWBNtCw/WgZYCwtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWER4LesHAAAAAAAAAAAAAAAAAP/P3n2HRXF1fwA/S69Wir2AvWPvvffee+zGFo0lMVETe9cIiILYS8Te0dhL7IpobAhYUBQQpNf7+8Mf+wI7M7uzO9vg+3meed7XmZ17z84Os5u5Z84FAAAAAAAAAAAAAAAAADBiKBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkUCgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIoFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICRQKEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjgUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGAoUiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCRSKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEigUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJFAoAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASKBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkUChCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4FCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARgKFIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjAQKRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkUigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIoFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCRQKAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEigUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJFAoQgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACOBQhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEYChSIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwECkUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJFIoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASKBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAkUCgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBIoFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICRQKEIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjgUIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABGAoUiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMBApFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYCRSKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEigUAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgJFAoAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADASKBQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAkUChCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI4FCEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARgKFIgAAAABAr16/fk3Lly/Xdxi8wsPDaf369ZSSkqLvUPK848ePU926dcnKyoqKFy9OP//8MyUlJek7LPh/169fpyFDhpClpSXJZDIKCQnRd0gAkmCM0blz56hHjx5kampKMplM3yHlGa9fv6aZM2dSoUKFSCaT0fbt2/UdktFISEggHx8fqlu3LslkMmrZsqW+Q9IrHx8fqlKlCllaWpKLiwstX76cMjIy9B0Wp/DwcFq8eDGVKlWKZDIZLVy4UN8hAYj29etXWr9+PVWqVIlkMhmNHDlSknbzyrUtKCiIZs+eTQ4ODvj+AwAAAAAAAADQM0PIZ0hLSyM/Pz9q1aoVyWQyKlOmjODrfX19KSAgQDfBAQAYmJiYGNqwYYPkYxQgLCMjg06dOkVdunRBXoUaMDb0P1+/fqXx48eTk5MTWVtbU7Nmzej69ev6DovXzZs3aejQoWRlZYV8OTBaAQEBNGHCBLK3tyeZTEaXL1+WpN28cG1jjNGZM2eoe/fu+P4DAAAAvTLTdwAAAAAAkDeFh4fTvHnzaOfOneTm5kZz587Vd0icUlJSaMaMGbRhwwZasmQJDR48WN8h5Uk7d+6kESNGyP8dFhZGq1evpkePHtG5c+fIxAQ18PQhNjaWdu/eTZ6envTkyRN9hwMgqa9fv5Kvry95enrS69ev9R1OnpGenk4nT54kDw8POn/+PDHG9B2SUXnx4gV5enrSjh07KDo6Wt/hGIQ///yTfv/9d/m/g4ODad68efTq1Svy8fHRY2TZXbt2jdzd3enw4cOUmpqq73AA1HL37l3y9PSk/fv3U2JiomTtPn/+XH5ti4mJkaxdQ5L5/efp6Un+/v74/gMAAAAAAAAA0DNDyGcICwujLVu20NatWyksLEzl/W7cuEFjxoyhoUOH0pIlS6hEiRJajBIAwDA8evSIPDw8aM+ePZSQkKDvcPKMiIgI8vHxIS8vLwoODtZ3OEYlPT2dTp06RZ6ennTu3DmMDRFRfHw8tWjRIlsO2vXr16l169Z09uxZat26tR6j+5+EhATas2cPubu70+PHj/UdDoBakpOT6eDBg+Tp6Uk3b96UrN28Mu4dERFB27ZtIy8vL3rz5o2+wwEAAABAoQgAAAAA0C3GGLm7u9P8+fMpJiaGunfvTu7u7voOi1fJkiXJz8+PxowZQ0OGDCFfX1/y8vIiFxcXfYemFUFBQXTq1Cm6desWPX/+nN69e0exsbHEGCN7e3tycHCg8uXLU5UqVahJkybUrFkzKlSoEG97/v7+1KFDB9q3bx8NHDhQrZiSk5NpxowZnNsuXLhAhw8fpr59+6rVNqjnyZMn5OHhQbt376a4uDh9hwMgqfv375O7u7vkD7mCsPDwcPL29iYvLy969+6dvsMxKmlpaXTs2DHy9PSkf/75R9/hGJSwsDD6888/Obdt27aNJk6cSHXr1tVxVP8TFxdHu3fvJnd3dwoMDNRbHACaSEhIoP3795Onpyfdu3dPsnZTU1Pp6NGj5OnpSZcuXZKsXUPz6dMn8vb2pi1btuD7DwAAAAAAAADAABhCPsOlS5fIw8ODjh49SmlpaaL3X7lyJUVERNDOnTvpyJEjtGLFCpowYQJmtwWAXCclJYUOHjxI7u7udOvWLX2Hk6fcunWLPDw86ODBg5ScnKzvcIxKZm7Eli1b6O3bt/oOx6DwTVSUmppKU6dO1fuYeubEHdu3b8+1xe0h93vz5g15eXnRtm3bKCIiQrJ288q4982bN8nDw4P8/Pzw/QcAAAAGBYUiAAAAAEBnPn78SCNGjKDz58+TjY0N7dmzhwYPHqzvsJTq06cP1alTh7p3704XLlyg6tWr08qVK2ny5Mn6Dk0yR44coTVr1tCNGzd4XxMVFUVRUVH08uVLOnXqFK1atYpMTEyoSZMm1K9fP+rbty8VLVo02z4bN27UOLYnT55QVFQU7/YrV66gUIQOJCcnk5+fH3l6egqeJwDGKCkpif7++29yd3enO3fu6DucPOXatWvk4eFBhw8fppSUFH2HY1TUnUksL7l58yalpqbybr9y5YpeCkU8e/aMPDw8aNeuXfTt2zed9w8ghRcvXtDmzZtp+/btFB0dLVm77969o61bt5K3tzd9/PhRsnYNzeXLl+XJ/kLXKQAAAAAAAAAA0B195jN8+/aNdu7cSZ6envTs2TON2ipUqBAdPXqUVq9eTXPmzKFJkybR3r17ae/evVSyZEmJIpbeyJEjaceOHfoOQ2UPHz6kWrVq6TsMgDwpNDSUvLy8yNvbm758+aLvcPKMhIQE2rNnD3l6etLDhw/1HY7RuXr1Knl6etKhQ4cwNsTj8uXLvNuePn1KkZGRVLhwYd0FRETp6el0/Phxcnd3p4sXLxJjTKf9A0ghPT2dTp06RZ6ennTu3DlJz+O8MO6dOQmMp6cnBQQE6DscAAAAAE4oFAEAAAAAOnH16lXq27cvffnyhUqVKkXHjh0zqkHzMmXK0I0bN2jgwIF0+vRp+vHHH+nGjRu0detWsrW11Xd4anv58iWNHj2a88F/MzMzqly5Mjk5OZGtrS1FR0dTcHBwtoq/GRkZdO3aNbp27RrNmDGDmjdvTm3atCFbW1s6deoUXbhwQeMYTUxMNNoOmvv48SPVrFkTA+yQK128eJH69+9PkZGR+g4lT4mPj6dGjRpxzgYBys2fP59WrFih1kxieYkh/obo1asXHT16VOf9Akhp/vz5tGTJEsnb9fLyosmTJ1N6errkbRuSZs2a0fXr1/UdBgAAAAAAAAAAZKHPfIY9e/bQhAkTKC4uTtJ2Z82aRZUqVaIBAwbQ9evXyc3Njfbu3Uvt27eXtB8AAF2aNm0abdq0iTIyMvQdSp5y4sQJGjZsGMXExOg7FKMTGxtLjRs3psDAQH2HYvCUjd/LZDIdRfLd06dPqWPHjvT+/Xud9gsgpeTkZKpatSoFBQVJ3nZeGPd++PAhtWjRgmJjY/UdCgAAAIAgPFEFAAAAAFq3Y8cOateuHX358oVcXFzo5s2bRlUkIpO9vT0dPXqUevfuTURE+/bto4YNG9KHDx/0HJl6Dh06RG5ubgpFIurUqUMHDhygyMhICggIoAsXLtCxY8foypUr9PbtWwoPDycfHx9q3bp1tv3S09Pp0qVLNH/+fJoxY4YkRSKIiKpXr06Ojo6823PGAdIrWrQojRkzhnbs2EGBgYF09+5d6tSpk77DApBE+fLlqUmTJrRlyxa6cuUK7dq1i0qXLq3vsHI9W1tbatiwIS1atIj8/f3p/Pnz1L9/f32HZTSqVatGI0eOpAMHDtDVq1dp7dq1ZGNjo++wDE7Tpk3J0tKSd3urVq10GM13NWvWpDlz5tDx48fp0qVLNH78eJ3HAKCprl270pw5c+jy5cv08uVL8vX1leQa1L59e5o0aRL5+/vTy5cv6dChQ+Tk5CRBxIZl1KhRtGbNGrp79y49e/aM5syZo++QAAAAAAAAAADyNH3nM7i6ulLXrl1px44d8tnGCxUqJEnbXbt2pdOnT5OdnR1FRkZSp06daN26dZK0DQCgD5UqVaLJkyfT4cOH6cqVK/Trr7/q/OHxvKhKlSrUunVr2rJlC12/fp327NlDLi4u+g7LKNjb21ODBg3ozz//pDNnztCFCxdowIAB+g7LILVp04Z3W61atST7faQqFxcXqlWrFv3111908eJF8vPzo+rVq+s0BgBNWVpa0oQJE2jz5s308OFDCggIoBEjRkjSdl4Y965ZsyaNGDGC/v77b/rvv//o2rVrVL9+fX2HBQAAAKBAxhhj+g4CAAAAAHKv9evX04wZM4iIqESJEnTt2jUqU6aMfoPSUFpaGnXr1o3Onj1LRESlS5em8+fPU/ny5fUcmep8fHxo7NixlPU/BywsLGj9+vU0ceJEldu5d+8ezZs3T2lRiH379tHAgQPVjnf//v00ePBgyvmfLx07dqTTp09j0FcP4uPjqXjx4ryzBQQHBxv93zrkXf/++y81atSIdztupWhHeno61a5dmwICAji3+/r60siRI3UblBFZs2YNzZo1i3NbixYt6PLly7oNyECsXLmSczB6/PjxtHnzZj1EpKhjx4507tw5zm0LFiyghQsX6jYgADUsXryYfvvtN85tI0aMoO3bt6vV7u7du2nYsGGc23LTta1t27b0zz//cG7D9x8AAAAAAAAAgPYYaj7D/v37adCgQZzbSpcuTSEhIaLau3TpEnXo0IFSU1OJiOjXX3+lxYsXaxqmpEaOHEk7duzIts7ExIT69OlDPXv2pKpVq5KzszMVKFCAzM3NydTUVOV2Mik7dhkZGRQfH08fPnygJ0+e0OnTp+nAgQOUmJio8NqHDx8a5QQpALnRhAkTyMvLi3ObJmMUIOzevXtUr1493u3Iq+CXkZFBtWvXpsePH3Nuz6tjQ4mJidS0aVN68OBBtvUWFhZ0/vx5at68uZ4i+593796Ri4sLpaWlcW5HvhwYg/T0dKpSpQq9fPmSc/ulS5eoZcuWarWdF8a93759S2XKlOH9nsP3HwAAAOiDib4DAAAAAIDcK2tShaWlJR0/fjxX3Ag3MzOjgwcPUo0aNYiIKDQ0lJo3by46GUNfjh8/TuPGjct2Q9LS0pLOnj0rqkgEEVHdunXp/PnztH37drK1tZU6VLmBAwfSqVOnqF69emRpaUlFixal2bNn09GjR1EkQk9sbW0FK7kDGLOGDRti9gs9MDU1pX79+uk7DKOFWUe4zZ49m3bs2EFVq1Ylc3NzKlOmDC1fvpw8PDz0HZrc4MGD9R0CgMZ69OihlXa7d++eJ37va+v4AQAAAAAAAAAAP0POZ+jZsyfZ2NhI1l6rVq3I29tb/u8lS5bQ3LlzJWtfG0qVKkU3b96kv//+mwYPHkw1a9akIkWKkJWVFW+RCE2ZmJiQvb09VapUifr160e+vr4UHBxMvXr10kp/ACANjLXpR926dcnV1VXfYRglExMT6tu3r77DMDjW1tZ08eJFmjhxIjk6OpKVlRU1a9aMLl68aBBFIoiISpYsSc2aNdN3GAAaMTU1pa5du2ql7bww7l2qVClyc3PTdxgAAAAA2aBQBAAAAABoxd69e+mnn36S/3vdunW56uaYnZ0d7d+/n6ytrYmI6NOnT9SpUyf6+vWrniMT9vbtWxo2bBhlZGRkW+/j40OtWrVSu90RI0bQtWvXqEiRIpqGyKtTp050584dSkpKorCwMFqxYgVZWlpqrT9QDgO+kJtVq1ZN3yHkSTju6itRogTly5dP32EYpOHDh1NgYCClpKRQcHAwzZkzh0xMDOe2aPXq1fUdAoDGtPW7MF++fOTg4KCVtg0JflcDAAAAAAAAAOiWoeczWFlZUbly5SRtc/jw4TRixAj5v1esWEGenp6S9iGVokWL0tWrV6lBgwb6DoWcnZ3p0KFDNGnSJH2HAgA8MNamPxjfV1/VqlX1HYJByp8/P3l4eNDnz58pMTGRrl69Sk2aNNF3WNngmgO5gbbGp/PKuHdeeZ8AAABgPAwnIxoAAAAAco1r167R6NGjiTFGRN8f8J84caKeo5Je5cqVadWqVfJ/P3/+nHr27EnJycl6jErYjz/+SN++fcu2rn379jRkyBCN23Zzc6OzZ8/iIdU8pGDBgvoOAUBrChcurO8Q8iQcd83g+BknfG6QG9jY2JCFhYVW2s4LvznzwnsEAAAAAAAAADAUxpLPoI17x3/99ReVLVtW/u8pU6bQyZMnJe9HU7t27aLSpUvrOww5mUxGGzduxAziAAaqQIECBlUkPi/BOKf6cOyMFz47yA20NT6dV8a988r7BAAAAOOBuyIAAAAAIKlPnz5Rv3795MUSLCwsaP369foNSosmT55MnTp1kv/76tWrNGXKFD1GxO/27dt04sQJhfVSxluzZk3y9vaWrD0wbDY2NvoOAUBr7Ozs9B1CnmRra6vvEIwazlvjhM8Ncgtt/TbMC78588J7BAAAAAAAAAAwBMaUz6CNe8f29va0Z88e+QPV6enpNHDgQHr58qXkfamrW7du1KZNG32HocDU1JTc3d1JJpPpOxQAyEEmk2GcWU9w3NWHMWLjhc8OcgOM7Wsmr7xPAAAAMB4oFAEAAAAAksnIyKAhQ4ZQeHi4fN2UKVOoQoUKeoxK+9auXUumpqbyf2/dupWOHj2qv4B4eHl5KawzMTGhdu3aSdpPv379qFevXpK2CYZJW7NGAxgCS0tLfYeQJ+G4awbHzzjhc4PcQlu/DfPCb8688B4BAAAAAAAAAPTN2PIZtHXvuFGjRjRo0CD5v+Pj42nIkCGUmpqqlf7EmjBhgr5D4FW9enVq2rSpvsMAAA4Yb9MPHHf14dgZL3x2kBtgbF8zeeV9AgAAgPFAoQgAAAAAkMyaNWvo4sWL8n9bWlrSrFmz9BiRblSqVIlGjBiRbd2YMWMoLCxMTxEpYozRiRMnFNY7OjpqZfDijz/+wEwaeYC5ubm+QwDQGpzf+oGBNM3g+BknXG8gt9DWuZwX/kbywnsEAAAAAAAAANA3Y8tn0OY9oz/++CNb+/fu3aPff/9da/2pysrKitq2bavvMAR17txZ3yEAAAfcZ9cPjE+rD8fOeOF6A7kBxvY1k1feJwAAABgPFIoAAAAAAEkEBQXRggULsq0bMmQIFSlSRE8R6dbChQuzFVyIjIykH374QY8RZffq1SuKiIhQWJ+cnKyV/qpVq0YdOnTQSttgOExM8J+UkHuZmprqO4Q8CcddMzh+xgmfG+QW2vptmBd+c+aF9wgAAAAAAAAAoE/GmM+gzXvHLi4uNHbs2GzrVq5cSbdu3dJan6pwc3Mz+Adn69Wrp+8QAIADxtv0A8ddfTh2xgufHeQGGNvXTF55nwAAAGA88OsEAAAAACQxYcIESkxMzLZu2rRpeopG90qWLEkDBgzItu7s2bN08uRJPUWU3atXrzjXR0dHU2hoqFb6HDJkiFbaBcOBG96Qm+H81g+ZTKbvEIwajp9xwvUGcgskk6gvL7xHAAAAAAAAAAB9MsZ8Bm3fM/rpp5+yjStkZGTQtGnTiDGm1X6FuLq66q1vVVWpUkXfIQAAB9xn1w+MT6sPx8544XoDuQHG9jWTV94nAAAAGA/8OgEAAAAAjZ04cYIuXLiQbV3VqlWpRo0aeopIP8aNG6ewbtasWZSamqqHaLKLiYnh3bZ7926t9NmjRw9U0AYAo4VBef3AcdcMjp9xwucGAAAAAAAAAAAAoD3Gms+g7XvHrq6u1KZNm2zr7t69S7t27dJqv3zmzp1LCxcu1EvfYhQtWpQuX75M5cqV03coAJAFxtv0A8ddfTh2xgufHQAAAAAAGBoUigAAAAAAjaSnp9OcOXMU1g8cOFAP0ehX48aNqXjx4tnWvXjxgjw8PPQU0f8IVbBds2YNffjwQfI+7e3tqXbt2pK3CwAAAAAAAAAAAAAAAAAAoAzyGYT169dPYd0vv/xCCQkJOo+lUqVK5OrqqvN+1dGiRQuys7PTdxgAAAAAAAAAAAAAKBQBAAAAAJrZs2cP/ffffwrruRIKcjuZTEY9evRQWL98+XJKSUnRQ0T/U7hwYd5tX79+pf79+1NiYqLk/TZr1kzyNgEAAAAAAAAAAAAAAAAAAJRBPoOwnj17KsyK/eHDB/L29tZTRAAAAAAAAAAAAAAgBgpFAAAAAIDaGGO0cuVKhfUlSpSgihUr6iEi/WvXrp3Cuk+fPtGePXv0EM3/VK1aVXD7zZs3qX379hQVFSVpv9WrV5e0PQAAAAAAAAAAAAAAAAAAAGWQz6Cck5MT1ahRQ2H9+vXrKT09XQ8RAQAAAAAAAAAAAIAYKBQBAAAAAGo7ffo0PX36VGF9q1atdBpHRkYGXbp0iX755Rdq27YtlSlThuzt7cnc3JwcHByoQoUK1KNHD1q5ciUFBgZqNZYWLVqQiYniz+y1a9dqtV9lihUrRq6uroKvuX79OtWrV48ePnwoWb/KClSIxRijCxcuUJ8+fcjc3FxhdhN1BAUF0cyZM6lQoUIkk8no8uXLgq9//vw5zZkzh+rVq0cFCxYkCwsLKlKkCHXo0IE8PDwoNjZW45hUiXnLli00cOBAcnNzo5IlS5KVlRVZW1uTk5MTVa5cmXr16kW//fYbXblyhdLS0rQeky58+vSJvL29adiwYVSnTh1ycHAgS0tLsrOzIxcXF2rUqBFNnTqVzp49S0lJSfoOVy2JiYnk7e1NtWrVIplMRiNHjhR8fVxcHG3evJm6du1KxYoVIwsLCypQoADVqVOHZs6cSc+ePdNJ3OHh4bR582YaOXIk1axZk5ydncnCwoJsbGzI2dmZ6tevTyNGjKBt27ZRWFiYTmLK6s2bN7Rhwwbq27cvVa5cmQoWLCj/jqhatSqNHDmS/Pz8KDk5WeexJSQk0KFDh2jy5MnUtGlTKlasGNnY2JClpSWVKFGC6tSpQ8OGDaO9e/dSZGSkzuMzJo8ePaJZs2ZR3bp1KX/+/GRhYUFFixalTp060ebNmykhIUHfIRqk9PR0OnbsGA0dOpRcXV3JxsaGrK2tqXTp0tS1a1f666+/KCIiQvJ+X7x4QXPnzqVixYqRTCaj7du3c77u5cuXNHHiRHJxcSFLS0sqUqQIDRw4kB4/fiyqv7S0NDpy5Ai1b9+eTExMqEyZMpq/CQ7Jycl05swZmjZtGrVo0UL+N21tbU1lypShFi1a0NKlS+n58+da6V+bbt68Sf379yczMzNq2bKl0tdOnDiRqlWrRvnz5ydzc3NycnKiZs2a0fz587X6mzwyMpJ27dpFU6dOpcaNG5OLiwsVKlSIzMzMyNbWlpydnalOnTo0cOBA2rBhg1Y+i9jYWPL29qYmTZqQTCbjPV6JiYm0bt06atCgAdnb25OdnR01atSIfH19iTEmqs+4uDg6ePAgzZo1i1q2bEnlypUjBwcHMjc3JxsbG3J0dKQaNWpQ3759afny5ZL+5s9t7ty5Q3/++Sd16dKFypcvT/ny5ZP/bqhSpQp16NBBJ/9tCQAAAAAAAAAAmjGUfAYiosDAQFq+fDn16NGDypcvL79v6uzsTDVr1qSJEyfS6dOn9VKcget4BAcH05EjR3QeCxi3kJAQWrduHQ0aNIiqVKlCjo6OZG5uTra2tlS0aFFq0qQJjRs3jvbt2yf5JCb6Yoz5JkTf74MvXLiQunbtSq6urlSwYEEyMzOjfPnyUZkyZahdu3Y0a9YsOnfunM7H0NPT0+ny5cs0e/Zsatu2LZUsWZLs7OzI0tKSSpYsSY0aNaL58+fT/fv3dRpXpuDgYNq0aRP179+fatSoQYUKFSILCwvKly8flS9fnpo1a0Zz587NVbk62pCamkp///03DRw4kFxcXMjKyors7OyoQoUKNGrUKLpy5Yq+QzRYERERtHr1amrbti05OzuTubk55c+fn2rUqEFjxoyhkydPUkZGhqR9pqen06lTp6hPnz5kYWHBm6/HGCM/Pz/q1KkTOTg4kJWVFVWuXJl+//13iouLE9Xn58+fafny5VS2bFmSyWS0cOFCCd6Joo8fP9LWrVtp8ODBVKNGDSpcuDBZWFhQwYIFqVKlStS/f3/auXMnffv2TSv9a0tSUhJ5e3tT9erVBfMxiL6PWW/bto169epFJUuWJEtLS7KxsSEXFxfq1asXeXl5UUxMjNZiffToEa1bt07+GZQoUYLs7OzIzMyM8ufPT6VKlaJWrVrRpEmT6ODBgxQdHS15DLrOXyEievXqFXl4eNDIkSPJzc2NSpUqRfny5ZN/HxcvXpyaNm1KY8aMoV27dlF4eLiG7zJ3Qt4dAAAAwP9jAAAAAABq6tq1KyMihWXbtm066T82NpYtW7aMlShRgjMOvqVVq1bs0qVLWouratWqnP36+/trrU9VzJ07V6XjY2FhwVasWMHS0tL0Gm9WUVFRbO3ataxChQoK8aojIyODnT59mnXu3JmZmJhka4/v3AgKCmK9e/dWevyKFCnCjh07psG75Xft2jXWvn17hT5tbGxYoUKFeGMqWLAgmzlzJgsNDZU0Hl9fX94+g4ODJevnzp07rHv37szU1FTlv/NChQqx1atXs6SkJMni0KagoCA2c+ZMVrBgwWzvY8SIEZyvT0pKYitWrGD58+cXPA4mJibsxx9/ZCkpKVqJ+8qVK6xjx46iPhtTU1PWtWtXduXKFa3ElNXly5c5/2b4ltKlS7O9e/cyxhhbsGAB7+uk8O7dOzZ58mRmb2+vcnzm5uZs0qRJ7NOnT5LEYIiCg4N537+vry/nPq9evWIdO3ZUevxKlCih8ndxSEgIMzU11WhZtGiRyu+7devWKrfr6urK206LFi0433uLFi04X3/69GlWvnx5pcfOysqKzZgxg0VHR6v8nrh8+/aNbd26lTVu3Fjp55uens4WLVrEe32xsLBghw4dUtrnhw8f2KJFi1jx4sUV/t6l9O3bN7ZgwQLm5OSk0t+ziYkJGz58OPvw4QNjjPG+bsGCBZLGKVZKSgrbvXs3q1evnkrn1JMnT1izZs1UOgadOnViL168kCzWJ0+esCFDhjBLS0uVr6uZS5MmTdjJkyc16j8jI4NdvnyZDR8+nNnY2Cg9XtevX2elSpXijWnAgAEsPT1dab8hISFswoQJor5PMpfq1auznTt3avS+sypdujRnP3y/Z1Ql9tqmjpSUFLZlyxbO/94QWho0aMAuX76scf/qfP8BAAAAAAAAAIAwfeczMMbY0aNHWcOGDVW+31StWjV27tw5xhhjI0aM4HyN1Pe3Dx48yNlP48aNJe1HV/iOmxTHbu7cuaxixYpqLYcPH5a0PaF2szp8+LDKbbVu3Vqt43Ls2DHWpEkTUfdWLSws2KBBg9jjx4/V6lOfjDXfJDExkW3YsIG5urqK+qwKFy7MZs2axcLDw7USV6bk5GS2bt06VqZMGZVj69atG3v+/DljTHtjFJn8/f1Zy5YtmUwmUzm+EiVKMB8fH4PKv5KaOnkVe/fuFRwjy1y6du2q8nmXOa6syRISEqJSX2JzCfjyBsSODSUkJLDffvuNWVlZKT12ZcuWZQcOHFDp/Qh5/vw5mzNnDitatKjSz/fdu3esefPmvDFVqVKFff78WWmfV69eZYMGDWIWFhbZ9pd63PzRo0esb9++Kuc7OTg4sL/++oulp6frLF9OHR8+fGC//PILc3BwUHpOZWRkMB8fH+bo6Kj0/dva2rIFCxZImoe3a9cuVrduXVHfSUTErK2t2dixYzXOg9RH/gpjjJ08eZK1atVK9Ps2MzNjAwYMYIGBgRq970yXLl3i7UuT3GpdjXvrO+9O23mFAAAAAGLhVwgAAAAAqCUsLIz3xufTp0+13v/ff//NihQpotB3hQoVWOvWrVm3bt1Y3bp1FQYNMheZTMZ+/PFHlpiYKHlsw4cP5+xz+PDhkvclxvv373mPB9dSv359FhAQoNeY79y5w0aOHMmsra0lubEaHR3N1q1bJ/hQLNeNbi8vL4UH/oQWExMTSW9sx8TEsH79+mXrw8bGhi1YsIC9fv1a/rrY2Fi2b98+VqNGDdGDCZmLpaUlmzhxokpxaXvgKyoqio0aNUrh2NaoUYN16tSJdejQQengcenSpdm9e/c0jkUbMjIy2JkzZ1iXLl0UEkgyF66khadPn4r+jNu3b89SU1Mliz04OJi1a9dOoR9ra2vWsGFD1q1bN9awYUPO63TWpVevXlopevD161c2aNAgzj6LFi3Kmjdvzrp27cqqVavGmcgxfvx49uuvv2plQCctLY2tXLlS4brm4uLC2rRpI4+L75wg+j4Am1sfGhU7YLhz505R12czMzOVEiKSk5PZ/v372YABA5i5ubnK7Xfp0oX5+fmxe/fuiUqWCgoKYtevX2fr16/nLTRQqlQptnz5cnbr1i3edlR9mDolJYVNmTJF9HdE6dKlBfvnkvnw/IgRI5itra1Kn29qaiobMGCA0njs7OzYx48fOfv9559/WJ8+fZiZmRnve5HKkSNHOJNjzM3NWa1atViXLl1Yq1atWIECBRRe4+zszO7evcv7HvVVKOLLly9s8eLFrFixYiqdU4wxtmPHDtFFGmxsbNju3bs1ijUtLY0tXryY83du/vz5WYsWLVj37t1Zs2bNlBZYGjVqlOjvy7dv37I///xTMLEy5/Hy8/NT6dqyadMmwb69vLw4Ex9sbGxYkyZNWPfu3VmLFi2UFjDp2LEji42NFXvoFRhroYibN2+yypUrZ2u7QIECrHHjxqx79+6sadOmzM7OTvAY9u/fn8XHx6sdAwpFAAAAAAAAAABIS9/5DO/eveMcS8u8P92qVSvWpUsX3nHrP/74Q2eFIt68ecN7b+rNmzeS9qUL2iwUMWbMGFH3wDMXU1NTebF6VWNVdVF2/1BoTD/nIlSsnMujR484H/C0t7dnzZo1Y926dWP16tVjhQsX5u3TxMSEjRkzhn379k1U3/pgrPkmjH3PseIa8ylatChr164d69y5M6tevbpgnPb29mzNmjUsIyND0tgY+z5pCtdxNTExYVWrVmWdOnVi7dq14xzvsLOzY6dPn9baGMX79+8VCg9ZWFiwOnXqsK5du7K2bdsyZ2dnwc+0Ro0aLCgoSJqDZWDEPCgbHx/P+vfvL+oaV7FiRd7x4KxCQ0PZ6tWrmZubm8pt29nZsV9//ZWdO3eOBQQEqDwBS0pKCnv48CE7e/YsGzt2LG/7HTp0YLt27WLv3r3jbEfM2NDLly9ZtWrVRH9H9O3bV/T19du3b8zb25vz4Xm+z/e///5TmLiBLx6+Pt3d3QXfo1Tj5omJiWzq1KmcvxMLFy7MGjduzLp168Zq167NmWvQvXt3tmnTJt449VUo4vbt22zw4MG8Y9A5z6n4+HjWp08f0edUjRo1VC6qwic0NJS1bduWs31XV1fWsWNH1rlzZ1arVi3B3Cl7e3t25MgRUX3rK3+FMcYiIyN5c9lKlCjB2rdvz7p27crq1asnmONrYWHBPDw81Dz6/2OshSIMJe8OhSIAAADA0OBXCAAAAACoZdWqVZw3uaytrbVaCT0pKYn98MMP2fq0srJiv/32G+dN6MjISPbzzz/zVnRv2bKlJA9FZbVx40bOvvLlyydpVWV1zJs3T9TNfTMzMzZz5kydDsrHx8czb29vVqdOHZViVMWTJ0/Y+PHjBW/wc93oTk1NVTjfVF0sLCzYgwcPND4eT58+VZjZuHTp0uzly5e8+6SkpKidpEL0/aFVVWizUERAQAArW7asvL1ChQqxVatWcVaXf/DgAevbty9vLDY2NipX7daF6Ohotn79esEEkswlZ9LCiRMnVDqPuZZZs2ZJEv+ePXtYvnz5srVdvnx5tn37ds4HJK9fv8470EVEzMnJSaMBppyePHmS7dzJXNq2bcsuX76skLgSGhrKZs6cqTDIJpQEo66oqCjWvn37bNfYiRMncv49v3//ns2ZM0dwNoi5c+dqJRFHn8QMGP7+++9q/S3Y2NiwZ8+eqRzTixcveBOLhP5e1XXq1CmFtuvXr8+ioqKU7qvKw9SJiYmsU6dOan9HWFtbs+PHjyuNRZWH5/k+XzGJkZs3b5bvFxUVxdatW8cqVqyodD8pEmkzMjLY7NmzFdq2t7dnq1atYl++fMn2+tTUVHbkyBFWq1Ytla83ui4UERAQwH744QelM9HkfEB/w4YNap9TMplMaUEEPqmpqQrFtIi+F4jYtm2bQtGHzM9A6LwcOXKk0n6TkpLY/v37Wfv27QUTDLiO17lz53gLmORcGjZsyBvD9OnTFV5vaWnJVq1axRISErK9NiMjg128eFEwOa5NmzYsPT1d3AeQgzEWili/fn22z6N+/frs9OnTCsmAycnJbO/evYK/32rXrs3ev3+vVhwoFAEAAAAAAAAAIC195TMwxtjly5c5Z2bu378/Z4H7Z8+esdGjRyvca+S7dyx1oQjGGO+D/EuXLpW8L23TZqGI9PR0duvWLTZmzBiV7vPWrl2bXb16lSUnJ3O2l5GRwWJjY9njx4/Zzz//rNL95mrVqrHt27ezly9fqly8Nj4+nj158oRNnDiR97js379fVO7MmjVrFMZX69Spww4fPqxwfzU9PZ2dOXOGdejQgfd9ubi46H0iEz7GnG+SkJDAhg0bptB+nz592L///qvw+ri4OObr68sqVarEG1u7du3Y169fNY4t04YNGxT+niwsLNgvv/zC3r59m+21GRkZ7MKFCwrjBqamprwP1WoyRnHp0iXm4OAgb6tEiRJsy5YtLCYmRuG1V65cYW3atOE9bg4ODuzatWtqx2KoVH1QNjw8nNWrV0+tv4fWrVuLGsPy9PTkzRPMuly8eFGSY8A1VrlkyRKl+6k6NnT//n3BgjvKFjc3N85cq6xUfXie6/N99+4d7+QDORdTU1MWFxcn3/fx48dswoQJSgu2E0kzbv7u3TtWu3ZthbZr167NTp06pTC2HB4ezv7880+FHCmh8X1dFopITU1lBw4cYI0aNVJ6/LKeUwkJCaxJkyZqn1NFixbNNrGVGM+ePeOchKNx48bs4cOHCq+PiIhgv/76K28BDFNTU3bhwgWl/eojfyWrsLAwhYkLiIhVrlyZXb58WeH1sbGxbM2aNZyTRmQu27dvV/m4czHGQhGGlHeHQhEAAABgaPArBAAAAADUwnezuF69elrrMzY2lrVs2TJbfy4uLoIPzGdauHAh7425Vq1aSZoMcuHCBd6+xFYxllpiYiKrUaOG6Bv8RYoUYdu2bdP44TFljh8/zjnbttAiJDo6WuGcUbZk3uhOSkpinTt3Fn2ssi6NGzfW6HgEBwezIkWKZGvTxsZGpXM+PT2d9ejRQ6249V0o4vbt29lm/G7RooXSQUvGGPPx8eEdGDIxMWHnzp1TOyapLFmyRFShh6xJC76+vrwzH6mymJmZaTxD0l9//aUwoD569GiWmJiodN8jR46wggULcsZmaWnJDh8+rFFsjH0vGpJzgNzExESlB5BzFidR97rD58uXL6x69eryNkqWLMmZDJjTnTt3FK4DWZdff/1VrXgMlaoDhj/99JNG1+f27duLiuvp06dKkxO4Bm/Vcf/+/WztOjo6qjRLCmPKH6ZOTU1lHTt21OjYZf7NCg22JyQkMEtLS1FtZn6+K1euFLXf8uXLGWOMbd68WWHGAKFFimRQruS+unXrKiSt5ZSamsrmzp2rUpy6KhTh7+/PWrdurfLxy/qA/oEDB1RKthJaZDKZWr+ThwwZotCWra0tZxJJVhEREYK/iU+cOCG4P1dSpSrH69WrV9l+4yhbKlWqxNn/r7/+qvBaExMTdvbsWcG4ExISBJMU//rrL8H9lTG2QhFZi+iZmJiwZcuWKd0nLi6Ode/eXfAzU6cQIQpFAAAAAAAAAABISx/5DIwxdvbsWYV71dbW1ioVtb98+bJKD4Jqo1BE06ZNOfuqWbOm5H1pmzYLRWT177//Kr3fq+xedU779u0TbM/R0VGlwuJCcs4Q37RpU86H3oX8/PPPCrHNnz9fpXwSLy8v3gf2ChQowG7cuKHuW5OcseebcOVY2djYqDQek5CQwCZNmsQbW40aNdinT580io8xxhYtWqTQdtmyZVlgYKDSfTds2KBScRV1xyiOHz+erfhEv379sj3gzuePP/7gHTezsbFhjx8/ViseQ6XKg7KfPn3ifEBazLJ3715RcXGdW1mXMmXKSHYMpkyZkq3toUOHqrSfKmNDT548EZ1Hx7W4ubkJXut9fHxEt8nY92udUKF6riXz2iE0Zsm1aDpuHhISwpkT9MsvvygUiMgpNDSUs8AE16KLQhFJSUls+fLlrGTJkiofv8xzKj09nXXr1k3jc8rFxUV00aD3798zZ2dnhbZatWrFW1Qr0+nTp3lz5kqUKCGYt6aP/JWsYmNjOQswVa1aVekxvHfvnkKhkszF1tZW5VwiLsZWKMLQ8u5QKAIAAAAMDX6FAAAAAIBonz9/5h1s++GHH7TSZ1JSEmvWrFm2vooXL87evXun0v7JycmcN5ozlz/++EOyWN+/f8/bz+DBgyXrR11BQUHMyclJrZv8tWrV0urD9i9evGDt27dna9euZYcPH2YbNmzgrCIt5sZqy5Yt2bBhw9jq1avZ0qVLmYuLi2B7ly5dYikpKaxLly7ydYULF2Y//fQTu3jxIouIiGApKSns/fv3bMeOHaxChQpK21NHdHQ05yCBKlXnM4WFhfEOFvAtFhYWKs2kzZh2CkU8f/482yBn+/btFWYcEXLixAnemAoXLsxCQkLUiksqGzZsYC1btmQLFy5kGzZsYD179hT8PDKTFnbt2iW/7pqYmLDu3buzvXv3suDgYJaUlMSioqLYlStX2IABA1RqTx3e3t4K7Q0aNEhUZe1bt27xVta3sLDQaMaGkJAQhWubTCZje/bsUbmNd+/eCQ4OqTugk5CQwOrUqSPfv0SJEuzDhw8q7x8aGsqbGCiTydjx48dFx2SoVBkwnDlzpnxdkSJF2Pz589mtW7fYt2/fWFxcHAsICGC//vqr0uQ8VQYMs9q2bZtge1evXpXkGBw/fjxbu6o8uJxJ2cPU48ePF/WdILQUKlRI8Jp64MAB9ujRIxYbG8siIiLY4sWLBdvz9fVld+/eZebm5szMzIxt3LiRRUdHMz8/P8EEh+vXrzPGGLt48SLr2bMn27RpEzty5AhbtmyZ4Hegpsmgs2fPVmizfv36LDo6WuU2fvvtN6XHWVeFIqZOncqcnZ1Zjx492IABA1ipUqUE48o8p168eKHSDC+qLPnz5xf1Pb17927OdlT9XX///n3e/6apX7++4L53795l586dY58/f2YJCQnswoULrESJEoLHKzU1VT5TUpcuXVhoaCh79uyZYNGBMWPGKPR99epVzrhHjx6t0vt+//4972dWtGhRjQrDGVOhiBUrVmRrS8yMK+np6ax///68n1vfvn1Fx4NCEQAAAAAAAAAA0tFHPgNj3x/kyjkOZm1tLWr86/Hjx0qLzmujUMSYMWN4+1NlEgNDoqtCEYx9HwsR+qy+ffsmafw9evTQOOYOHTrI2ytevLhKEzZkNX/+fIW45s6dK6qNw4cP8z7sWaBAAZWKBOiKseabpKamslatWmVrSyaTsdOnT4tqZ8aMGbyxubm5qVU4OZOHh4dCm66urirngTHGncMgxRjFtWvXshWJUHUMJtOmTZt44ylXrpyo8URDp+xB2c+fP2fLfWratCnz9vZmr169YsnJyezTp0/swoULSh9cr1atmqi4MjIyeMeXiL4/5C6V3r17y9s1MzNT+RxWNjb06dMn3rE3dZY+ffrwxvLx40e2f/9+FhoaypKSklhgYKDSQjmMMTZ9+nRGRKxChQrs1q1bLDw8nM2ZM4f3Gl++fHl5nzNnzmRTp05lO3fuZAcPHmSDBg0S7E+TcfOvX7+yihUrKrQpJhcjJiaGVa1aVelx1kWhiNTUVObg4MDc3NzY4MGDWefOnZUWQsgcb1SWtyFm6dmzp6i427Vrp9CGiYmJyscs83zjWjw8PAT31XX+SlZ8v7NVzTFav349b3+zZ89WqQ0uxlQowhDz7lAoAgAAAAwNfoUAAAAAgGh79+7lvcm1dOlSrfQ5ePBghb7OnDkjqo2RI0fyxp0vXz61Bun52Nvbc/ZTrFgxyfrQxOPHj5mDg4PaN/rbtm3LHjx4oJNYL1++LBiLWB8+fOD9fDJvdGfOEm1hYcF+//13wcHt2NjYbDeicy4DBw5U631PnTpVoS1zc3MWHh4uqp2lS5dyxuXo6Mi+fPmiVmyZpC4UER8fn21grmzZsqJnL2GMsVGjRvHG1b59e9HtaVufPn144x0xYgQ7e/YsMzMzY0TEWrduzZ4+fSrY3rJly3jbs7S0VOuY3rt3T2FQsUSJEmq1deTIEd748ufPr9a5k5iYyDkz/IwZM0S3dfbsWaXXQLGGDh0q39fMzEyt6+eOHTt44ylcuLCk32H6pGzAMPOaZmZmxhYuXMiSkpJ423r27JlgYaRp06aJji9r8lzOZeXKlRq88//JOrhtaWnJIiIiVN5X6GHqnIUu2rRpw7Zv386CgoJYcnIy+/z5M7t9+zabM2eOSgVTiIi1bNlS1Hvr168fb1tbtmxh1apVYzKZjB04cCDbflFRUdkSbDKXsWPHCva3fft23v40SQbl+i2cP39+9vbtW1HtZGRkKMzclXPRVaGI2NjYbAUC0tLS2MCBA3njyix8kHWGmLJly7JFixax+/fvs8jISPbt2zcWEBDAFi9erPJsJl26dFEp3oyMDFamTBnONsTM0Mb3NyOTyUT/Tjp16pTg8cq8fvXo0UNhVhoPDw+FWQZLly7NwsLCFPpp3rw5Zx+qzACWSSjRWGwRnayMpVCEv79/tgcFZs6cKbqNiIgI5ujoyHscxc5shUIRAAAAAAAAAADS0Uc+w5cvX1jx4sUV+tuwYYPotry8vATvo2qjUMTq1asF798bE10WimCMsSZNmvD2p07Bgzdv3vA+YNu9e3eN481aKNrLy0vUvidOnGAymSxbTG5ubkpnYueybt06wc9J7CzlumIs+SazZs1SaGvKlCmi28nIyGC9evXijU/d4iVXr16V50BkLubm5mqNUSh7uFzsGEVYWFi2MeaGDRuKmtwkU+vWrXljGjdunOj2DJXQg7JZz28XFxfm7+8v2JbQdxGRuDFAxr5PpMQ3kYlMJhOdf8UlLS0tW/6dmGLiQmNDPj4+2Yq92NnZsUmTJrHz58+zL1++sOTkZPbmzRt2/Phx1rt3b4W/J75FTOH0yMhIZmVlxdvWjRs3mEwmY66uruzjx4/Z9r169arC+LCVlRW7cOGCYJ85C9xkXdQdN8/IyGAdO3ZUaK93796i23ry5AkzNzcXPMa6KBTBGFMoOBMUFCQ4iZqvry/7999/5eeKTCZjbdu2Zbt372YvXrxgCQkJ7OPHj+z8+fNs1KhRKp9TBw8eVCneixcvcu5fs2ZNld/zmzdveOPo2rWrmMPHGNNN/kpQUJDCbyei74WxVBUfH897LRNbRCcrYyoUYYh5dygUAQAAAIYGv0IAAAAAQLRJkybx3uTat2+f5P1xPYw+bNgw0e2sWrVK8Ma1n5+fZDFnfWgu5/L69WvJ+tHE69evOatlq7rIZDI2bNgw0Q9FqoMrqUaTG6sDBgzgbS+zenXZsmVVvqn89OlTzpv6RMQKFiwoembmZ8+ecQ64NG7cWPR7/fjxI28iidhZD3KSulBEztko/v77b7Xi+vLli+DA3L///qtWu9py5swZ3lgbNGjA8uXLx8zMzNjq1atVbrNBgwa8bYp5kJQxxpKSkli5cuUU2tm8ebPId/o/QglajRs3Fv03w1U1vnLlyiwxMVGt+IQGn8Ved44dO5Zt30mTJqkVE2PC3y3Lly9Xu11DIjRg2KZNG0b0vdDNtWvXVGrv+PHjvO2VLVtWdHzPnz/nHRCvV6+e6PZySk9Pz5agN3jwYFH78z1MXbZsWfkMZNWqVWM3b94UbCc2Npb98MMPKv0eyDkoLmTPnj287VSvXp0REfvll1949z9//jwbO3YsGzJkiEoPYcfFxfF+H6ibDBoaGsry58+v0N6OHTvUau/KlSuCx1dXhSK4hIWF8f6+adGihfy3tYmJCVu0aJFgImhsbCwbO3asSueUsgQhxoQLiYn5DbJmzRredq5cuaJyO4x9TwTLWewhc3F1dWU2NjasYsWKvAmhb9++ZfPnz2f9+/dnCxYs4CwSExISwhuvmGSNQ4cO8baj7rnMmHEUioiNjc12nXV2dlZ7xrMNGzbwHscqVaqwjIwMldtCoQgAAAAAAAAAAOnoOp+BMcb5IHXr1q1F3SPKlJGRwVxdXXnfgzaKHeQcz8q6DB06VPL+tEnXhSJOnjzJ29+6devUarNz586c7RUuXFitB9YzBQQEyNsqXrw4S05OVnnfL1++sIIFCyrEdPbsWbViycjIEJytXt0CCbpg6PkmFy5cUGjHzs5OVHH6rD5//iw4EY3YvIGYmBjO8YRFixapFV9wcHC24tCajlFkvZ7LZDJ2+/ZtteJ6/Pgxb0wWFhY6ybXSBaEHZdu2bcuIiHXq1Enl4i9cD19rco7Mnz+ftz13d3fR7eV0/vz5bG0qK4aRldDYUObYOdH3h88jIyMF23rw4AGrUqUKb3uZi6Ojo6hxscxrGl+M1tbW7PHjx5z7xsXFsY0bN7KBAweyKVOmqFQ8acuWLbz9qTtuvn79eoW2nJyc2OfPn9VqT2jyIiLdFYrgsnz5ct64vL29Wc2aNeW/AZTl3Dx48IBVrlxZ6TlVtmxZlQpG8U3wJna8N+vfRs44xNJF/srChQs52xf7m7Rbt26c7Zibm7O0tDRRbWUylkIRhpp3h0IRAAAAYGhMCAAAAABApBs3bvBuK1u2rKR9RUZG0owZMxTWz549W3Rb5cuXF9z+5s0b0W3yKV68OO+2a9euSdaPJlxdXenu3bs0ePBgtfZnjNGuXbuoYsWKtGDBAkpISJA4wv+pUqWKpO3Vrl2bd9v58+epbt26dPv2bXJzc1OpvSpVqlCLFi04t339+pVCQkJExefh4UFpaWkK64Xi5lOkSBFq164d57Y9e/ZQRESE6Da14fXr17Rx40b5v11cXKhfv35qteXg4EB169bl3b58+XK12tUWoc/19u3blJaWRkePHqWZM2eq3ObEiRN5tz148EBUfOvWraPXr19nW1ewYEEaOXKkqHayWrFiBdna2nJuu3nzJm3ZskXltm7fvk0bNmxQWL906VKysrJSK74JEyaotV9OaWlp9NNPP2Vbp873V6aOHTvyblu7di2lpKSo3bYx+Oeff6hUqVJ048YNatq0qUr7dO3alapWrcq5LTg4mKKjo0XFULFiRRo+fDjntrt379L9+/dFtZfT2bNn6e3bt/J/S3UuBgcHU3x8PA0ePJju3LlDjRo1Eny9nZ0deXt70+bNm5W2vXjxYmKMqRSH0O+jJ0+eUI0aNWjRokW8r2nbti1t2bKFdu/eTYMGDVLan62tLZUpU0al2FQ1ceJEiomJybauZs2avOeFMs2bN5f8d45UihYtyvuZhYWF0cKFC8nCwoIOHjxIv//+O5mZmfG2ZWdnR1u2bKE5c+Yo7XfJkiVKX/Ps2TOlr1FF9erVebe9f/9eVFumpqbk7OzMuS0oKIiSkpJo+/btZGdnx/makiVL0p9//kkHDhyghQsXUuHChRVeY4jv29isXr0623V20qRJvJ+JMkLfy8+ePaPjx4+r1S4AAAAAAAAAAGhGl/kMREQHDx6kI0eOKKxfs2YNyWQy0e3JZDIaN26cFKGpzBjyGwxV586dycXFhXPbwYMH1Wpz1KhRnOsjIyPpxIkTarVJRHTo0CH5/x85ciRZWFiovO/8+fPp69ev2dZVqVKFOnTooFYsMpmMNm7cSCYm3Gns+/fvp7Nnz6rVtrYZcr5Jeno6TZs2TWH98OHDOccdVOHo6EgLFy7k3T5nzhwKDw9Xub158+ZRaGhotnVOTk40d+5cteIrU6aM2udhTpcvX852PW/ZsiXVr19frbZq1KhBRYsW5dyWkpJCa9euVatdY3LhwgUaNmwYHT9+nAoUKKDSPkLnwcOHD0XHMHv2bN6+PT09RbeXU9bclnLlylHbtm01bpPo+9i5lZUV7d+/n7Zs2UKFChUSfL2bmxvdu3ePWrduLfi6L1++kJeXl8pxKBvfX7RoEdWoUYNzu62tLU2ZMoX27dtHGzdu5M3byEqV14gRGhpK8+bNU1g/b948cnR0VKtNqXI4tEEoV87d3Z0eP35M1atXp7t37yrNuXFzc6MrV65QtWrVBF8XHBxMe/fuVRqbtse51Rnj1kX+irbfd2pqqqjvYGODvDsAAAAA1aFQBAAAAACIkpKSQoGBgbzbS5QoIWl/S5YsUXiIs1mzZkpvQnNp3LgxmZqa8m6XMnahG8k3b96UrB9N2dvb0549e2jv3r3k4OCgVhuJiYn0xx9/UOXKlbMlFkjJyclJZ+3Vrl2bLly4IHpAiK8YAxHRy5cvVW6HMUZHjx7l3FayZElRMWXieyA4OTmZM2lJH5YuXUrp6enyf6tbJCJThQoVeLedO3eOkpOTNWpfSg4ODrxJYpaWlnT8+HHq0qWLqDalOh8jIiJo6dKlCut79epFlpaWomLKytnZmaZMmcK7XdXiM4wxmjJlisJD6sWLF6du3bqpHV+vXr3I3t5e7f0z7d27l4KCguT/btCgAZUuXVrt9oTO68+fP9O///6rdtvGoHjx4nTp0iWlhZ+ykslkgn8/6hSJmj17Nm/S2sqVK0W3l1XWpIwqVapQs2bNNGovq59//pn27NlD1tbWKu8zfvx4WrduneBrnjx5QtevX1epPWV/V15eXoLFBtQh5W+IU6dO0enTpxXWa5oMMmzYMI321ya+30OvXr2itLQ0On78OPXu3Vvl9pYvXy44+E5EdOnSJYUCRTkJfUeIOceFric5E15VIXSOjxs3jho2bCi6zayket8uLi68/12kzvs2Ft++faP169dnW9e/f3+123N1deX9PiAiOnbsmNptAwAAAAAAAACAenSdz5CYmMhZ7L1BgwZUq1YttdtVtzixuoTyG0JDQyksLEyH0RgXmUzGW2D/5s2bSu93c+nevTtv/sbWrVtFt0f0fVx1x44dRPQ95tGjR6u877Nnz8jb21th/cCBA9WKJVP16tUF79HOnj1b5WLlumTI+Sbe3t709OlThfWaflbjxo3jzVeJiYmhxYsXq9ROQEAA50Pqo0aNElW4JCeprpl//PFHtn9rMoZAJDy+nxfGEIYMGULbt28XNf5br1493r+xrLkXqrK3t6fJkydzbgsMDKQzZ86IbjNTeHh4tvyucePGqVUgikv+/PnpwoULNGDAAJX3sba2puPHj1Pjxo0FXyemQIbQ2Ge1atU4J//ShNT5gbNmzaLExMRs66ytrWnEiBFqt1m/fn2qWLGipqFphdB3z8OHD6l27dp0+fJl3iI2XO0dO3aMbGxsBF+nymRAfOPcYsa4ifjH91NTUyk+Pl5UW7rIX9H2+ybK3eP7yLsDAAAAUB0KRQAAAACAKC9fvsz2MHdO6hYb4BITE8M5yN2nTx+12nN0dKSpU6dybitVqhR17dpVrXa5CCWYvHjxQrJ+pDJo0CB69uwZDR48WO023r59S3379qWuXbtKPhNxvnz5JG1PaNbgVatWUf78+UW3WadOHd5tYio3v379mvf4qXschGa0uHXrllptSikmJob279+fbZ2mD0cLDX4lJiYa1I19ExMT3kG1/v37U5s2bUS3WaxYMSpSpAjnNjHno6enJ8XGxiqsVyemnCZOnMj7kOrnz5/Jx8dHaRvHjx+nu3fvKqz/4YcfBAsDKWNubs4764EYmzdvzvZvbZ7XRN8frs7NFi1axDsjkxChQXp1EhsrVqzI+2C8n5+fqGStrD58+ECnTp2S/3v8+PFqtcOlQYMGahexmD59utJiNarMEEFEggVm+vXrp/FD9Fyk/A3x22+/KayztbWlIUOGaNSu0Mwe+sb3/WRubk6HDh1Sa4YmLy8vwd9iRKTwuyAnvkQIOzs7cnZ2VjkWod98qhQsyonvHLezsxOcbURVQgkg5cqVU7kdU1NTsrW15dymzvs2Fvv376eYmBj5vx0cHKhSpUpqt2dqaio4g1Nu/14GAAAAAAAAADBEusxnIPr+YNy7d+8U1mt6j79IkSKCxRuk5uzsTObm5rzbDTHHwZCMGDGCt6jszp07RbdnYWHBO/bg7+/Pec4pc+nSJQoJCSEiopYtW4oac1uzZg3n35UUY8ZCkws8efKETp48qXEfUjPUfBPGGK1evVphvY2NDe/kIqoyNzcXLJy+detW+vLli9J2FixYwHkujRs3TqP4pBhre/nypcJ9fW2O7wcHB1NoaKhG7Ru6HTt2CBbc5sM3vq9u0aJp06bxPpS9ZMkStdokIvL19aXU1FQi+n7d5isapI7ly5dTkyZNRO9na2tLe/bs4R0HJPpecOP27dsqtSc0vr9ixQrJJ4GQcmz/0aNH5Ofnp7C+X79+VLBgQY3aNtTxfaGCDtWrVyd/f3/BsU0uLi4u9Oeffwq+5saNG0p/m/CNc4sZ4yaSdnxfF/krhvi+jQny7gAAAABUh0IRAAAAACDK8+fPebfZ2dlpNMN8Tvv27aO4uDiF9ZrchF2zZg25u7tTjRo1yMrKipydnalPnz506dIlSWaPzySUYKLOjBG64OjoSHv27KGLFy9S5cqV1W7n1KlTVK1aNdqzZ49ksYmtoqyM0HmqziAlEQlWK46KilK5HaEiG+o++C5UDVndB5qldOTIEYUK7lWqVNGoTSsrK8Ht169f16h9qfGdk+qej0T856Sq52NqairvTAL169dXO65MpUqVEkweUqXi/PLlyznXC824oqqaNWtqtH9wcLBCIZa8dl5LTd1roNBsCGKuz1nNmzePc31GRgYtW7ZMrTa9vb3liVE2NjaSzham7NxRxtPTUzDpzd/fX6V2hGYC6ty5s+i4VCHVb4hz587Rw4cPFdY3bNhQ49+Qml5vtInv765x48ZKC4jwKVWqFP3yyy+Crzl37pzg9o4dO5Krq6vC+rFjx4qKRShJKjOxSwy+c7xOnTqSzIBTo0YNzuSHXr16UeHChUW1xffe1XnfxiJnURtNv5eJhK+vISEh9OHDB437AAAAAAAAAAAA1ekynyE9PZ3zoWwiwxirEkMmkwk+OGioOQ6GolSpUtS6dWvObbt27SLGmOg2R40axbk+IyODtm3bJro9X19f+f8fPXq0yvtFRERwFgw3MzMTnLBCVY0bNxbMZ1BlzFjXDDXf5NSpU5x/q25ubpI8zD1ixAiSyWSc25KTk5UWRXn+/DkdO3ZMYb2rq6takwXkbENZkXJlcp7nZmZmguemKjC+L+34/tevX9W6njo6OtKYMWM4t924cYOuXLkiuk3GWLbJr/r06aP0AWQxNBnfL1OmDC1evFjwNYY6vi9lfuCKFSs41xvbbzQxhP7mfvrpJ9HjyZmmT5+uNJdU2Tk1efJkhXUmJib0ww8/iIpFyvF9XZzf48eP5/wO1ndegzFA3h0AAACAOCgUAQAAAACiCFUzl3r2jcOHDyuss7CwIDc3N7XblMlkNGnSJHr8+DElJibSp0+fyM/PT+NBx5yEqviGhYUZdCXfVq1a0ePHj2n16tVqzXRARBQTE0NDhw6lH3/8UXDGFlVJmbBDJHyjX11Cs1cnJyer3I7QbBDfvn0TFVMmoc/x69evarUppdOnTyusc3FxIZlMpvaibNBT3ZkGtEWX56Sq56O/vz99/PhRYb2pqSmVLVtWo9gy9erVi3dbYGCgYDLfkydP6N9//+WMT4qkJE0H8c+cOaOwbvTo0Rqd123bthXs09DOa0MhNBtEbGysWm3Wrl2b2rdvz7ltz5499PbtW1Htpaenk7e3t/zfAwYMoAIFCqgVmzaULFmShg4dyrv9zZs3nNeLnDQpfqMuqX5D8CUi1qtXT+O2pUwakhpfwp+mfvjhB8HZ6e7du0dpaWm82y0sLOjw4cPyGbbs7e1p4sSJSr//udrho05ChS7O8T179lDr1q1JJpORtbU1DRgwIFsimqr43ntuTST59u0b3bhxI9u6q1evavS9LJPJBIu8EeG7GQAAAAAAAABA13SZz3D69GnO+0NFihShEiVKaNy+ru8dC40pv3r1SoeRGCe+4gshISFqPYRcsGBB3nvO27Zto4yMDJXbio2Nleff5M+fn/r06aPyvgcOHKCkpCSF9SVKlNC4UHkmoTHjc+fOqZ0noS2Gmm+yY8cOzvV8s5mLVbx4ccEJJQ4ePCi4/9atWzkf8pdirE0mk6n9AHSmnHkraWlpZGFhodEYwu7duwX7xBgCN77x/YyMDLXz7WbNmsU7Nrl06VLR7Z0/f57evHkj//eECRPUiktbJkyYIJhvoOrD0Loe35dqbD8yMpIz75Qod4/va2ts38TERGlhg5wP9OfUpk0b2rhxo7wwWdmyZenAgQNUq1YtUbFIOb6vi/O7YsWKtHfvXipevDgRff/vhE2bNlH37t1FtSN1XoMxQN4dAAAAgDgoFAEAAAAAonz69Il3m1DlWrFSUlI4B8sdHR21MugqNWUPdwYHB+smEDWZm5vTzJkz6fXr1zRhwgS1q7y7u7tT//79NS4WoW7/umqPSLiqeUpKisrtCD00GRMTIyqmTEJJPdoaJBLj6tWrOu8zMjJS530K0eU5qer5ePToUc71xYoVkyxeZQMwZ8+e5d3GNXMN0ffq4TY2NhrFJQWc14ZD6PeJJoWb5s2bx7k+NTWVVq5cKaqtnMmkhpZIQkRKZ3IICAhQ2oY+CkVIcb2KjY2lkydPcm6TIpEkL3JycqJu3brxbk9KShIsFkREVKNGDbp37x7FxcVRTEwMeXh4iLr+x8XF0fbt23m3qzMjkS7O8ZIlS9I///xD8fHxFBcXR/v37xeV/JiSkkJ+fn68xcLUed/G4ObNm4LFR7QF380AAAAAAAAAALqlq3wGIv6xKmO9byyU42Do+Q2GoFevXrzHUOheNJ9169bxFoN4+/atyrPBE30v9pA5JjZ48GBRM7bzjRmXLFlS5TaUERozTk1NpYsXL0rWlxQMMd8kOTmZd2xdV5/V3bt3KSoqinMbY4z27dvHuc0QrpkJCQl0//59nfeLMQRu2hjfL1WqFA0ePJhzm7+/P927d09Ue15eXvL/X6VKFWrevLlacWmLlZUVDRkyhHe7KmP7RLof35fq+urn58d57cyXLx9VqFBBkj7ymmHDhgnm7D569EhpG1OmTKEvX75QfHw8vXnzhvr27SsqhlevXtG5c+d4t4sd59bV+d2vXz96//49xcXF0cePH2ny5Mmi9v/w4QMdOXKEd3tuHd9H3h0AAACAOGb6DgAAAAAAjItQYoVUVZ2JiB4/fsx5w96QZtcWoixOdR/41zUHBwfy9PSkH3/8kWbOnCl4s53P4cOHafz48dlmShdL6hvz2rjRLzRbhpjZPIRmilA3AUfo/RYrVkytNqUSHh5O4eHhCuvFzGKijmrVqmm1fbF0eU6qej7mnDEjk5TX4XLlypGTkxN9/vyZc/udO3d49+V7aNvFxUWS2DT1+PFjhXXNmzfX6swCQoVm8jKh3ydiCvnk1LJlS2rYsCH9+++/Ctt8fHxo/vz5VKRIEZXayppIUrt2bcHZePSlbt265OrqSkFBQZzb+dZnpY/iRFJcX/39/XnPFUO55hij/v37887kQvT9d48q39dik7uvX79O3t7e5OfnR/Hx8aL2VUaX57iYRF6i78k5Pj4+tHfvXt5EzdyM63u5VKlSWk9Atbe312r7AAAAAAAAAACQna7yGdLS0ngfyjbW+8ZCY4DGkt+gT1ZWVjRo0CDy9PRU2Hbo0CFyd3dX+X52dHS00vyKrVu3UseOHVVqz9fXV/7/lRUGzyohIYFzghciaceMGzZsSKamprwTkNy5c4d69uwpWX+aMsR8k6tXr1JcXBznNik/qyZNmvBuy8jIoHv37lH79u0Vtj148IA+fvzIuZ8hXDOfPHmicJytra2pc+fOWu3XEN67IdLW+P6cOXNo586dnA9VL1myRPBB7Kw+fvxIx48fl/97/PjxasekTQMHDiR3d3fObZ8+faKEhASlRfh1Pb4v1fWVL5+obNmyBjGhkjFycHCg1q1b8/7+VTWn0cTERNTkD/Hx8fT333+Tj48P3bhxQ+X9VKHrc0FMXkNKSgodO3aMfHx86Pz586JyT3ML5N0BAAAAiINCEQAAAAAgCt/AIhEJVg0W6+nTp5zrjaVQhNAgLpHwcTREVatWpbNnz9Lp06dp5syZSmd4zsnHx4eaNWtGI0aMUKt/qW/M62NGc1XVqlWLTExMOG/wqzuDgVDijqurq1ptSoXvXPL19c1TD9YZ2jn56dMnCgsL49wm9sFUZWrUqEEXLlzg3Pbs2TPO9ZGRkRQYGMi5LX/+/JLFpq709HR6/fq1wvpZs2ZRt27d9BBR3mZmxn/7iy/hTFXz5s2jHj16KKxPSkqitWvX0sqVK5W28fbtWzpz5oz834aaSEL0fUYfvoIQfNcMfZPiNwRfEiSRYVxzjFXdunUFt0t5Tn39+pV27NhBXl5e2X57WFtbU2JiomT9GJqEhATat28fbd68OdtMSJnXxbS0NH2FpnNcvznr1q1Lfn5+eogGAAAAAAAAAAC0RVf5DAEBARQdHc25zVjvGwvlOBhbfoO+jBo1irNQRFxcHB06dIiGDx+uUjuenp7yY85XdP/EiRP0+fNncnJyEmzr5cuXdPPmTSL6Pi5bp04dlWIg+n6ep6amcm6TcszYzs6OypYtyzm+SsQ/Zqwvhja2TyScSyLlZ1WjRg3B7c+ePeMsFGHoY21cYwjW1tYYQ9ATbY3vV65cmXr27MlZEOLYsWP09OlTqlq1qtJ2tm3bJh9js7GxUfnarmu1a9cWLMITFhZG5cqV03FUwqQY22eM0bVr1zi3GcL1xpjVrVuXt1BEVFQUJSUlKc2ZVdWjR4/Iy8uL9uzZQ7GxsfL1uX18//Xr17Rlyxby9fWliIgI+frc/r5zQt4dAAAAgHiGd7cKAAAAAAxaUlIS7zYpEyvevn0run9Doqy6rLEmUnTu3JkCAgJo3bp1ogdPfvrpJ4qMjNRSZLmHnZ0d7ywML168oK9fv4puk29mBiLS+83zDx8+cK7nS6zStpYtW5JMJpNsWbhwoV7eh6a4qnJnkrpwS6VKlXi3vXv3jnO9UKKLIRQUCg8P53z4Vl/ndV4nlKzFNVuIGN26deNNFvH09KSoqCilbXh7e8uLA9nb29PgwYM1ikmbhJIHc/NsYlkfsM/JEK45xsrV1VXw+GVN+FDX06dPaezYsVSiRAmaMWOGPNGvatWq9NdffxlsgRNNhYSE0MyZM6l48eI0ZswY+TlcpkwZWrp0Kb17946KFy+u5yh1i+s3J76XAQAAAAAAAAByH13lM+TG+8ZCOQ7Gmt+ga/Xq1eMdN9qxY4dKbSQnJ9PGjRuJ6PsDrfv27eN8XWpqKm3fvl1pe76+vvL//8MPP6gUQyZDHzMOCQmRdGxfJpNRSEiIpO9LV3T1WRUvXlxwwg++z8rQr5lcYwi5eezT0GlzfH/evHm87S5dulTp/hkZGbR161b5vwcMGGAQ5zAXGxsbwWtrbj3HX716xfveDPWzMhbKik1p+nsxPT2dDh48SM2aNSM3NzfavHkzxcbGkpmZGfXu3ZvOnTtH7u7uGvVhqM6dO0edO3emChUq0KpVqygiIoJkMhm1a9eO/Pz86NixY/oOUaeQdwcAAAAgHgpFAAAAAIAoKSkpvNsyH3KUQtaKuFkZy80+ZYUiEhISdBSJ9MzNzWn69On08uVLGjZsmMr7RUVFqTSzOnyfaYRLRkYG7d+/X3R7Dx8+5Fzv4OBAbdu2Fd2elL58+cK53lj+1nOr9+/f826TOhGsZMmSvNu+ffvGuf7Vq1e8+wglpugKzmvjoWkiiUwmo7lz53Jui4uLkyfy8UlLSyMfHx/5v4cOHUp2dnYaxaRNFStW5N2Wm2cvMPRrjjGrVasW7zZNCsRdv36dOnfuTNWqVSNvb29KSEggMzMz6t+/P129epUCAwPpxx9/zHXJQAEBATRo0CAqV64crV27lqKjo0kmk1HHjh3p5MmTFBQURPPmzaMiRYroO1Sd4/puxvcyAAAAAAAAAEDuo6t8htx431gox8GY8xt0bfTo0ZzrL126xDthSla7d++mT58+ERHRhAkTqHXr1lS9enXO12YdY+KSnp5OO3fuJCIiS0tLGjp0qNL+szL0MWP4H11+ViVKlODdlpvG99PT0yUpag7S0nR8v169etSmTRvObQcOHKCgoCDB/c+dO0ehoaHyf0+YMEGjeLQtL47vG/r1xpi5ubkJbld3fD8pKYk8PDyoXLly1L9/f7p+/ToRETk7O9Pvv/9OoaGhdOjQIWrfvr3khar0KT09nfbs2UPVq1enjh070pkzZ4gxRvnz56cZM2bQy5cvyd/fn/r06aM0Fzm3Qd4dAAAAgHgoFAEAAAAAogjNspGamipZP3yDEcZys0/ZzVlTU1MdRaI9Tk5OtHPnTjp//rzgQHBWW7ZsybUDTVIaNmwYlStXjnObsmQPLufPn+dcv3jxYklnzlEHX1IRX7EY0A2ha63UyRDOzs6829LT0zkH+vlmIiH6PsuOvuG8zlsGDhxIZcqU4dz2119/CSZfnTx5ksLCwuT/NvREkvz58/Nuyw2/bbgkJiYK/u0awjXHmDk4OPBuUyfZ4d69e9SuXTtq1qwZnTlzhoiIrK2tafr06fTmzRs6cOAANWvWTO14DdWrV6+oX79+VKtWLdq/fz+lp6eTmZkZjRw5kp4+fUpnzpyhLl26CM7AlNtxfTfjexkAAAAAAAAAIPfRVT6DoY9VqUPonmxuHQPQhqFDh3IeS8YY7dq1S3BfxhitWbOGiL6fy1OnTiUiojFjxnC+/uXLl3T16lXe9vz9/eXjUD169KBChQqp9B4yGcqYMdeM0pCdoX9Whn7NxPh+3jJv3jzO9enp6bRixQrBfb28vOT/v3bt2lS/fn1JY5NaXhzfN/TrjTETGtsnEj++n56eTl5eXlSuXDmaPHkyhYSEEBFR+fLlycfHh96+fUuLFi2iYsWKqRuywTp48CBVqVKFhg4dSoGBgUREVLRoUVq7di29f/+e1q5dy5s7mhfgexkAAABAvLybGQoAAAAAarG1teXdJmViBV8F8MjISIqMjJSsH21RNhuJlZWVjiLRvrZt29KDBw+oadOmSl8bHR3NW7QA/sfMzIy2bt3K+TDf/fv35bN+qCIiIoIOHz6ssL5hw4Y0duxYjeKUAt914/79+zqOBLISqvIudSJJwYIFebfZ29tzVoOPiYnh3Udom67gvM5bzMzM6Oeff+bcFhUVRZ6enrz7Zk0kadSoEdWoUUPy+KQklEgi9BvRmCmbpcoQrjnGTOicsra2VrmdmJgYGjduHNWvX58uXLggX9+/f396+fIlrVu3TnA2MmOVnJxMv/76K1WtWpX8/Pzk/w3Vtm1bCggIIF9fX6pcubKeozQMXN/Nb9++RTIJAAAAAAAAAEAuo6t8BkMfq1KHUI5Dbspv0DYnJyfq0qUL5zZl4/wnT56k//77j4iIBg0aJH8wcujQoWRpacm5z9atW3nb8/X1lf//H374QbBvLoYyZpwvXz5J+8qNDP2zMvRrJsb385Y2bdpQvXr1OLft2LGDPnz4wLntw4cPdPLkSfm/x48fr5X4pJQXx/cN/XpjzGxtbcnMzIx3u5jx/bt375KbmxtNmDBB/jeXL18+WrduHT179oxGjx6t98mvtOHVq1fUokULeR4DEZGlpSXNnz+fXr9+TTNmzCA7Ozs9R6l/+F4GAAAAEA+FIgAAAABAFKEbkVImVgglGhjDDT9lFajF3BiXSrly5ah79+5aadvR0ZH8/f2pVatWSl/7zz//aCWG3KZly5a0evVqzm0zZ84UrICe1eTJkykxMTHbunLlytGxY8cMYlZpvoSW27dv6zgSyEoouePr168UFxcnWV985wARUYECBTjXC11jDWFgF+d13jN69Gje2XPWrl3LmZwVEhJC/v7+8n8bQyKJULKI0HXDmCn7TWcI1xxjJpSc5OjoqFIb165do6pVq9LWrVvlhRIKFChAhw4dogMHDlCJEiUkidXQPH36lNzc3Gjp0qXy/w6ztLQkDw8POn/+PApE5IDvZgAAAAAAAACAvEFX+QyGPlalDqH3pI/8BmM2atQozvUvX76kW7du8e63atUq+f+fOXOm/P8XKlSIevXqxbnPoUOHKDo6WmF9VFQUHT9+nIiISpUqRW3btlUl9GyExn5UzVdQlTpjxvA/Qp/V27dvJe0L4/uQG8ybN49zfUpKSrZrcVY+Pj6Unp5ORN8nPRk8eLDW4pMKxvezM4TrjbHjKwhkaWlJ9vb2SvfPyMig3377jRo1akRPnjyRr2/atCk9efKEpk+fLliMwph5eHhQjRo16OrVq/J1VapUoXv37tGff/5JNjY2eozOsOB7GQAAAEA8/T8VBAAAAABGRSixQsoHh4UGeu/duydZP9qSkpIiuF3VB9+kps1jZ21tTYcOHaIyZcoIvi4wMFBrMeQ2M2bMoA0bNigMgERERFDr1q3pzZs3vPtmZGTQtGnT6O+//862vmLFiuTv709OTk5aiVksvkHJf//9V8eRQFYODg6C2589eyZZX0IV4CtUqMC5Xij55MuXLxrHpCm+8zoiIoKCgoJ0HA3ogpWVFU2fPp1z26dPn8jHx0dh/datW+WzcxUsWJAGDBigzRAlkZCQwLtN2fe/sRK63hAZxjXHmAklF5csWVLp/lu3bqU2bdpkm9mnWLFidOPGDerdu7ckMRqikydPUsOGDeUzyxF9T0jz9/eniRMn6jEyw4XfnAAAAAAAAAAAeYOu8hkMfaxKHUI5DvrKbzBWnTt35i0wvn37ds71t2/fpmvXrhERUceOHal69erZto8ZM4Zzv8TERNq9e7fC+r1798oflh05cqRak0gIjRlHRETQ58+fRbfJR50xY/gfoc9KyrF9orw1vo8xhNyrZ8+evEXXt27dqnBepqenk7e3t/zfQ4YMEfzNYSj4xvfNzc2pePHiOo5GNwz9emPs+Mb3S5QoQTKZTHDfhIQE6tatGy1evFhedIWIqF+/fvTPP/9QqVKlJI3VUKSnp9OYMWNo8uTJ2SaZad68Od26dYuqVaumx+gME/LuAAAAAMRDoQhQEBcXRw8fPqQzZ87Q9u3baePGjbRq1SpasmQJrV69mjw8PMjX15eOHDlCDx48oIiICH2HDAAAADokNEjw9etXyfopVqwY77Zjx45J1k9WiYmJkrWlrFBEkSJFJOtLjI8fP2Z7kE5qBQsWJHd3d8HXhIeHa63/3Gjq1Kl05coVhUGB169fU/Xq1em3336j58+fyx82jomJob///pvq1KlDGzduzLbPiBEj6P79+1S2bFmdxa9M0aJFOde/f/9eL1WgL1++TIwxyZaFCxfq/D1IQVkhkadPn0rWl9DsTTVq1OBcL1SF/vHjxxrHpCm+85qIyM/PT4eRgC5NmjSJ8ufPz7lt1apVlJaWJv93Wloabdu2Tf7vESNGkJWVldZj1NS3b994t5UvX16HkeiOslkvHj16pJtAcilNzqktW7bQuHHjsn2PWFhY0IkTJ6hKlSqSxWhoTp06Rb1791ZIat+7dy81b95cT1EZPr7v5kOHDuk4EgAAAIDcATkFAAAAYKh0lc8gdO/YWO8bC+U46Cu/wViZmZnRsGHDOLf9/fff2R4SzJR1BvtZs2YpbG/dujXvOH/Wh5cz+fr6EhGRTCajUaNGqRR3ToY+ZlymTBlJx/YZY0ZbGF3os3r16pXg8RVL6vF9Q7hm8o0h/Pvvv1rNsQL9kclkNGfOHM5tCQkJtG7dumzrzpw5Q+/evZP/e8KECVqNTyp8Y7EuLi5qFRAyBkLXm5CQEIqJidFhNLkP3zmlbGw/KSmJunXrRqdPn862vnHjxrR7927BIkTGjDFGI0eOVJhcply5cnTs2DHKly+fniIzbMi7AwAAABDPTPlLILd7+PAhXbx4ka5du0YPHjxQ66aWjY0N1a5dmxo2bEiNGjWidu3a8VZyAwAAAONWrlw53m3fvn0jxpjS6sCqcHFx4d12584dev36tWAsYqWkpFClSpVo9erV1K9fP43bE0oyMTEx4Z09Qhf++ecfGj58uNba79y5M9WpU4fu37/PuT1z1gpQXePGjenatWtUq1YtCg0Nla9PSEigxYsX0+LFi8nMzIwsLS0pPj4+274ymYy6detGP//8MzVt2lTXoStVunRp3m2enp7UoEEDyfvcu3cvNW3aNNdWIpdC7dq1ycTERF6AJCcpkzW4EqEyNWzYkHN9iRIlePeJioqi4OBgvRZEKVy4MNnZ2XHOTOXl5UU///yz5IPu169fp4yMDDwkrEf58uWjSZMm0bJlyxS2hYaG0u7du2nkyJFE9L3o1adPn+TbjT2RxMLCgmrVqqXbYHTExsaGChYsyPvbju/3DqiGLxGnRIkSgr+Xb926RZMmTVJYP336dKpdu7Zk8RmaoKAgGjRokEISZv/+/alr1656iso48P3m/O+//+jy5cvUsmVLSftLS0ujTZs20Y8//khmZhiGAQAAAOOHnAIAAAAwFrrKZxAaqwoMDKSUlBSje+BNKMdBaKIP4DZq1ChavXq1wvro6Gg6duwYDRgwQL4uKCiIjhw5QkREbm5u1KZNG4X9ZDIZjR49mn777TeFbY8fP6a7d+9SvXr1iIgoICCAHjx4QEREbdq0Ubv4Qd26dQW3P3r0iFq1aqVW2zmpM2YM/1O3bl3asWMH57a0tDQKDAwkNzc3Sfri+6zy589PlStX5txWokQJ+vLlC+c2Qxhr4xtDSEtLo61bt2plgpAtW7ZQnz59qHDhwpK3DaoZPHgw/f777/T27VuFbR4eHjRnzhz5RBFeXl7ybQ0bNqSaNWvqLE5N8I3vayMXy1AI/UZjjNGDBw8k++7KazIyMjjzoIiU/2b46aef6OLFi9nWyWQy2rJli9H9ZhZj1apVtHv3boX1GzdupAIFCug+ICOBvDsAAAAA8XJnKUBQ6sOHDzR//nwqV64c1a1bl2bPnk0nTpyg9+/fq1VFNz4+nq5fv06rV6+mPn36kJOTE/Xt25f8/Px4HywCAAAA4ySUWJGRkSE4K7AYfFXmM2XOfiCVHTt20Nu3byWbHSAyMpJ3m4uLi14fFvL399d6H0OGDOHdpmxmblD07t07atGiBYWGhlKFChXo6NGjtGTJEurRowdVrlyZnJycSCaTkYmJCZUuXZrq1KlDo0ePJl9fXwoJCaFjx44ZZJEIIqKqVauSqakp57YDBw4I/i2pIzExkaZMmULz5s2TtN3cJl++fIID22fOnJGsL76kM3Nzc2rfvj3nNmWV6O/evatxXEIYY0pfU716dc71wcHBdPbsWalDoiVLltCgQYMkbxfEmT59OllbW3NuW758ufweSdZEkpYtW1LFihV1Ep+m3r9/z7m+Xr16ZGVlpeNodEfommMI1xtjxvcd0KRJE9590tPTadSoUZSenq6wbcqUKZLFZojGjx9PsbGxCuunTp2qh2iMi9B/X3p4eEje36FDh2jGjBl06dIlydsGAAAA0BXkFAAAAIAx0lU+g9B949TUVEmLruekrfvGQuOyFSpU0EqfuVmVKlV4H8TN+UD/2rVr5b+JZ86cydvmqFGjeMfWvb295f8/az7N6NGjVY45p6pVqwo+xK6LMWNnZ2elD58CKX2oURefVfv27XlzoYSumQ8fPqS0tDRJYuOiyjVTaAxh69atCgW8NfXhwweaPHkyrV27VtJ2QRxzc3OaNWsW57aYmBjatGkTEX3P2cr6N2Qsk0AQ8Y/vN2vWTMeR6I4x5BMZq+joaN73JzS+f/36dfL09FRY36ZNG6patapk8RmaN2/e0Pz58xXWly9fnjp16qSHiIwL8u4AAAAAxEGhiDwmNDSUhg4dSi4uLrRs2TJ68+ZNtuQMmUym9pK1ncTERDpy5AgNGDCAXF1dyd3dXbDiLwAAABgPZTfTP378KEk/xYoVEyza8Ndff/FWmxcrKSmJlixZQoUKFaI6depI0mZERATvNr4K+rpy6tQpSk5O1mofQjM6SFWMI6/477//qHHjxhQQEEDly5enq1evUo8ePeiXX36ho0eP0rNnzyg8PJxSUlLo27dvFBISQvfu3SMfHx8aOXIklSpVSt9vQZC1tTXvjf2kpCT6+eefJe1v586dFBUVRY0bN5a03dxIaGbtV69e0cuXLyXpJywsjHN98+bN5bMz5KTsWr1//36N4xKiysMLQjMw/Pzzz5Jeh58/f07nzp3DeW0AnJyceBPuXrx4QX5+fhQUFEQXLlyQrzemRBK+xNZevXrpNhAdE7rm/PfffxQQEKC1vg31YSmuIg3qePbsGef6zp078+5z/PhxevHihcL6cuXKCc4QY+wePnxI//zzj8J6KyurXD3rj1SEjpGfnx9duXJF0v42bNhApqam+GwAAADAKCGnAAAAAIyZrvIZ9DlWpa37xoac42CsRo0axbne39+fPn36RETfj3tmYYdSpUrRgAEDeNsrXrw4dezYkXPbvn37KD4+nlJTU2nPnj1ERFSwYEGNxnBkMplgAYIrV67wziwuFt+YcdeuXUkmk0nSR25WvXp1KlSoEO/2kydPStYX32fVvXt33n2ErpmxsbF0+vRpjePio8o1s3z58rzHLywsjJYtWyZpTJs2baK0tDSM7xuAMWPGkKOjI+e29evXU0JCAnl7e8vHRgsWLCh4nTYkGRkZ9OTJE4X1pqamgn+vxq5ixYpkZ2fHu90Q8on0QYrxfb6xfRsbG8Ecs1WrVnGuF9onN9iwYQNnoaEWLVroIRrjg7w7AAAAAHFQKCKPSE9PpwULFlDlypVp3759lJqaypnEQSSukmFmEgcR8SZ5hIaG0tSpU6lKlSqSVqUFAAAA/bCzsxOcLeLDhw+S9cU3wE30faBwyZIlkvSzevVqCg0NpTZt2pCJiTQ/kYWKWFSrVk2SPtQVHR1Nx48f12ofDg4OvNvc3Ny02ndu8t9//1GLFi3o/fv3ZG5uTkePHiVnZ2d9hyU5ob91X19fyZIWEhIS6I8//iAiDLqoYtiwYYLbpbqOBAcHc64fM2YM7z5OTk6CVeVPnjwpWTEhLqrMaCJ0Xj979ox+/fVXyeKZM2cOMcZwXhuIWbNm8c6Ws3TpUtqyZYv8XoqTkxP17t1bl+Fp5PHjxwrrTExMqH///nqIRndat24tuH3btm1a61ubMyhpIiUlReM2oqOjKSgoSGG9lZUVde3alXe/EydOcK53cnLSOKasDG22F773XahQId5rjjoM7X1LpWbNmlS0aFHObYwxGjVqlGQJzUeOHKFbt25RrVq1KF++fJK0CQAAAKALyCkAAACA3EBX+Qy1a9emAgUK8G7fvXu35DPQZ9LGfePU1FSKiYnh3GZqakqVKlWSvM+8YODAgWRtba2wPj09nXbv3k1ERO7u7pSYmEhERNOmTVN6v/eHH37gXB8bG0sHDhygU6dOycdJhwwZQlZWVpq8BcEx45SUFMlmdFZnzBj+RyaT0dChQ3m33759mz5//qxxPxkZGfT27VuF9QULFqQ+ffrw7mfoY20ymYzat2/Pu33x4sX08OFDSeL58OEDbdy4kczMzKhJkyaStAnqs7a2pmnTpnFui4iIIHd3d/Lx8ZGvGzFihMbXVV0JCgriHPtq3bq15OOqhsTExEQwd+bhw4e8E2RIITeP79+/f59zfZcuXXj/LlJTU+ncuXOc2/Lq+H5uf99SQd4dAAAAgDi5tlBEZGQk3b59mw4ePEjbtm2jjRs30rJly2j58uW0fv168vb2phMnTtC9e/coOjpa3+FqVXBwMDVs2JAWL15MSUlJ2ZI5uIipvqusnawJHiEhIdS1a1caNWqUJP+xCQAAAPrTrFkz3m3v37+XrB9lDx16eHhoPBD3+PFjWrx4MRHxD6irIyQkhHdbo0aNJOtHXevXr9dq+0IPaHfo0EGrfecWHz9+pHbt2smP5aBBg6hKlSp6jko7+vXrJ7h97Nix9O7dO437WbRoEYWFhZGbm5veC7YYAzc3N8FK2Zs3b5akEn5AQIDCOmdnZ8FEEiKinj178m5LTU0lLy8vTUPjpUpV8latWgkWzVm3bp0kiVNnzpyh48ePk4WFhdHMXJHblSlThgYNGsS57fHjx9m+g0ePHk3m5uY6ikwzsbGxnL+7+vbtSyVLltRDRLrToUMHzkTOTLt27eJNoNWUlLMgSCk+Pl7jNu7evcu5vk+fPoKzXgUGBnKul+oh/0xSzKoipbz6vqXUt29f3m3BwcE0YcIEjRNp4uLi6OeffyYiouHDh2vUFgAAAIAuIacAAAAAchNd5DOYmZlRly5deLd/+fKFDhw4IElfOWnjvnFoaCjvvbGaNWuSjY2N5H3mBfnz5+ctGL5jxw5KTEwkd3d3+WvHjh2rtM1u3brxTi7h7e1Nvr6+8n+PHj1ajaiz6969O5UqVYp3e2b8muIaM3Zzc6OGDRtK0n5eMHnyZN7/9srIyCBPT0+N+3j58iUlJSUprB85cqTgWFqdOnWoRIkSvNtPnTrFWyxEU6peM4XyVlJTU2no0KGSjAf+9NNPlJCQQN26dRMsOAS6M3nyZLK3t+fcNn/+/GxFpiZMmKCrsDR25coVzvUzZszQcSS6J5RPRES0adMmrfWdm8f379y5w7l+3LhxvPu8evWK95jk5nHu+Ph43u+13Py+pYS8OwAAAABxckWhiLi4ODp37hzNnz+fWrRoQQULFiQnJydq3LgxDRw4kMaOHUszZsyg+fPn06+//kozZ86k8ePHU8+ePalBgwZUuHBhKlasGHXs2JH+/PNPunTpksFW8xPr9u3b1KBBA3rw4AFnMkfmDB05F3Nzc7Kzs5Mfm5IlS1KxYsWoSJEiVKBAAfkNPb79cw4aZE3u2LlzJ7Vu3ZqioqJ0eiwAAABAOkKJFVyV49XVsmVLKleuHO/21NRUGjBgAEVGRqrVfnh4OPXr14+Sk5OpQoUKgtXhxeIrFCGTyQQfvNaVmzdv0qlTp7TW/rNnzzjXV6pUierXr6+1fnOTESNGZBtsNMQECKkqUteuXZtq167Nu/3Tp0/Url07jWb4OXPmDK1atYqIiMaPH692O3nN1KlTebcFBQXR4cOHNWo/Pj6e88Hzn376SenD86NGjRJ8KGHp0qWcM9VLISEhQelrLCwsBB8QzcjIoL59+/IOzqvi/fv38j569+5Njo6OarcF0pozZw7v+Zn5oIuJiYnggLmhOXTokHxGq0wymYzmzZsnSfuGPHhtb28vmBwWFRUlfzBcaqpcb/QhIiJC4zb27dunsE4mk9HMmTMF9/v69Svn+pcvX0qaeCPlbH9SnN987/vbt28UGhqqcfuZNHnf2pqtRKp2lSVZ79mzh6ZNm6ZRf2PHjqWgoCCytrYWVSgit870AgAAAMYBOQUAAACQ2+gqn0HZRBSzZs3iva+nCW3cNxaaCMPYZrwXKnQvRRF8sfiKNQQGBtKUKVPkE0eMGzeO90HlrMzMzGjEiBGc227duiXPA3FzcyM3Nzc1o/4fU1NTmjRpEu/2y5cv07179zTq49WrVxQeHq6wfu7cuRq1m9dUqFBBcOIWd3d3hbE+sa5du6awztLSkqZPny64n0wmEyxckpaWprUH8FW9Znbr1o2KFCnCu/3Zs2fUpUsX+vbtm9qxeHl50d9//01EyFsxJAUKFKCJEydybstaxLJly5ZUsWJFXYWlsd27dyusq127NnXq1EmS9g15fH/AgAFkZ2fHu33btm1048YNrfSdW8f34+Pj6cSJEwrra9WqRW3atOHdT+i3MFeRKE0Y0vi+0ETGhvK+DX1s39Dz7jC+DwAAAIbGaAtFxMXF0Z49e6h79+7k6OhInTt3pmXLltH169cpJiZGMNmAa/n06ROdP3+eFi5cSG3btiVHR0caOHAgnThxQi83h6Vw584d6tChg/w/7DKTKjIXZ2dn6tGjB82dO5d27txJ169fp1evXlFMTAwlJSVRTEwMff78md69e0chISH07t07+vDhA0VGRlJcXBylpaVRdHQ0hYSE0N27d+nkyZPk6elJc+bMod69e5OrqysRUbYkj8wYbt26RT169MAsIAAAAEZKKLHixYsXkvWjysOHr169og4dOtDnz59Ftf38+XNq2bIlvXr1ioiIpk+fLmoWNGX4KgJXq1aNChcuLFk/mhg3bpzaRTaUOXjwIOf6OXPmqNWe0I1VdW66Cv3G18ZNXLFt+vv70/nz57OtO3HihMHdYBb6PS92EGL+/PmC21+8eEGNGzdWK8nE39+f+vXrR4wxKlmyJA0bNkx0G9rGd07q+3zs37+/YPLXypUrNYrl7NmzCudRyZIlBQtUZHJ1daU+ffrwbk9MTKSxY8dq5RiqOlPIzJkzycrKind7fHw8dezYkXbt2iU6htDQUGrVqhVFRESQqampytfXiIgImjlzJrm6upKlpSUVL16chg8fTk+ePBEdgzbo+jqnrf6qVq1K3bt3F3xN+/btqWzZslrpXxu4EknGjRtHtWrVUrkNoe9fKWaw4ML3GYv97GfNmiX4W9Hb25suXbokqk1VSDEzkTZ8/vxZo9hiY2PliXBZ9enTR2niKt/MdUlJSXTs2DFRcQhd+/iSJdVJMpbi/BaasU/szIRv377lTWRU531n4vttqGlSjlTtVq9eXem1+a+//qJBgwaJnsklIyODJkyYQPv37yciookTJ4qaCUzK39UAAAAAYiCnAAAAAHIjXeUztGrViurWrcu7PTw8nH766SfJ+suUnJws+WzVfPkNRN8fjDUmQsdGH7N8t2rVisqUKcO5zcfHh4iIzM3Nadq0aSq3KVSkJPPBRmWFTMSYOnWq/Lc7lxUrVmjU/vHjxxXW1atXT7CItz4Zcr7J6tWreSdk+PLlC23btk2jWLg+qylTplCpUqWU7jtp0iSytbXl3e7v7087duzQKD4uqo5nmZub0+zZswVfc+PGDWrWrBm9fv1adBw7d+6kyZMnExFR3bp1VZ7M6Pr169StWzcqXLgw2djYUPXq1enPP//U2tiqWLllfH/GjBlkaWkp+BptFTPRhrdv39LVq1ezrZPJZPTXX3+JakfX4/tS5Qfa29sLfl6MMRozZgwlJSWJik8Vhjq+//LlS432//vvvyk2NlZh/eLFiwXzKITGuE+ePCm6sEZgYCDvNrHj3No8v4Xe940bN0RPliV1XgOR9sanpWzXEPPuMmF8HwAAAAyN0RWKePXqFU2cOJGKFClCw4cPp1OnTlFycnK2ZIXMmSbELlnbiImJoYMHD1LPnj2pePHitGDBAklmytOVsLAw6tGjB3379i3be2vSpAn99ddf9OzZMwoLC6MjR47Q0qVLaejQodS4cWNydXVVqSox0fcbBvny5aNSpUpRnTp1qHPnzjR+/HhatmwZ+fn50cuXL+nr1690+vRp+vHHH6l48eLyz4cxRjdv3hSsNAwAAACGy8XFhapUqcK57dmzZ5L2NXz4cKUPIN6/f5/q1KlDp0+fVtpecnIy/fXXX1S3bl16/vw5EX2vli3ljN5xcXH08eNHzm3dunWTrB9NhYWFUffu3UU/BKXMtWvXyN/fX2F93bp11X5AXyhhIy0tTXR7QrMkqNOeMmJv/m7fvl1h3ZkzZ6hZs2bk4+NDjx8/ps+fP1N8fDylpaXprYCE0EwJXINDQnr16iWYtEX0fSCzSZMm9Msvv6g0S0NiYiLNnz+funbtKh/AWbNmjeBgjL7wnZP6Ph9lMhlt2bKFN5nk7t27tHPnTrVj2bp1q8K6VatWCQ7yZLV48WKysLDg3X7p0iW1EvAYY4LfZ6rO3F6sWDGaNWuW4GuSkpJo+PDh1LdvX3rz5o1Kse3evZvq1asnT0AZP368Sg/rv3r1itzc3Gjt2rX05s0bSklJobCwMNq1axfVqVOH3N3dVXpf2iR0fur770EsZcWujGmWmIsXL9I///yTbV3JkiVp2bJlotoRGih99+6dWrEpw/cbQuz5VL16dcHfMYwxGjBggFqJYU+fPuXdpur1RtcYY5wzhqjK3d1dIbnC3t6e1qxZo3RfoVkcfvvtN5WSNtLS0mjJkiWCSdxcs3wEBQXRwoULeffhO8elOL+F3veqVat4//sjp61bt1K1atV4Z2/het8RERE0Y8YMpW3z/T4T+7tQm+0uX75c8LcD0ffCGzVr1qSjR4+q1Obz58+pdevW5OXlRURERYoUETxPuEj5uxoAAABAVcgpAAAAgNxKl/kMyh6Q3759O23YsEF0uykpKfJJL7hIfe+Y7+FBS0tLlR9mNhRC+Q/6eLBaJpPRiBEjBF8zaNAgKl68uMptVqhQQXBs3crKigYPHqxye8pYW1vT5s2bebf7+fmpPZtzRkaGvGBGJlNTU1q/fr2kk71IyZDzTapWrSpY7GDhwoUUFRWlVhzv3r2js2fPZltXtGhR+uWXX1Ta39nZmWbOnCn4mokTJ9KtW7dEx/bhwwfe2dvFXC8nTpxI5cqVE3xNQEAA1a5dm9asWaNS8ZmvX7/ShAkTaOTIkZSenk4ymYzc3d1VOr83bdpELVq0oJMnT1JUVBQlJiZSYGAg/f7771S9enVJix+pK7eM7xcpUoRGjRrFu93JyYl69eqllb61Yf78+Qq5ZJMmTaLGjRuLakfX4/tS5gfOnTuXChUqxLv9+fPnNHToUHmBJTGMcXz/woULgt9fQlJTU2nt2rUK67t3705dunQR3FdojDsiIoKWLl2qUgxv376l9u3bC+YTcH0PeHl50fXr1zlfr83zu0CBAry5dqmpqSoXJYiKiqIhQ4YITrjE9b5PnjypdLIJbY1PS9muoeXdZYXxfQAAADA4zEg8efKEde/enZmamjITExMmk8nki4mJiVaWnH3Y2NiwGTNmsIiICH0fDqU6d+6c7dgMGzaMPX/+XK8xZWRksEOHDrGqVatmO67//POPXuMCAAAA9SxatIgRkcJiY2PDMjIyJO3r3r17zMLCgrO/nEujRo2Yh4cHCwgIYLGxsSwlJYWFhYWxy5cvs3nz5rESJUpke72pqSm7f/++pPHeuHGDN75///1X0r7EcHV15YypQYMG7MOHD5L0ERkZySpWrKjQh62tLQsMDFS73fHjx/Me0y9fvohub+fOnbztHTlyRO04+dqcNGmSqHbq1Kmj0vnOtZiYmDBTU1Nmbm7OrK2tWb58+ZijoyMrXbo0q1q1KmvevDkbMmQIW7duHQsICFD7vTLG2NSpU3njOH78uOj2Xr58yWxtbVV6n/b29mz8+PHs2LFjLDQ0lCUlJbGkpCT24cMHdvr0aTZjxgxWqFChbPt07txZo/erLenp6czc3Jzzffbo0UPtdkeMGMF7nRaL75pPRKxQoUIsNDRUdJsXL15UaGvkyJGi2/njjz+Uni9Tp05l6enpKrWXlpbGhg8frrQ9VSUlJbFq1aqpdF6bmpqynj17sh07drBnz56xuLg4lpqayj5//sxu3LjBli5dysqXL59tn+LFi7OoqCiV3lf16tWVxuDt7a3ye9OGO3fu8Ma2ceNGtdoMDg6W7PosVqtWrTj7LV68OEtLS5O8vxYtWnD216JFC7XbTE5OZpUqVcrWnoWFhVq/aW7dusX7WTRv3lztGIV06NCBsz9bW1vRbX358oU5OTkJ/g0VK1aMPX78WOU2//33X4Xvq5zXhc+fP4uOVSp85xQRsSpVqrDU1FTRbb5+/ZpZW1srtOfl5aXS/nPnzhX8DDp16sTi4+N59z9y5AirUqWK0uuhm5tbtv0CAwNZsWLF2IgRI3jb5vodnLm8efNGpffHZ/PmzYLx1qlTR/B38eXLl1mjRo2Uvu/ChQtn+858//49q1KlitLrSFRUFG+btWvX1ui958+fn7PdQoUKqdXekiVLVPpezjzPlyxZwm7evMkiIyNZWloai4mJYc+fP2fbt29nXbt2ZSYmJtn2OXDggOiYDh8+zBvDTz/9pNb7BAAAAFAGOQUAAACQm+kyn2H06NFK7zOtWrVK5fbi4uJY+/btBdtbu3atpO+hXbt2nP107NhR0n50wc3NTfDYRUdH6zym4OBgJpPJeGNSZ9x+x44dvO0NGjRIC++CsVGjRvH26eLiotax9fX1VWhr4cKFWoheOoaeb5KYmMgqV67M217fvn3Vii9n/oGJiQm7ePGiqDaSkpKUjtHY29uL+m/Aly9fstKlSwu2+eDBA5Xbu3r1KjM1NVVpDMHR0ZH99NNP7Ny5c+zDhw8sOTmZJSQksNDQUHbkyBE2duxYhRwYVT/P27dvC143iIg5OTlJlu+lrkmTJvHG9+3bN7XaXLBgAW+bd+7ckfgd/E9QUBDvZz9nzhzJ+xPKY/D19VW73StXrii0V79+fZacnCy6LaF8vW3btqkdI5+PHz/y9jd58mTR7Qldr7NeExMTE1Vu85dffhFsr3v37qLjlIrQOUVEbMmSJWq1yzW26uDgoPL1p0iRIrwxmZiYCOYpxcTEsN9++43Z2dkp/Sw3bNiQbd81a9YwImKXLl3ibFvb+SsNGzYUjHfBggW8+yYlJbE1a9YwBwcHpe97xowZ2fbdv38/Mzc3V3odWbt2LW+b6uZnMSb9uLeh5N3l1L17d944NM3JBQAAAFCHwReK+PLlCxs/fjwzMzPLVrxB3YIPORexbZiYmLD8+fOzlStXaiWhXwoXL16Ux+rs7Mz7Hzf6kpKSwiZOnCg/prVq1dJ3SAAAAKCGFy9e8N7oevHiheT9KXswSt1l3bp1ksfq4eHB2VfZsmUlTzoRg69QBBExZ2dn5ufnp1H7kZGRrEGDBpw3YDUZDGfse9IyX+yPHj0S3Z7QQ++qPqTIha/Nbt26iWpn0KBBWjnfuZa6desyf39/td5v3bp1edudO3euWm36+fkpHexWZ3FxcVHrpr4uhIaG8sbdqFEjtdvlKxRBRCwyMlJUW+np6axbt2687dWsWZN9/fpV5fZCQkIUCvfUrVuXxcXFiXyX3wsg8D0InnVp1aoVe/36tWBbgYGBnNexnIuVlRW7cuWKfL+nT5+yCxcu8Lb76tUrwQfB1V0sLS3Z7du3VTpOXIU5uBYbGxsWEhKi2sHXgqNHj/LG9vvvv6vVptBguNjrs1j+/v6c/QoN+GqC76F+CwsLtmPHDrXaHDNmTLa2TExM2P79+9Vqa/ny5byfhYmJiVZ+Qwolm6mTsHjp0iVmZmam9O/Iw8NDsEBNamoqW7ZsGbOyslL6d9m3b1954YP4+Hjm5+ens0RWoUIRROKTE+Pj4zmLFYgpFHT58mWlx6x8+fJs9+7d7PPnzyw+Pp4FBgay1atXsxo1ashfY2ZmxlavXs1brImI2L59+1hCQgI7cOAAK1CgADMxMWGnT5/mjOvdu3eC58b8+fNFHauc3rx5o/Q3UtGiRZmnpyd7//49S0xMZC9evGCenp6scePG2V43c+ZMVrZsWd52Vq1axRISEtj58+fl39ebN28WjO/kyZOC31cxMTFqve/AwEDB96zOg4wZGRmsR48eKn0vil1yJuKoatasWbxtNmzYUK02AQAAAIQgpwAAAAByO13mM8THx7OaNWsqvXfUr18/9unTJ8G2rl+/LliQNnNxcHBgT58+le939+5dduvWLbXfA1+RZE0eVNWH1NRUzkLFWRdNjpMmWrduzRlP+/bt1WovISGBt8iu0LilJhITEwVzBNq3by/qQeQHDx6wfPnyZWujS5cuKk8AoC+Gnm/C2PfiCQUKFOBtU+xYpY+Pj0Iby5cvFx0XY4w9e/aM2dvbC/6dmpmZsUWLFik9n7y9vXn/DrIuTZs2ledIJCcnszNnzghOhiH08KwmS8OGDVX+G1E2uUXmou8JU3r27Mkbm7pF1IUKRRw6dEjid5Dd4MGDFfqUyWQaF4TnIpTHULlyZbX6/PDhAytVqlS2tsqVK8fCwsJEt5WRkSFYdKZZs2ai21RGaGKRnj17qtVmznwHrqVWrVpKC8q8ffuWderUSWlbMpksWz5FcHCwWpMtqUNZoQgLCwt27do1UW3evHlTIafB1NRU1G+NkSNHKj1uAwYMYDdv3mTx8fHs8+fP7NKlS2zixImsYMGC8te4uLgIjqlWqFCBBQcHs8+fP7OJEyfK1/GNU2s7f2XhwoVK33e7du3YhQsX2Ldv31hUVBS7desW+/nnn1nRokXlr3F0dBT87eHg4MAeP37MoqOj2cKFC5lMJmOOjo7s3bt3gvH17duXt82BAweq/b61Me5tCHl3WaWlpTFnZ2fedpXlVgAAAABog0EXiti/fz8rWLCgYIEIvgIQpqamrGDBgqxMmTKsRo0arG7duqxRo0asefPmrEmTJqxevXqsZs2azMXFheXPn1/lQhJZ19eqVUvy2ael0LdvXyaTyViBAgW0kmAvlZEjR8qPpboPpgEAAIB+1a5dm/NG1+7du7XS32+//Sbpjb5ffvlFK3HyVdNetGiRVvpTlVChiMylbdu2aiUF+/v7Kzz0TUTM3Nyc7d27V6O4U1JSBG/0enh4iG6zTZs2vO2NHTtWrThv3rzJ26azs7OoZIanT58qTWCRepk0aZKoYnjHjx8XbM/Ozk7pQ/l83N3dJS0WYW9vb9CVmnft2iUYu5jK9ZkyMjIEk8hOnjwpus24uDjWsmVL3jZr1qyp0kD18+fPFa5HderU0aiQR3R0NKtTp47Sc8HCwoKNHDmSnTp1ioWHh7OUlBT27t07dvr0aTZw4EBmYWHBiL7PUN61a1fBtmQyGStdurR8ULJSpUqCMf77778KiU6aLmKS8/iKGHEt06ZNU/uz0NScOXN44+rdu7dabR44cIC3zSJFimi9iFPOc9PU1JS9f/9eK30pe6j/t99+E3Wt//XXX7Ptb2ZmpnbBiaCgIN5E06zXgs+fP6vVPpfw8HDBGX/4HvhXZufOnczExETp31KlSpXYunXr2JMnT1hCQgKLjY1lAQEBbMWKFaxChQry1wkV9slc7OzsWJkyZeSFCNQt1iGWsnOKiNiECRNYUlKS0rYiIiI4v0c6dOig0v5Z8f13iKpLsWLF2NWrVxljTKVZODKXpUuXcsaTnp7OBgwYILivubk5O3v2rKj3mVPv3r01et/58+dnhw8fZowJF/zKuYwbN04wrtTUVFa/fn3BNiZOnKiV99y1a1e1kobj4+NZq1atNDqeOZe2bduqVVz6/fv3SpNiDxw4ILpdAAAAACHIKQAAAIC8QJf5DO/evWNlypRReg/J1taW/fjjj+yff/5hkZGRLCUlhQUHBzM/Pz/WtWtX+RhpmTJlWPPmzQXbMjExYWXLlpXfW+rYsaNasfPN3m1vb69WkXd9OnPmjNLPQN3C5JravXs3Zzya/M6dMGGCQntlypTR6tjXp0+fBGd1bt26Nfvy5YvSdm7duqVwf75Tp06ixwv0wdDzTbK2KTQ+PWPGDJaamqq0nS1btiiMi/3xxx/qvE25CxcuqFRMvWTJkmzx4sXs/v37LC4ujiUkJLD//vuPubu7Mzc3N/nr2rdvLzhjPdH3ySBcXFzkOQHKCl0IjVursxQvXpx9+PBB5WOkbNwl6/Lw4UONPg91paens2LFivHGpe7D8UIP48+ePVvid5FdQECAQr5Shw4dtNKXsof6nZycRD3UHxkZyapXr56tDVdXV8GiKEI2bdqk9NyTeoKM1atX8/ZVtGhRtcbhkpOTBSeoylxMTExY79692aFDh9iHDx9YSkoK+/jxI7t48SIbM2YMs7W1lV9L+vfvr9LffGZ+RL58+VhKSoqkx4qLsnOK6Hvegao5Y5cuXVL4HpHJZGzbtm2i4nr8+LHG19Du3buzr1+/Ck5ekHMpUKBAtsJqWekifyU8PFzj/M9GjRqxd+/eKZ1cIetiYWGhNP/3wYMHgrk0pqam7ObNm6LfszbHvfWdd5fVxo0bBdstUaKE6Em8AAAAADRlkIUiYmNj2bBhw+SFGfgKQzg4OLBWrVqxiRMnso0bN7ITJ06whw8fqnSTMafU1FT2/v17du3aNbZr1y72+++/s549e7KyZctyFqrI/LelpSVbu3atFo6CetLT05mtrS0zMTFhK1eu1Hc4guLj41mxYsWYiYmJ2jdHAQAAQL+8vb05b3RNmTJFa30uW7ZM4wfITUxMNB60FFK1alXOm6fqDrxIRZVCEZlLtWrV2O+//86uX7/Ovn37xtnef//9x7y8vFi9evU423B0dGQXL17UOO7FixcLxlqyZEn29etXldt78OCB4MOdFhYW7NGjR6JiTElJ4Z0BJHMR+98NV69eVTqQLfWibDbv5ORk9vr1a7Zx40ZmY2OjtD1HR0fm5eXFXr58KbrYwc6dO5mlpaXG76lAgQJqDVzoSkpKCu/fUOaizkA33/U5c6lXr56o2VwyJSQkCFYUt7W1ZYsWLeKcDen9+/ds0aJFCgkf/fv3Z9HR0aJjySkyMpI1bdpU43PG1dWVPX36VHCWiqxLlSpV2OrVq1UaHLx//z5nUR2xi4mJCXN3dxd1fHbs2KFy+yVLllT3Y9BIcHCw4KCeqakpu3z5sqg2VZnFS52CQ2L4+fll669Hjx5a62vLli3yBAW+pUaNGkoTSmJjYxUees+XLx87c+aMqHji4uLYo0eP2PLly5UOsmcuRYsWZWvXrmWBgYEsISFBk8OhdHaQunXrqnUtZOx7kZ/MRDJNll9++YVlZGSo9Fpra2s2ZMgQdvHiRa0XOMnEVyjCyckp2/d05cqV2e7duzk/s8jISObh4cEcHR0V2undu7dan/ONGzfkRTPELu3bt892zW7SpIlK+02ePDlbDCkpKSwkJITt37+fNWvWTOXr99ixY9mlS5dYRESE6M/x1atXaic/1KlThwUFBcnbGjJkiEr79ejRgzfpKioqil25coW1bdtWpbb69+/PLl++zL58+SKYWNyqpwABAABJREFU1Prt2zd2+/ZtpcU3Mpc2bdqws2fPsk+fPolKEIuPjxf8XSNmad26NYuPj1e57/T0dBYWFsYOHTrEypYtq7R9MzMz9uuvv7KHDx/yznoDAAAAoCrkFAAAAEBeoet8hpCQEMGZt1Vd6tatyz58+KBSkWEiYvXr12deXl5q3zc6ePAgZ7tjxoyR+Ahp19u3bxVmUeda8ufPr5cJ4hISElj+/PmzxVKzZk2N2rx3757C+9PFBCZfvnwRLGTi4ODANmzYwDkG/OrVKzZ9+nSFhxOnTJmi9piNLhlLvkmm+/fvs5IlS/K2W61aNXbo0CHOB5hv3LjBunTpku31NjY2zNvbW61Ycjp//rwkD3yOHDmSJScns9KlS6t0r7179+7s2LFjKhXJWLZsmUrF45UtJUuWZC9fvhR1fMQUu54/f766H4NG1qxZIxiXm5sbi42NFdXm1atXBY95wYIFRRXcUEfOSUWOHDmilX7i4+NZz549BY+hTCZjY8aMYREREYJt3blzR+FvoHHjxqIeck9PT2fh4eHM39+fjRgxQuX8zNatW7NDhw6x9+/fq1XIIVNkZCRzdnYW7GvNmjVqtZ2YmKhxQX6i/xXv8PX1Ven1pUuXZgsXLtRZzqhQoYic3wWDBw9md+7c4WwnICCAjRkzRuEcsLCwYDt37lQrtkmTJql1zM3Nzdnq1avl4+qvXr1SaT9ra2t25cqVbDHoI39l5cqVar1vmUzGZs2aJf+uSkxMFCzskLmYmpryTjqSmprK3r59y3bs2KHSZBq2trZs1apV7OnTp4LF43Q57q3PvLvExET233//sYULF6r0Wbi4uLA9e/aw4OBgo/iNCwAAAMbP4ApFZN4sz1okIrMog4uLC5swYQLbv38/Cw4O1llMkZGR7PDhw2zq1KmsQoUK2YpGZP5v37591ZrlVWqvXr2Sx6TKTK769scffzCZTKZ05lUAAAAwTElJSZw36GvUqKHVfk+dOqV0YIBvcXZ2ZufPn9dabJ8/f+YcKOnXr5/W+lRVZqGI5s2bMz8/P3b06FG2aNEi1qZNG8FK/TKZjBUpUoRVqlSJ1axZk5UuXVrwIVSZTMYGDhzIwsPD1Y41Li6OBQQEsNmzZ6s08FSlShV2+PBhFhYWxjnolJaWxt69e8c2b97M+ZBizqVAgQLMw8ODPX/+nPeBr4yMDBYREcHOnTun0sNxMpmMzZgxg92/f5+3+EZOX758UakKuZTLrl27OGMZNWqUxm2XLVtW9ZOAfU9s4Sq8oupSq1Yt0YPtuhITE8MuXLjAObM61zJ69Gh28+ZNFhERwftgZUJCAnv8+DGbP3++Sg/PNmzYkJ06dYp9+vRJ9AwkmzZtEkzaMDExYVWrVmWdO3dmHTp0YFWrVlUYzHd2dmY+Pj5SHE65pKQkNmXKFLULCg0YMEBeeEaoUIS9vT0bM2YMu3XrlugYw8PDWY8ePdQ+rx0dHdmpU6dE9xsUFCTquISFhYnuQx3x8fHs4cOHbOnSpSoNRFpYWLB58+axu3fvsujoaM6HrDOvz2fOnFHpAXATExM2d+5c9vjxY63MjJXzt4HYYgtivX37lg0dOlRp0lLLli2Zl5cXe/r0KUtISGBxcXHs8ePH7I8//lD4ndWgQYNsD5irQtXrm7JFWRGjnGJiYti9e/dU/t5q3LgxO3v2LPv8+bPoa+GNGzdUGujmWpycnNjRo0flbQm9tnbt2szd3V1UYSyp8BWKaNGiBfvnn39YwYIFFf5G69Spwzp37sw6derEatasyczNzRX2t7S0ZCtWrNCo4IWXl5eo5DwLCwu2cuVKhT6VFSUjIjZz5sxs+2zfvl2S85tI/O35EydOiCqmJZPJ2MyZMxWSD/hmr8u6DBw4kDM5NCQkRJL3vmPHDoW2NS0KSCQuETojI4OtW7dO7dlcZDIZmzZtmqhZgMQUbxJaQkJCVO4TAAAAICvkFAAAAEBeoY98hujoaLXHd2UyGfvxxx9ZUlISY4wJFopwcHBg06dPZ0+ePNE45smTJ3PGEhgYqHHb2pY5tvHnn38qFGEQWqysrNi0adPY9evXdVqYdfz48dni4BubF6NWrVry9kxMTHT2MGpaWhr7/fffBe9Xm5mZMTc3N9a1a1f2f+zdd5RU5cEG8GcWBAEBwY5orKhgwY6911gSG7GLWGKJRqOoMSaIXcRY0ogFjUZjiTVqNBo7YkONHZGigF0pAgvI3u8PD/uBou7C7g4Lv985c5y5e+/7PneYGZV597nbb7990alTp2/ts9JKKxX33HNPg2SeU411vckMn376abHvvvt+7/iLLLJIsdlmmxV77LFHscUWWxTLLLPMt/bZcsstizfeeKMuntJqb7zxxiyv4drcWrduXfTv3796rO8rilhttdWKiy66aLYXvPghDz300PeWbfzQbdttt52jeWt6YYvk65L0hlBVVVV8/PHHxYMPPljjQvJVV121uO6664qhQ4dW//vtm6ZNm1a8++67xR/+8Idvffc4u9vyyy9f3HjjjcXIkSNrVPhRW5dcckn1XMsuu+xclR/UxH333VesueaaP/gePfLII4t77723GD16dDF16tTigw8+KB5++OGie/fus6wRqqioKE477bRafXdVV9/9JanVxT+++uqr4oMPPijuueeeGpVtlUql4tRTTy1efvnlWq/tqKqqKs4999zZfnddk9t2221XvP/++0VRFN9bFNG8efOie/fuxUMPPdRgF3+Y4fuKIq699tripJNO+tb2xRZbrNhyyy2LPfbYo9hqq62+87O0U6dOxaBBg+Y4W2Vl5Q+WIn3ztsoqq8y2zGLVVVf93uMWXXTRb5VElGv9SlVVVXHQQQfVao6lllpqtuuKfui/F5o3b17ceuuts81x9tlnz/W5l0qlb41bju+9y7HurjblTd9122abbWo1JwBAbZWKoigyjxg8eHB22223fPTRR0mSoijSvn37HHrooTn00EOz9tprlznh11566aX84x//yLXXXpvPPvssSVIqlbLhhhvmvvvuy2KLLVa2bM8991y6deuWUqmUKVOmpGnTpmXLUhP/+c9/stNOO6VVq1aZMGFCueMAAHPg3HPPzVlnnTXLtlKplI8//jiLL754vc07duzYnH/++fnzn/+cL7/88gf3b9u2bU4++eScdNJJad26db3luv3227Pvvvt+a/sLL7yQ9ddfv97mrYlVVlkln3zySUaNGvWt52Dy5Ml57LHHcv/99+eBBx7Iu+++W+vxmzdvnr333jsnn3zyXJ1rRUVF5vZ/U66//voccsghSZKePXtmwIABczVmqVTK8OHD86Mf/ShJst122+W///3vXGUslUqpqqr63n2mTZuWPffcMw888EDWWmutnHDCCXnvvfcyZsyYfPzxx/niiy8yfvz4TJgwIZMmTUplZWWmTp2aadOmZfr06XN0ziuuuGLefffdlEqlWbaPHj06X3zxRa3Hm1mzZs3SqVOnWh0zderUXHXVVbn44ovz3nvv1eiYpZdeOqeddlqOP/74ee7/iR5//PFsu+22P/hn/0POPvvs/Pa3v02S/O1vf0uPHj3mesyZ3zc18dFHH+Xiiy/ONddck3HjxtX4uBVXXDFHHnlkTjjhhLRq1WpOov6ggQMH5vTTT8+TTz5Zo/3XW2+9nHvuudlll12qt/Xu3Ttnn332LPttttlm6dmzZ/bbb7+5zv7AAw/k7LPPzrPPPluj/RdeeOEcddRR+e1vfzvHf+9w3HHH5U9/+tO3ti+00EJZaKGFMmnSpOptgwcPzrrrrjtH89RUjx49ct111831OCNGjJjl8/nRRx+dq8/8FVdcMcOGDZvrXDP069cvp5xySvXYs/uMrQ+vvfZaLrzwwtxyyy356quv5miMpZZaKr17985RRx2VioqKWh07fPjwTJw4cY7mnVm7du2y7LLL/uB+I0eOzAorrDDX8z322GPZaqutarz/xIkT07dv31x22WU1+ixs2bJljj766PzmN79J+/btq7d/8zXRrl27HHjggenZs2e6du1a4zx1beutt87jjz/+re1bbbVVHnvssYwcOTJHH310HnzwwRqNt9BCC6V79+7p3bt3Vl555bnOd9ddd+XnP/959d8nf5cNN9wwV1999Wz/fnncuHHp2rVrRowY8a2fLbroornyyitz0EEHzbJ97NixGTVq1Fxln2HNNdes9TFPP/10DjnkkB/8rOrUqVP++te/zvY1/dVXX2XTTTfN888//62ftWjRIn369Kn+7PqmadOm5e2336517m/q2LFjFl100Vm2vfbaa3M97pJLLpkll1yyVse899576dOnT/7+97+nsrKyRsdsueWWOf/887PZZpvVaq66ev2sttpqWWihheZ6HABgwWNNAQCwICnXeoZ//etfOfPMM/O///2vRvtvs802Of/889OtW7fqbYcddliuv/766scVFRXZYYcd0rNnz+y5555p1qxZnWRdc8018/rrr8+ybbfddsu9995bJ+PXtZEjR1b//fL06dPrZMyKioqUSqVce+21tfq+tLaeffbZ6j/jjh07ZtiwYXP9d3x/+MMf8otf/CJJsuOOO9b47+vryrBhw3L++efnpptuyuTJk2t8XJcuXXLcccfliCOOmKf/nrMxrzf5pieeeCIXXHBBHnzwwRqfT0VFRbbeeuuceuqp2Xnnneck6g+aNm1a/vjHP+bCCy/8we97kq+/azrooINy9tlnZ7nllqvevsIKK2TkyJHVj1u1apV99903PXv2zOabbz5XGb/88stcfvnlufzyy/PJJ5/U6JiVV145v/3tb3PwwQfP0XfDn332WdZbb73ZrpNp27btLN9Lrr322nnllVdqPUdt1cV33Ntss03163/G5/ncfpbPvH6mLqy99tp59dVXkyS/+93v0rt37zob+7tUVVXllltuycUXX5yXX355jsfZcsstc9lll9V6rUddffeXfL0moibrafr06ZPf/e53cz1Xbdd2vPbaaznjjDNy33331eizcNVVV03v3r1zwAEHVG+77rrr0qNHj1n2W3vttdOzZ88cdNBBs6wDaEgjRozIiiuuONufDRgwIIcddlj++c9/5sQTT8zo0aNrNOYyyyyTX/3qVznuuOOy8MILz1W+qVOn5qSTTkr//v2/933fpEmTHHfccTn//PNn+1q66667stdee832z69bt2658cYbv7UWoaHXr8ysKIr06dMnF1xwQaZMmfK9+x5wwAG5/PLLZ/v/Kc8991y23HLL2Y6x+uqr54YbbsgGG2ww23E//vjjfPzxx7XKPTvfXNtQzu+9G3LdXV28flq1avWd708AgLowzxRFPP3009lll10yceLEFEWRRRZZJCeffHJ+9atf1esv8s2NysrKDBgwIBdccEFGjRqVUqmUtdZaK4888kjZyiLeeuutdO7cOaVSKaNHj87SSy9dlhw1df/992e33XZLy5Yta/QLngDAvOezzz7Liiuu+K0FmrX9heM5NWHChNxxxx158MEH8/LLL2fUqFGZPHly2rdvn6WXXjrrrrtudtttt+y0004N8t+VPXv2zLXXXjvLtp133jkPPPBAvc/9Q1ZZZZV06dIld9999w/uO2zYsPz3v//Ns88+m3feeSfvv/9+Pvvss0yaNCnTp09Py5Yts/jii2eFFVbIOuusk80337zOnuO6+OWwmX/prC4KDpJZ/0K6rr48+L5fDCyKIgceeGBuvvnmLLHEEnn++eerFw7U1rRp0zJ16tRUVlbm888/z6effpp33nknL7/8cu65555vFYPMC8Um31RVVZVHHnkkDzzwQJ5//vm88847GTt2bKZPn542bdpkxRVXzAYbbJBddtklu+666zy7mGTixIkZPnz4XI8z8y9A1tWXLrP7Zc2amDRpUh5++OH85z//ySuvvJKhQ4dm3LhxmTJlStq0aZP27dtn9dVXzwYbbJAddtghm266aYP8knySvPzyy7n99tvz5JNP5u23387nn3+eJGnfvn06deqUzTbbLD/96U+z0UYbfevYGUURSy21VA455JD07Nkzq622Wp1n/N///pe77747Tz31VN5+++188sknqaysTKtWrbLccstl7bXXzvbbb5+99957jv58ZlZVVZXLL788V111Vd59990sueSSOeSQQ3LyySfnzTffzBZbbFG978CBA7PJJpvM5dl9v3n183lOSm2+S1EUWX311TNkyJAkyQUXXJDTTz+9TsauqY8++ig33HBDbr/99jz//PM1WjS28cYbp0ePHjn00EPn+sv+hlJXi1dqunDlmyZOnJg77rgjDzzwQF566aWMGjUqkyZNSsuWLdOxY8d07do1O+ywQ/bee++0bdv2W8eXSqWUSqVsu+226dmzZ/baa680b958rs9nbv1QUcQMr776av71r3/lP//5T95///18/PHHmThxYhZZZJF07Ngxa665Zrbddtv89Kc/zRJLLFGnGb/88stce+21ueeee/L666/n888/T7t27dKxY8dsvvnm6d69e/UvwX2X0aNH57TTTssDDzyQiRMnZtVVV81ee+2V448/vs7z1pWpU6fmxhtvzJ133pmXXnopn3zySVq3bp2OHTtmo402yn777ZdtttkmTZo0+c4xxo4dmzPPPDP//Oc/88UXX2T55ZfP7rvvnhNPPHGO/7uzsfviiy9y55135pFHHsmrr76a9957L19++WUWWmihLL744ll99dWz+eabZ++9956jkg8AgHmBNQUAwIKk3OsZnnrqqdx555155plnqr/fbNKkSfXfNW255ZbZZ5990rlz528dO6MoYoUVVkiPHj3So0ePWX4pui689957WWGFFb71i3bPPPPMLKUV85K6/GXWb5rT70tro0uXLnnjjTfSt2/f7yzrrY2xY8dmmWWWSWVlZW655Zbst99+dZByznI8+OCD1X+3OmzYsIwfPz5fffVV2rZtm8UWWyxrrrlmNtxww+y8885lLcmujXn1+8xkzoqok69/Of/+++/PE088kTfeeCOjRo3KhAkTUlFRkXbt2mWppZZK165ds9FGG2XPPfes9S/EzqmpU6fm3nvvzf33358XXnghI0aMyMSJE9O8efN06NAha665Zrbbbrvst99+sy2LnlEUsfHGG6dnz5752c9+VufrxKZOnZoHHnggDz30UF544YUMGzasurBh0UUXzSqrrJKNNtoou+22W7bddttaF/F/0+jRo3PmmWfmgQceyNixY7PeeuvlpJNOyj777JOjjjoq11xzTZKvi8Pr63NxZnWxnmvmX5Stq8/zOSkQ/y5PP/10dbFIkyZNMnLkyAZ7D8wwaNCg3HDDDbnnnntqtBaoZcuW+clPfpKf//zns6z5mNfVxS+uz83ajqFDh+bWW2/NY489ljfeeCOffvpppk+fXv1e3njjjbPHHntkm222+db3zDOKItq2bZv9998/PXv2/M5f0G9INSmKSJIpU6bk4Ycfzv33359Bgwbl448/zieffJKiKKrPf4MNNsjOO++cHXfc8Xu/b54Tr7/+eq699trqtQWVlZVZZpllsuKKK2aPPfbIvvvumw4dOnzvGPfdd1/69OmT//3vf2nevHk22mij9OzZM/vuu+9cf/bWl5EjR+aqq67Kgw8+mOHDh2fChAlZeumls/zyy2eXXXZJ9+7df/BiG88880zOPPPMPPvss6moqEjXrl1z8MEH57DDDquzErnGpiHX3QEAzMvmiaKIV155Jdtss03Gjh2bJOnevXuuvPLKem1srkuTJ0/Oeeedl0suuSTTpk1L165d8+STT6Zly5ZlydKuXbtMmzYtf/rTn3L00Uc3eIbaOOOMM3LRRRdl5ZVXzjvvvFPuOADAHLr44otz2mmnzbLtpz/9ae64444yJSqPadOmZamllprlS+KKioq89NJLs716MXyfX/ziF/nDH/6QUqmUhx9+ONtuu229zFNVVZULL7wwZ555ZvW2/v3756ijjqqX+YB505QpU2YpBBg6dOgPfgHJD3vkkUey/fbbJ/n66jajRo2qs0Uqc+Lzzz/Ps88+m9deey0jRoyoLtxZZJFFstxyy6VLly7ZYoststRSS5UtI/OWmhZFAAAAjYc1BQDAgsZ6hu92ySWX5NRTT51l2957753bb7+9TInmfw899FAGDhyYk08+OW3atKmTMf/2t79l+PDhOf300+eJEmqg/vXv3z8///nPkySbb755nnzyyTInmj8cfPDBufHGG5Mke+65Z+66666y5nn77bfz/PPPZ8iQIRk9enQmTpyYpk2bpl27dllppZWy3nrrpVu3bj77SVLzoggAAGD+07TcAT799NPsvvvuGTt2bNq2bZs//OEPOfDAA8sdq1ZatGiRc889Nz/96U+z77775uWXX87+++9foys110eWTTfdNI899lh69+6dvffee54t3Pjggw/Sv3//lEqlebZ9GgComV/+8pe56qqrMnTo0OptDzzwQL744ou0a9eujMka1oMPPvitKwkccsghSiKotXPPPTd/+MMfkiRHHnlkvZVEJF+Xmfz617/Os88+m3vuuSfJ1/+fBixYZv7318ILL9zgV8WYX/3lL3+pvv/Tn/60rCURSdK+ffvssssu2WWXXcqaAwAAgPKxpgAAWNBYz/Dd/vGPf8zyeKGFFsoFF1xQpjQLhh133DE77rhjnY55yCGH1Ol4wLxv5u/3V1lllTImmX989tlnsxQlzQvFmquttlpWW221cscAAABgHldRzsmLosj++++fUaNGpVOnTnnxxRcbXUnEzNZff/289NJL2WSTTfKvf/0r559/fllyHHnkkUmSjz/+ONtvv31Gjx5dlhzf55NPPsluu+2WsWPHJkn22Wef8gYCAOZKs2bNcskll8yyrbKyMtdff32ZEpXHddddN8vj9u3b56KLLipPGBqt22+/PWeddVaSr39Z+7zzzmuQeWdc8X7GvMCC5dVXX62+v/nmm/scqAMffvjhLCWiM67oAgAAAOVmTQEAsCCxnmH2Xnvttbz44ouzbOvVq1dWXXXVMiUCoKZm/n5/5vU+zLnrrrsulZWVSZIVV1wxO+20U5kTAQAAQM2UtSjisssuyyOPPJK11147Tz/9dFZaaaVyxqkTbdu2zUMPPZStt946vXv3zvPPP9/gGfbbb7906dIlSfK///0va621Vq6//voURdHgWWbnpptuyjrrrJOXX345pVIpnTp1yh577FHuWADAXNpzzz3TvXv3Wbb17ds3kydPLlOihjVs2LDceeeds2y75JJLyn7lcBqXkSNH5ogjjqh+vM8++zTY1fxmfq+62gAseO67777q+z/72c/KmGT+cc0112TatGlJvr7SxzbbbFPmRAAAAPA1awoAgAXNgr6eYXb69es3y+NOnTpVX9AAgHnXtGnT8p///CdJ0rp16/z4xz8uc6LGryiK9O/fv/rxkUcemYqKsv6aDQAAANRY2f4Pdvjw4TnrrLOy6qqr5pFHHsliiy1Wrih1rmXLlrnrrruy6qqr5uijj27wxRRNmjTJVVddlSZNmqRUKmXs2LE5/PDDs8oqq+Syyy7LyJEjGzRPkrz11ls5//zz06lTpxx88MH58MMPUxRFSqVS/vSnP6VUKjV4JgCg7vXv3z8/+tGPqh+PGTMml19+eRkTNZzLLrssVVVV1Y933XXX9OjRo4yJaGyKoshhhx2WcePGVW/bdNNNG2z+GSV3TZo0yRZbbNFg8wLlN3bs2AwYMCBJ0rFjxxx88MFlTtT4TZs2LX/605+qHx999NFlTAMAAACzsqYAAFgQLcjrGb7pgw8+yE033VT9uGnTphkwYECaN29exlQA1MQNN9yQTz75JEny85//PIsuumh5A80H7r///rzzzjtJkoUWWig9e/YscyIAAACoubIVRZx00klp1qxZ/vWvf81XJREztG7dOvfcc0/efffd/OUvf2nw+bt165Yrr7yyeuFEURQZPnx4fvWrX2WllVbK2muvnZ///Ofp379/nnnmmYwZM6bOCi2Kosgbb7yRG264Ib/85S+zxhprpEuXLjnrrLMydOjQ6kylUim9e/d2RU0AmI+0bds2f//739OkSZPqbRdddFG++OKLMqaqf8OGDctVV11V/bhDhw65/vrry5iIxujGG2/MY489Nsu29u3bN8jcI0aMyF133ZUk+fGPf5x27do1yLzAvOHMM8/M+PHjkySXXnppmjVrVuZEjd/111+fMWPGJPm6UPSwww4rbyAAAAD4BmsKAIAFzYK6nmF2fve732Xq1KnVj/v06dOgFzEAYM6MHTs2v/3tb5Mkyy67bM4444wyJ5o/XHDBBdX399577yy55JJlTAMAAAC107Qckz711FO55557cuedd2bVVVctR4QGsfLKK+eCCy7Ieeedl549ezb4L1ocffTRGTVqVM4777zqq2vMWLjx2muv5fXXX59l/yZNmmTppZdOx44d07Fjxyy99NJp2bJlWrZsmRYtWlT/M0kqKyurb19++WXGjBmT0aNHZ9SoUXnvvfdSWVlZPe7Mi0VmznHKKafkN7/5Tb0+BwBAw9tss83St2/fnHzyyUm+/oLq+OOPz9///vcyJ6s/J510UvV//yy00EK5+eabs/jii5c5FY3NOeec861tDz/8cLp3716v83711Vc56KCD8tVXX6VUKuXMM8+s1/mAecu9996bP//5z0mSgw46KPvuu2+ZEzV+EyZMSO/evasfH3HEEQp4AAAAmCdZUwAALGgWxPUM3/Tiiy/mmmuuqX68yy675PTTTy9jIgBqoiiKHHXUURk9enQqKioyYMAA30PXgTvuuCNPP/109eNTTz21jGkAAACg9spSFDF58uTcfPPN2XPPPcsxfYM69thjU1FRkQ8++CA/+tGPGnz+c845J8svv3yOO+64TJ8+fZZFFd+82sdXX32VUaNGZfTo0Xn22WfnaL7ZXUFkxpwzfr7QQgulX79+Of744+doDgBg3nfSSSfl/fffz+9///skyU033ZRdd901Bx54YJmT1b27774799xzT/Xjv/71r9lyyy3LmIjGaMiQIXnnnXe+tX3AgAHZfffds8cee9TLvFOmTMnBBx9c/YXnkUcemY022qhe5gLmPY8++mi6d++eoiiy44475uqrry53pPnCsccem9GjRydJmjZtWr3YFAAAAOZF1hQAAAuaBWk9wzdNmzYtxxxzTKqqqpIka6+9dm655ZZZ/nsMgHlPVVVVjj/++Nx2220plUq56qqrssMOO5Q7VqM3atSoHHvssdWPd9hhh6y33nplTAQAAAC1V1GOSXfYYYd6vyruvOTnP/95WUoiZjjyyCPzxBNPpHPnztWLLkql0nfeZiz4mJPb7MaboSiKrLXWWnn66act6ACABUC/fv1m+W++Y489NiNGjChfoHowcuTI9OjRo/px7969c9hhh5UvEI3W+PHjZ7t9+vTp2WuvvXLWWWdlwoQJdTrn0KFDs8MOO+S2225Lkqyzzjq59NJL63QOYN5UFEWuvPLK7LTTTpk8eXJ++tOf5q677krz5s3LHW2e9NVXX+WKK67IOuusk0UWWSTLLbdc9thjj1x77bX57LPPqvebNGlSevbsmRtvvLF62wknnFDWvxOCufXVV1/NdvuMRcQAAMD8wZoCAGBBsyCsZ5id008/Pc8//3ySZLnllsu//vWvtG7dusypAPg+n332WXbbbbf8+c9/zsILL5xrr702hx9+eLljzbNGjx6dww47LCuuuGJatWqVzp0757jjjssjjzyS6dOnV+/36quvZptttslHH32UJGnSpEkuvvjicsWGufZd3+0nvt8HAID5XamY3eUamC999dVXueSSS9KvX7989tlnDdYCXRRFOnbsmF69euWYY45JkyZNGmReAKD8pk6dmp/97Ge58847k3x9NYonn3wybdq0KXOyuTd58uRsvfXWee6555IkZ555Zs4999wyp6KxmjRpUjp06JBx48Z95z7t2rXLiSeemP333z+dOnWa47mGDBmSq6++OldccUWmTJmSJFlxxRXzxBNPpGPHjnM8LtA4PPXUUzn11FMzaNCgtGjRIn379s1xxx1X7ljztEMOOSQ33HDDbH/WrFmzbLfddunQoUPuu+++fPjhh9U/W3bZZfPWW29lkUUWaaioUOe6des226sEb7zxxhk0aFAZEgEAAPXJmgIAYEEyP69nmJ1//vOf2WeffZJ8XRLx2GOPZaWVVipzKgC+S2VlZf7617/m7LPPzueff54uXbrk5ptvzlprrVXuaPOsDz/8MOuss04+/vjj2f586aWXzk477ZQvvvgi999//yy/WH/CCSfk8ssvb6ioUOfeeuutrLHGGrP92Z///Of8/Oc/b+BEAABAQ1EUsQCaNGlS/vznP+dPf/pThg8fniR1usBj5pfUGmuskVNPPTUHHXRQmjZtWmdzAACNx/Tp03PUUUfl2muvTZJss802ue+++9KiRYsyJ5tzU6dOzZ577pl///vfSZI+ffrkrLPOKnMqGrsrr7wyJ5xwQo32XWWVVbLddttl9dVXz2qrrZaVVloprVu3TqtWrdKqVatMnz49X375ZSZMmJCPPvoor7/+el577bU8+uijefnll2cZa80118z999+f5ZZbrh7OCphXDBw4MMcee2xeeeWVNG3aNIcddlh+97vfKYj5ASNGjMiKK65Y6+OaNm2ahx56KNtss009pIKG06VLl7zxxhvf2r7GGmvMdjsAADB/sKYAAFhQzI/rGWbnP//5T3bfffdMmTIlq666ah588ME5+v4DgIZx7rnn5tJLL80XX3yRZZZZJmeddVaOOOKILLTQQuWONk/r3bt3zj777Foft/baa2fgwIFp1apVPaSChvH8889no402mu3PLrroovTq1auBEwEAAA1lgSuKmD59eh5//PE8+uijeeONN/Lee+9lwoQJadq0adq1a5f27dtnnXXWycYbb5ytttpqvr/q47PPPpt//OMf+fe//50hQ4bkmy+HH1rsMbuXT9euXbPHHntk9913z/rrr1+neQGAxuv888/PWWedlaqqqmy11Vb517/+1Sj/W2vy5MnZf//9c/fdd6d58+a55pprcuCBB5Y7FvOJX//617ngggsabL7dd989N95443x7VRzg/1122WW56KKLcsghh+Soo47KyiuvXO5IjcJDDz2UnXbaqdbHXXHFFfnFL35RD4mgYbVr1y5jx4791vY2bdpk3LhxDR8IAABocNYUAAALgvllPcPsPPzww9lzzz0zadKkbLnllrnzzjvTvn37cscC4Husu+66WXjhhdOzZ88ceOCB812BUX054IADcvPNN9fqmMUXXzzPPfecAiUavbvvvjs/+clPZvuzE044IZdffnnDBgIAABrMAlMU8dlnn6Vv374ZMGBAPv300+rtM5/+NxcwLLLIIjnkkEPSq1evBeLqup9//nmeeeaZvPLKKxk+fHhGjBiRUaNGZfz48Zk0aVImTZqUoiiyyCKLpHXr1mndunXatWuX1VZbLV26dEmXLl2yzjrrZKmllir3qQAA86hHHnkkBxxwQD7++ON07do19957b6O6kvno0aPzk5/8JC+88EJWWmml3Hzzzd/Zwgxz6vbbb8+JJ56YMWPG1Nscbdq0yUUXXZSf//zn9TYHMG/5+OOP0759e1fmrKU33ngjXbp0qfH+pVIpl156aX75y1/WXyhoIK+99lrWWmut7/z54MGDs+666zZgIgAAoNysKQAA5meNfT3D7PzhD3/ISSedlOnTp+fEE0/MRRddlGbNmpU7FgA/YMyYMenQoUO5YzQ6vXr1St++fWu8/7LLLpuHHnoonTt3rsdU0DBOOeWU9OvXb7Y/69q1awYPHvyDha8AAEDjtEAURVx//fU58cQTM2HChNleraJUKs12+4yftWnTJn/84x9zwAEH1HdUAID53scff5zjjz8+t912W5Zeeunccsst2XLLLcsd6wfdc889Ofroo/Phhx/m0EMPzZVXXpnWrVuXOxbzqYkTJ6Zv377p27dvJk2aVGfjtmjRIj179szvfve7LL744nU2LsD8bMstt8yTTz75g/stuuiiueqqq7LPPvs0QCqoXxMmTMiPf/zj733tb7jhhnnwwQfTrl27BkwGAAAAAFB/Gut6hm/6/PPPc+KJJ+bGG2/Msssum6uvvjo777xzuWMBQL166623svbaa2fatGk/uO+mm26am2++Ocsvv3wDJIP69cwzz2S77bbL5MmTv3Ofc889N2eeeWYDpgIAABrKfF8UceaZZ+bCCy+sLoKobQvezMf169fPFSEBAOrIXXfdlRNPPDGjR4/OBRdckFNPPbXckWZr8uTJOfTQQ3Pbbbelc+fO+dOf/pStttqq3LFYQHz++ee55ZZbcuONN2bgwIFzPM7666+fn/3sZzn88MPTvn37OkwIMP8bPXp0tttuu7z99tuz/XmpVMree++d3//+943+ymIsuN56661MmDAho0aNymOPPZa///3v+eyzz37wuI4dO+aoo47K+uuvn2WWWSbt27fPj370owZIDAAAAABQfxrLeobZuf/++9OjR4/qsojevXtnkUUWKXcsAGgQN910U3r06JGpU6fO9uft2rXLGWeckZNPPjlNmjRp4HQw98aNG5cxY8bko48+yvDhw3PbbbfloYceyvTp03/w2B122CH77rtvVltttbRr1y7LL7982rZt2wCpAQCA+jRfF0VcffXVOeqoo5L8f0FEbU935uNKpVL++c9/5ic/+Umd5gQAWFBVVlbm8ssvzwMPPJDHHnus3HFma8SIEdl+++1z5pln5uCDD07Tpk3LHYkF1KhRo/Lss8/mxRdfzEsvvZRRo0Zl3LhxGTt2bCZOnJjmzZunVatWWXLJJfOjH/0oa6yxRjbccMNsscUWWXbZZcsdH6BR+/LLL3PppZfmtttuy9ChQ7PQQgtlhRVWyI477phDDz00a621Vrkjwlypbbnud9lqq63m2f+uBwAAAACojcawnmF2jjjiiEybNi1nnXVWVllllXLHAYAG97///S8XX3xxHn300XzyySdp37591lxzzey555459NBD06ZNm3JHhDl23XXXpUePHnUy1oABA3LYYYfVyVgAAED5zLdFER9++GFWXXXVTJo0KcnXRQ8LLbRQNtlkk6y99tpZccUV06FDh7Rs2TItWrRIqVTKxIkTM3HixLz33nsZPnx4Bg4cmNdeey3J14uli6JIhw4d8tZbb2lYBgCoQ5WVlVl44YXLHWO2pk2bllKppCACAAAAAAAAABYw8/J6htmZPHlyWrRoUe4YAAAAAAA0gPn2t9369u2biRMnplQqZdlll82vf/3rHHLIIWnZsmWtxnn//ffTt2/f9O/fP1999VU++OCD3HDDDTnmmGPqKfm8Y/Lkyfnoo48yfvz4TJkyJVOnTk3z5s2ryzUWXXTRtGvXrtwxAYD5wLy8qGKhhRYqdwQAAAAAAJjnWFMAACwI5uX1DLOjJAIAAAAAYMFRKoqiKHeI+rDUUkvl008/zTrrrJOHH3447du3n6vxHn/88ey6666prKzM1ltvnUceeaSOkpZfURQZPHhwnnzyyQwePDhvvPFG3nnnnXz55Zc/eGyrVq2y/PLLZ4UVVsj666+fbt26pVu3bhZ7AAAAAAAAAMB8wJoCAAAAAAAAAJj3lKUo4sUXX8yjjz6aX/3qVymVSnU+/vDhw7PyyiunVCrl6aefTrdu3epk3HPOOSe/+93v0qFDh4waNapOxiynhx9+ODfffHPuuuuujB07tnr7nLwkZv5zLJVK2WSTTdK9e/fss88+WXrppesiLgAAAAAAAADQQKwpAAAAAAAAAIB5V1mKIp5++ulsscUW2WSTTTJgwIB06tSpTsd//vnns/HGG6dUKmXSpElp3rx5nYz78MMPZ8cdd0yzZs1SWVlZJ2M2tKIocs011+TSSy/N22+/Xb3tm2pT4PF9xzdp0iTdu3fPaaedljXXXHMOUwMAAAAAAAAA9c2aAgAAAAAAAABoHMpSFDFw4MBsvvnmKZVKad68ec4555ycfPLJtVpI8H3eeeedrLbaaimVSnn22WezwQYb1Mm4l19+eU466aQsvfTSGTNmTJ2M2ZD++9//5oQTTsibb745y0KM73rea/LSqMmxM/bZb7/98vvf/776aiAff/xxPvnkkxrnT5Lx48fnhRdeSJs2bbLoootmueWWq7MiEAAAAAAAAAD4pilTpuT999+vfrzVVltl0UUXLV+gemJNAQAAAAAAAADUTjnXFJSlKKKqqioXXXRR+vTpkylTpqRUKqVbt24ZMGBAOnXqNNfjF0WR9u3bZ/z48Vl//fXz8MMPp02bNnM15rBhw7LJJpvk008/zR577JE777xzrnM2lKlTp+bUU0/NH//4xxRFkaIo6qyUoyZmvMRKpVLatGmTyy67LIceemh69+6ds88+u8FyAAAAAAAAAMDcuuuuu7LnnnuWO0adsaYAAAAAAAAAAOpGQ64pqGiQWb45aUVFzjjjjLzwwgtZf/31UxRFBg0alK5du6Zfv341uurE9ymVStl3331TFEVefPHFrLfeernpppsyffr0Wo81ceLE/P73v8/GG29cfaWKAw88cK7yNaRPP/0022yzTf7whz+kqqoqybev2DFjoUdd3mZWKpVSKpVSFEXGjRuXww8/PL/61a/m+s8ZAAAAAAAAAJhz1hQAAAAAAAAAQONUKsr8zXpVVVUuuuii9OnTJ1OmTEmpVEq3bt0yYMCAdOrUaY7HHTZsWDp37pxp06ZVX+2iZcuW2XTTTbPWWmvlRz/6UZZZZpm0aNEiCy+8cJo0aZLJkydn0qRJ+eCDDzJ8+PAMHjw4zzzzzCxjrL322hk8eHCDXj1jTn388cfZdttt8+abb85yxY+Z/8jbtm2bNdZYI507d85KK62UpZZaKksuuWSWWGKJNG/evPrWpEmTTJ8+PVVVVamsrMyUKVPy5ZdfZvz48Rk7dmw++eSTfPTRR3n//fczYsSIvPPOO/n8889nyTPz/KVSKeuvv36ef/75hntCAAAAAAAAAGAuNeTVP+qTNQUAAAAAAAAAULcack1B2YsiZnj99dfTo0ePvPDCCymVSmnevHnOOeecnHzyyXNcynDxxRfn9NNPr77yRPLtK1/8kJmfnhYtWmTgwIFZZ5115ihPQ5o6dWq22mqrPPvss7MspmjRokV23XXXbLfddtlmm22y2mqr1VuGMWPGZPDgwXnqqady//3357XXXkuS6j+PUqmU008/PQcccECNx3zjjTey3377VT++6667ssoqq9R5dgAAAAAAAABIkqFDh+YnP/lJ9eMXX3wx6623XvkC1QFrCgAAAAAAAABg7pVzTcE8UxSRJFVVVbnooovSp0+fTJkyJaVSKd26dcuAAQPSqVOnORrz2GOPzV/+8pfZXvmiJmYsQGjevHluu+227LbbbnOUo6Gdeuqp6devX3X+FVdcMaeddlr233//tG7duiyZhg4dmiuuuCLXXHNNKisrqxeZvPrqq1lppZVqNMbrr7+eNddcs/rxa6+9li5dutRXZAAAAAAAAAAWcPPj99TWFAAAAAAAAADA3Cvn99QVDTJLDVVUVOSMM87ICy+8kA022CBFUWTQoEHp2rVr+vXrV+uShyT505/+lCuuuCItWrSovuJEbW5FUWTllVfOE0880WhKIt55551cdtllKZVKqaioSO/evfP222/nqKOOKtuCjiRZZZVVcsUVV+SVV17J+uuvnySprKzMSSedVLZMAAAAAAAAALAgsaYAAAAAAAAAABq/eaooYoYuXbpk0KBBOe+889KsWbNUVlamV69e2XzzzTNkyJBaj3f88cdn6NCh+cUvfpG2bdumKIpZbjN8c/vyyy+ffv365fXXX8+GG25Yl6dYry6//PJMnz49FRUVufnmm/Pb3/42TZs2LXesaqusskoeffTRbLjhhimKIv/617/yxhtvlDsWAAAAAAAAAMz3rCkAAAAAAAAAgMZvniyKSJKKioqcccYZefHFF7PBBhukKIoMGjQoXbt2Tb9+/WYpeKiJpZdeOpdffnk++OCD3H///Tn99NOz++67p2vXrll55ZWz6qqrZv31188+++yTPn365KmnnsqwYcNy0kknpVmzZvV0lvXjn//8Z0qlUo466qjss88+5Y4zW61atcott9yShRdeOEnyt7/9rcyJAAAAAAAAAGD+Z00BAAAAAAAAADR+884lIb5D586dM2jQoFx88cU5++yzU1lZmV69euWOO+7IgAED0qlTp1qN17x58+y8887Zeeed6ylxeY0aNSofffRRSqVSjjzyyHLH+V4rrLBCevTokT//+c95+OGHyx0HAAAAAAAAAOZr1hQAAAAAAAAAwPyhotwBaqKioiKnn356XnzxxWywwQYpiiKDBg1K165d069fvxRFUe6I84wPP/yw+n7nzp3LmKRmZhR2DB8+vMxJAAAAAAAAAGD+Zk0BAAAAAAAAAMwfGkVRxAydO3fOoEGDcv7556dZs2aprKxMr169svnmm2fIkCHljjdPaN68efX9yZMnlzFJzbRs2TJJMmnSpDInAQAAAAAAAID5mzUFAAAAAAAAADB/aFRFEUlSUVGR008/PS+++GI23HDDFEWRQYMGpWvXrunXr1+Koih3xLLq2LFjSqVSkuSJJ54oc5of9sorryRJFl988TInAQAAAAAAAID5mzUFAAAAAAAAADB/aHRFETN07tw5zzzzTM4///w0a9YslZWV6dWrVzbffPMMGTKk3PHKpl27dllzzTVTFEX69OmTqqqqckf6TlOnTk3//v1TKpWy7rrrljsOAAAAAAAAAMzXrCkAAAAAAAAAgPlDoy2KSJKKioqcfvrpefHFF7PhhhumKIoMGjQoXbt2Tb9+/VIURbkjlsVBBx2UJBk8eHAOPfTQeXZhx1FHHZV33nknSbLrrruWOQ0AAAAAAAAAzP+sKQAAAAAAAACAxq9RF0XM0Llz5zzzzDM5//zz06xZs1RWVqZXr17ZfPPNM2TIkHLHa3BHHXVUFltssSTJTTfdlM022yxDhw4tc6r/N2LEiOy444654YYbkiRt27atXogCAAAAAAAAANQfawoAAAAAAAAAoPGbL4oikqSioiKnn356Bg8enA033DBFUWTQoEHp2rVr+vXrl6Ioyh2xwbRt2zZ9+/atPudnn302Xbp0yWGHHZaXXnqpbLkGDhyYnj17Zo011sgjjzySoihSKpVy3nnnZZFFFilbLgAAAAAAAABYUFhTAAAAAAAAAACN33xTFDHDGmuskWeeeSYXXHBBmjVrlsrKyvTq1Subb755hgwZUu54Deawww7LYYcdVr1wYtq0abnhhhuywQYbZKWVVsoJJ5yQf/zjH3n77bfrrUTj/fffz1133ZVjjjkmHTp0yBZbbJHrrrsuU6ZMqc61xx575JhjjqmX+QEAAAAAAACAb7OmAAAAAAAAAAAat1JRX9/ozwPefPPNHHbYYXn++edTKpXSvHnznHPOOTn55JNTKpXKHa/effXVV9lll13yyCOPpFQqzbJ4Y+bzb968eTp27Pit29JLL52WLVumZcuWadGiRfU/k6SysrL69uWXX2bMmDEZPXp0Ro0aleHDh2fw4MH57LPPquf45txFUWTLLbfM/fffn5YtW9b4nF5//fWsueaa1Y9fe+21dOnSZY6eHwAAAAAAAAD4IfPr99TWFAAAAAAAAADA3Cnn99RNG2SWMlljjTXyzDPPpG/fvundu3cqKyvTq1ev3HHHHRkwYEA6depU7oj1qmnTprnvvvty+OGH56abbpplIcfMiywqKyszdOjQvPvuu3U29zf7R74591577ZUbb7wxCy+8cJ3NCQAAAAAAAADUjDUFAAAAAAAAANB4VZQ7QH2rqKjIaaedlsGDB2ejjTZKURQZNGhQunbtmn79+n1r8cH8plmzZrnxxhvTt2/fLLzwwtXnWyqVvnUriqLObt8cO/l6McfCCy+cyy67LLfffrsFHQAAAAAAAABQRtYUAAAAAAAAAEDjNN8XRcywxhprZODAgbngggvSrFmzVFZWplevXtl8880zZMiQcserd7/61a/yv//9LzvuuGP1wotvmt1Cjzm9zWzGXHvttVfeeOONnHDCCQ1yzgAAAAAAAADAD7OmAAAAAAAAAAAal6blDjA748aNy6BBg/Liiy9m6NChGTt2bCZOnJhFFlkkbdu2zTLLLJMNNtggG264YTp27FjjcSsqKnLaaadljz32SI8ePfLcc89l0KBB6dq1a84555ycfPLJ31qQMD9ZeeWV8+9//zuDBg3Keeedl/vuu6/6Z9913rNb/DGzHzpuoYUWyv77759evXqlc+fOc5gcAAAAAAAAAKhP1hQAAAAAAAAAQOMxTxVF/Otf/8o111yTBx54INOmTavRMd26dcvRRx+dAw88ME2aNKnRMWussUYGDhyYvn37pnfv3qmsrEyvXr1yxx13ZMCAAenUqdPcnMY8r1u3brn33nszcuTI3HzzzbnlllvyyiuvzLLPjMUaNS3OmHnxR5MmTbLZZptl9913z89+9rMsu+yydRceAAAAAAAAAKg31hQAAAAAAAAAwLyvVPzQ5R0awKBBg3LSSSflueeeS/LDV5z4plKplHXXXTcDBgzIWmutVatj33zzzfTo0SPPPfdcSqVSmjdvnnPOOScnn3xyjRc0zA8++uijDBw4MAMHDswrr7yS4cOH5/3338/UqVO/97hSqZQVV1wxXbp0SZcuXbLOOutkxx13TLt27eol5+uvv54111yz+vFrr72WLl261MtcAAAAAAAAAOB7amsKAAAAAAAAAGB2yvk9ddmLIq688sqccsop+eqrr6oLImpT0DBz/BYtWuTuu+/O9ttvX6sMVVVVueSSS/K73/0uU6ZMSalUSrdu3TJgwIB06tSpVmPNT4qiyMcff5zx48dn0qRJmTRpUoqiyCKLLJLWrVundevWadu2bRZaaKEGy2RRBwAAAAAAAAANyffUs2dNAQAAAAAAAAALunJ+T920QWb5DldccUV++ctfJvm6HGJGQURtuitmLpWYPHly9txzzzz++OPZYIMNajxGRUVFevXqld133z09evTIc889l0GDBqVr164555xzcvLJJ9eqvGJ+USqVstRSS2WppZYqdxQAAAAAAAAAYB5iTQEAAAAAAAAAlE/ZiiJeeeWVnHrqqd8qh2jbtm3WX3/9rLDCCll++eXTunXrtGjRIs2bN09lZWUmTZqUcePGZcSIERk6dGgGDx6cqVOnJvl6EcLkyZNz+OGHZ/DgwWnatHant8Yaa2TgwIG55JJL0rt371RWVqZXr1654447MmDAgHTq1KlunwQAAAAAAAAAAAAAAAAAAACAWihbUcRll12WadOmpVQqpVmzZjn44INz1FFHZb311ktFRUWNx5k0aVL+85//pF+/fnnqqaeSJK+//npuvfXWHHDAAbXOVVFRkV69emWPPfbIYYcdlueeey6DBg1K165dc8455+Tkk0+uLrcAAAAAAAAAAAAAAAAAAAAAaEg1b2SoQ1VVVbn11ltTKpXSsWPHvPjii/nrX/+aDTbYoFYlEUnSsmXL7LnnnnniiSdy9dVXVx9/0003zVXG1VdfPQMHDsyFF16Y5s2bp7KyMr169crmm2+eIUOGzNXYAAAAAAAAAAAAAAAAAAAAAHOiLEURo0ePzuTJk5Mk11xzTTp37lwn4x5++OH5xS9+kaIo8uqrr871eBUVFenVq1cGDx6cjTbaKEVR5Jlnnsm6665bB2kBAAAAAAAAAAAAAAAAAAAAaqcsRREfffRR9f0tttiiTsfeddddvzXH3Fp99dUzcODAXHjhhVl44YVTWVlZZ2MDAAAAAAAAAAAAAAAAAAAA1FRZiiIWXXTR6vtvv/12nY79/vvvJ0lat25dp+NWVFSkV69eGTx4cDbeeOM6HRsAAAAAAAAAAAAAAAAAAACgJspSFLHyyiunXbt2SZKTTjopX331VZ2MO3r06Jx33nkplUpZa6216mTMb1p99dXz1FNP1cvYAAAAAAAAAAAAAAAAAAAAAN+nLEURpVIp++67b4qiyGOPPZatttoqb7311hyPV1VVlX/84x/ZeOONM3z48CTJXnvtVVdxv6WioixP23zrySefzOTJk8sdAwAAAAAAAACYx1hTAAAAAAAAAADf1rRcE5922mm5/vrrM3Xq1DzzzDPp0qVLNtxww2y++ebp3LlzlltuuSy++OJp1apVmjVrllKplK+++ipTpkzJF198kU8++STDhg3Lyy+/nP/+97/54IMPUhRFkmSppZbKYYcdVq5To5a23nrrvPrqq+ncuXO5owAAAAAAAAAA8xBrCgAAAAAAAADg28pWFLHiiivmvPPOyymnnJJSqZSiKPLcc8/l+eefr/VYMwoikqSioiJ//vOfs8gii9RlXOrJ5MmTZ/nzAwAAAAAAAABIrCkAAAAAAAAAgO9SUc7JTz755Pzyl79MURQplUrVhRG1vZVKpSRJqVTK73//++y5557lPC1qYfTo0dV/fgAAAAAAAAAAM1hTAAAAAAAAAACzV9aiiCS59NJLc9VVV2WRRRaZpTCiNreiKLL00kvn3nvvzS9+8YtynxK18MQTT5Q7AgAAAAAAAAAwD7KmAAAAAAAAAABmr+xFEUnSs2fPDB06NL/61a+y6KKLpiiK6tvszPzzJZdcMn369Mnbb7+dXXfdtYGTMzdee+21/PrXvy53DAAAAAAAAABgHmNNAQAAAAAAAAB8t6blDjDDEksskb59++b888/PQw89lEcffTQvvvhi3n333Xz++eeprKzMwgsvnMUWWyyrrLJKNthgg2y//fbZdttt06RJk3LHn2e8+OKL+eMf/1juGLNVVVWVqVOnZvz48Rk9enRee+21TJ8+PaVSqdzRAAAAAAAAAGC+Z00BAAAAAAAAAMwf5pmiiBkWWmih/PjHP86Pf/zjckdplL788stcd9118/xCiaIoyh0BAAAAAAAAABYo1hQAAAAAAAAAwPyhotwBqFtbbbVVNthggxRFMU/fkszzC08AAAAAAAAAYH5iTQEAAAAAAAAAzB8URcyHzj777CRfL5qYl28AAAAAAAAAQMOypgAAAAAAAAAAGr+yFEWMHDky7733XjmmLou33nor48aNa7D5dtlll3Tr1q36Khsz/vlN5bzyBwAAAAAAAADQ8KwpAAAAAAAAAIDGr2k5Jn3wwQfTq1evvPHGG+nQoUM5IjSYO++8M4cffniGDh3aoPP26dMnO+64Y5JUX2mjKIqUSqUsueSSad++fVq0aJGFF144FRUVadKkSb1n+uqrrzJt2rRMmDAhY8aMadDyDAAAAAAAAADga9YUAAAAAAAAAEDjVpaiiB49euT888/PMccck7vvvrscERrE0KFDc8QRR6RXr15ZbLHFGnTu7bffPltssUWefPLJJMliiy2WK6+8MnvssUdatmzZoFm+y7///e907949X375ZbmjAAAAAAAAAMACw5oCAAAAAAAAAGjcKsox6UILLZR+/frl3nvvzQUXXFCOCPXu888/z2677ZYlllgiv/rVr8qSoU+fPkm+vvrHpZdemp/97GfzzIKOJNl5551z7rnnljsGAAAAAAAAACxwrCkAAAAAAAAAgMarLEURSbL33ntn5513zllnnZVbb721XDHqxYQJE7LTTjvl3XffzbXXXptmzZqVJcdWW22VbbfdNknSpUuXsmT4ITvttFO5IwAAAAAAAADAAseaAgAAAAAAAABovMpWFJEkAwYMSPv27XPQQQflb3/7Wzmj1JmPPvooW2+9dQYPHpxf/epX2XTTTcuap0+fPimKIm+99VZZc3yXZZddttwRAAAAAAAAAGCBZE0BAAAAAAAAADROZS2KWGqppXLjjTemKIocfvjhOeOMM1JVVVXOSHPlsccey4YbbpiXX345W221Vc4///xyR8qmm26aHXfcMbfddlu5o8xWq1atUhRFuWMAAAAAAAAAwALHmgIAAAAAAAAAaJzKWhSRJDvuuGMuv/zyVFVV5eKLL84WW2yR1157rdyxamXatGk59dRTs/3222fUqFFZZZVVcuutt6aiouxPb5KvrwDy9NNPZ9KkSeWOMlvXX399OnbsWO4YAAAAAAAAALDAsaYAAAAAAAAAABqfeaLJ4Nhjj03v3r1TFEUGDRqUddddN8cdd1xGjx5d7mg/6MYbb8zqq6+eSy+9NFVVVVluueXy8MMPZ/HFFy93tGobbbRR3n///bRs2bLcUWbr4IMPTps2bcodAwAAAAAAAAAWONYUAAAAAAAAAEDjM08URSTJb3/725xzzjkpiiJVVVX5y1/+kpVWWikHHXRQnnzyyXLHm8XEiRNzzTXXZK211sqhhx6aESNGpCiKdOrUKY8//niWW265ckf8lubNm5c7AgAAAAAAAAAwD7KmAAAAAAAAAAAal6blDjCzM888Mx07dszRRx+dadOmZdq0abn55ptz8803p0OHDtlnn32y0047ZYsttkirVq0aNNuQIUPy6KOP5v7778/DDz+cysrKFEVR/fNNNtkk99xzTxZbbLEGzQUAAAAAAAAAAAAAAAAAAAAsOOapoogkOfTQQ9OpU6cccMABGTlyZJKkKIqMHj06V1xxRa644oo0bdo06667btZbb7107do1a6+9dlZeeeUsscQScz3/uHHjMnTo0Lz55pt5880389JLL+WFF17IZ599Vr3PjIKIUqmUoihyxBFH5IorrsjCCy881/MDAAAAAAAAAAAAAAAAAAAAfJd5rigiSTbZZJO89NJLOeaYY3LLLbekVCol+f+ChmnTpuW5557L888/P8txLVu2zI9+9KMsueSSWXzxxbPYYoulZcuWadasWZo1a5ZSqZSvvvoq06ZNy5QpUzJu3LiMHTs2Y8eOzQcffJDRo0dn0qRJ38ozY97k63KIGQUR7dq1y1VXXZWf/vSn9fhsAAAAAAAAAAAAAAAAAAAAAHxtniyKSJJFF100N998cw466KAcf/zxGTlyZHVhRPJ1ecPMBQ5JMnHixLzxxht58803az3fN8ea2TfnLZVKOfjgg3PRRRdl6aWXrvVcAAAAAAAAAAAAAAAAAAAAAHOiotwBfsiPf/zjvPXWW7nwwgvTtm3b6kKHUqk021vy/yUStbl913jfHHOzzTbLoEGDcv311yuJAAAAAAAAAAAAAAAAAAAAABrUPF8UkSTNmzdPr169MnLkyFx44YVZZpllqosbvun7Ch9+qAxidmaUSPzkJz/Jk08+mSeffDIbbrhhfZ4uAAAAAAAAAAAAAAAAAAAAwGw1iqKIGVq3bl1dGHHHHXdkjz32SLNmzb6zNGJOzBirKIqsscYa6d27d4YMGZI77rgjm222WZ3MAQAAAAAAAAAAAAAAAAAAADAnmpY7wJxo0qRJfvKTn+QnP/lJJk6cmAcffDAPPfRQnnrqqbz55ptzXBrRvn37bLbZZtliiy2yyy67pEuXLnWcHAAAAAAAAAAAAAAAAAAAAGDONcqiiJm1atUqe+21V/baa68kyfjx4/PGG2/kzTffzMiRI/Phhx/m008/zeTJkzNlypQ0bdo0iyyySFq1apX27dtnpZVWyiqrrJJOnTpl5ZVXLvPZAAAAAAAAAAAAAAAAAAAAAHy3Rl8U8U1t2rRJt27d0q1bt3JHAQAAAAAAAAAAAAAAAAAAAKhTFeUOAAAAAAAAAAAAAAAAAAAAAEDNKIoAAAAAAAAAAAAAAAAAAAAAaCQURQAAAAAAAAAAAAAAAAAAAAA0Ek3LHaAhVFVV5ZNPPsmnn36a8ePHp3Xr1llsscWyzDLLlDsaAAAAAAAAAAAAAAAAAAAAQI3Nt0URb775Zm699dY89thjefbZZzNlypRv7dO2bdt07do1O+20U3bfffd07ty5DEkBAAAAAAAAAAAAAAAAAAAAama+K4p4/PHHc+GFF+ahhx6q3lYUxWz3HTt2bB5//PE8/vjj+fWvf52NN944xx13XA444ICUSqWGigwAAAAAAAAAAAAAAAAAAABQIxXlDlBXxo8fnyOOOCLbbrttHnrooRRFUX0rlUrfeZt5v0GDBuWQQw7JWmutlfvvv7/cpwQAAAAAAAAAAAAAAAAAAAAwi/miKOKVV17JmmuumQEDBsy2HCJJiqKY7bGz2++NN97I7rvvnp///OeprKxssPMAAAAAAAAAAAAAAAAAAAAA+D6Nvihi4MCB2XLLLTNq1KhZCiK+WQwxowhiZrPbZ+bjr7rqquy444758ssv6/UcAAAAAAAAAAAAAAAAAAAAAGqiabkDzI133nknu+22WyZMmPCtIojvKoto3bp12rRpk7Zt26ZJkyaZOHFiJk6cmM8++yzTpk2bZd8kefrpp7Prrrvm0UcfTZMmTer/pAAAAAAAAAAAAAAAAAAAAAC+Q6Mtipg+fXp+9rOfZezYsd8qiZhRELHRRhtl6623zrrrrpt11103q6666rf2nXm8d999N6+//nruu+++3HPPPfn0009TKpXy9NNP54wzzsjFF19c7+cFAAAAAAAAAAAAAAAAAAAA8F0abVFE//7989JLL81S/FAURZZccskcddRROfjgg7PqqqvWeLwmTZqkU6dO6dSpU376059mypQp6du3by644IJMnjw5l156aQ4++OCstdZa9XE6AAAAAAAAAAAAAAAAAAAAAD+ootwB5kRVVVUuvPDC6pKIoijSpEmTnHjiiRkyZEj69OlTq5KI2WnevHl+85vf5MEHH0ybNm1SFEXOPPPMuogPAAAAAAAAAAAAAAAAAAAAMEcaZVHEf/7zn4waNSrJ1yURHTp0yHPPPZff//73adOmTZ3Otfnmm6d///4piiL3339/9bwAAAAAAAAAAAAAAAAAAAAADa1RFkX8+9//rr7foUOHPPPMM+natWu9zde9e/d069YtRVHktttuq7d5AAAAAAAAAAAAAAAAAAAAAL5PoyyKeOGFF6rvX3/99VluueXqfc7u3bunKIo8/fTT9T4XAAAAAAAAAAAAAAAAAAAAwOw0yqKIoUOHplQqZZNNNsl2223XIHOuuuqqSZJXXnmlQeYDAAAAAAAAAAAAAAAAAAAA+KZGWRQxduzYJMl+++3XYHM2b948SfLpp5822JwAAAAAAAAAAAAAAAAAAAAAM2uURREzrLTSSg0217vvvpskmThxYoPNCQAAAAAAAAAAAAAAAAAAADCzRlkU0a5duyRJy5YtG2zOe++9N0nSokWLBpsTAAAAAAAAAAAAAAAAAAAAYGaNsiiiU6dOSZI333yzQeZ7/vnn88ADD6RUKqVDhw4NMicAAAAAAAAAAAAAAAAAAADANzXKooiNNtooRVHkn//8Z73P9dlnn2X//fdPVVVVkmTNNdes9zkBAAAAAAAAAAAAAAAAAAAAZqdRFkXstddeSZLHH388//3vf+ttnmHDhmWrrbbKsGHDqrdtu+229TYfAAAAAAAAAAAAAAAAAAAAwPdplEUR3bp1y+qrr56iKHLIIYfMUuRQF6qqqvKHP/wh6623Xt58882USqUkSbNmzbL33nvX6VwAAAAAAAAAAAAAAAAAAAAANdUoiyKS5KyzzkqSfPDBB+nWrVtuueWWuR7zyy+/zKWXXpqVVlopJ554YsaPH58kKYoipVIpBx54YJZccsm5ngcAAAAAAAAAAAAAAAAAAABgTjTaooif/exn2WKLLZIkn376aQ444IB07do1f/rTnzJq1KgajVEURd555530798/e+yxR5Zeeumceuqpee+996rLIWZo06ZNzjvvvHo5FwAAAAAAAAAAAAAAAAAAAICaaFruAHOqVCrlb3/7W9Zff/188cUXKYoi//vf//KLX/wiv/jFL7LMMstk9dVXT8eOHdO6des0b948kydPzpdffpnx48dn+PDhGTJkSKZMmVI9ZlEU1WPPvK1UKuXaa6/NUkst1eDnCQAAAAAAAAAAAAAAAAAAADBDoy2KSJIf/ehHefDBB7P99ttn/PjxSf6/7GHMmDH54IMPvvPYGfvNbOaCiJldcskl+elPf1oHiQEAAAAAAAAAAAAAAAAAAADmXEW5A8yt9ddfP48//nhWXnnlFEWRUqlUfSuK4jtvSWbZ95slEUVRpFmzZrnmmmty0kknlePUAAAAAAAAAAAAAAAAAAAAAGbR6IsikmTttdfOiy++mKOOOioVFRXfWQQxu2KIGfvOrCiKbLDBBhk0aFB69OjRoOcCAAAAAAAAAAAAAAAAAAAA8F3mi6KIJGndunX+8pe/5KWXXspee+1VXRgxuyKImc1cGFEURTp06JArr7wyzz77bNZZZ52GiA4AAAAAAAAAAAAAAAAAAABQI03LHaCurbnmmrn99tvz/vvv5/rrr8/dd9+dwYMHf29hRNu2bbPFFlvksMMOy5577pkmTZo0YGIAAAAAAAAAAAAAAAAAAACAmpnviiJmWG655fKb3/wmv/nNbzJ+/Pi8/PLLeeeddzJ27NhMnTo17dq1y2KLLZZOnTpl7bXXTqlUKndkAAAAAAAAAAAAAAAAAAAAgO813xZFzKxNmzbZcssts+WWW5Y7CgAAAAAAAAAAAAAAAAAAAMAcqyh3AAAAAAAAAAAAAAAAAAAAAABqRlEEAAAAAAAAAAAAAAAAAAAAQCOhKKIWjjjiiHzwwQfljgEAAAAAAAAAAAAAAAAAAAAsoBRF1NCUKVMyYMCAfPHFF+WOAgAAAAAAAAAAAAAAAAAAACygFEXU0DvvvJOiKModAwAAAAAAAAAAAAAAAAAAAFiAKYqooYsvvjilUqncMQAAAAAAAAAAAAAAAAAAAIAFWNNyTTx+/PgMGDAg7777bjp16pTDDjssiyyySI2Ofe+99+o5XTJt2rR88cUXeeedd3LNNdfkv//9r6IIAAAAAAAAAAAAAAAAAAAAoKzKUhTx+uuvZ8cdd8yHH35Yve3iiy/Ogw8+mDXWWOMHj19hhRWUNgAAAAAAAAAAAAAAAAAAAAALnIpyTHr88cfngw8+SFEU1bdRo0bluOOOq9HxyyyzzCzH1vcNAAAAAAAAAAAAAAAAAAAAYF5QlqKIQYMGpVQqzXJLkmeeeaZGxx9xxBFJ8q0x6usGAAAAAAAAAAAAAAAAAAAAMC8oS1HEMsss861tpVIpHTp0qNHxRx11VJo0aVL9uCiKOssGAAAAAAAAAAAAAAAAAAAAMK8qS1HEqaeeOku5Q1EUKYoiZ555Zo2OX3bZZbPbbrtVj1EqlarHqI8bAAAAAAAAAAAAAAAAAAAAwLygaTkmPeaYY9KmTZtcfPHFGTZsWFZdddWceeaZ2XvvvWs1xt13353k66KJLl26ZI899sgKK6yQdu3apUWLFmnevHkqKirSpEmTWuUriiJTp07N559/njfeeCM33nhjRowYUasxAAAAAAAAAAAAAAAAAAAAAOpaWYoikuTAAw/MgQceOMfH77jjjll55ZUzbNiw7LLLLrn33ntTUVFRhwn/369//evsscceeeSRR+plfAAAAAAAAAAAAAAAAAAAAICaqJ9mhQZy9NFHJ0l23XXXeiuJSJKFF1445513Xr2NDwAAAAAAAAAAAAAAAAAAAFATjboo4vDDD0+zZs3y6aef1vtcXbp0SVEU9T4PAAAAAAAAAAAAAAAAAAAAwHdp1EUR7du3z7777pvHHnus3udq2bJlVlxxxTRr1qze5wIAAAAAAAAAAAAAAAAAAACYnablDjC3LrroorRq1apB5nr33XcbZB4AAAAAAAAAAAAAAAAAAACA2Wn0RRHLLLNMuSMAAAAAAAAAAAAAAAAAAAAANIiKcgeYF1199dW54447UhRFuaMAAAAAAAAAAAAAAAAAAAAAVGuURREvvvhiVlpppay88sr1Mn5RFDnggAPStWvXPPXUU/UyBwAAAAAAAAAAAAAAAAAAAEBtNcqiiMrKyowYMSIjRoyol/GPPPLIDBw4MO+991623XbbXHnllfUyDwAAAAAAAAAAAAAAAAAAAEBtNMqiiIaw3nrr5dxzz81XX32VX/7yl7nhhhvKHQkAAAAAAAAAAAAAAAAAAABYwCmK+B777rtvkqQoihx33HEZM2ZMmRMBAAAAAAAAAAAAAAAAAAAACzJFEd+jVCpV/3PixIm57LLLyhsIAAAAAAAAAAAAAAAAAAAAWKApivge1113XfX9oihyzz33lC8MAAAAAAAAAAAAAAAAAAAAsMBrWu4A85KiKDJhwoQMGTIk//znP3PppZemVCpV//y9994rYzoAAAAAAAAAAAAAAAAAAABgQTdPFUWcffbZ6dOnT433L4oiTZo0qbc8RVHMUhSxxBJL1NtcAAAAAAAAAAAAAAAAAAAAAD9kniqKOPnkk7PEEkukf//+efXVV2t0TFEU9ZZnRknEjMKIrbbaqt7mAgAAAAAAAAAAAAAAAAAAAPghFeUOMLPWrVvn2GOPzSuvvJL//ve/2XHHHZN8XdjwzdsMs/tZXd1m1rRp05x88skN+nwAAAAAAAAAAAAAAAAAAAAAzGyeKoqY2dZbb51///vfuffee7PUUkulKIokSVEU1fcbwoy5LrvssnTt2rXB5gUAAAAAAAAAAAAAAAAAAAD4pnm2KGKGH//4x3nttdey++67pyiKlEqlWX4+oziivm4bbrhhHn300RxzzDFlegYAAAAAAAAAAAAAAAAAAAAAvta03AFqon379rnrrrty7LHHpn///imVStWlEddee22dztWkSZO0aNEiSy+9dFZfffUstthidTo+AAAAAAAAAAAAAAAAAAAAwJxqFEURSVIqlfLnP/85rVu3ziWXXFK9/dBDDy1jKgAAAAAAAAAAAAAAAAAAAICGU1HuALV18cUXZ7/99it3DAAAAAAAAAAAAAAAAAAAAIAG1+iKIpLkmmuuyXLLLVfuGAAAAAAAAAAAAAAAAAAAAAANqlEWRbRq1SoXXXRRiqIodxQAAAAAAAAAAAAAAAAAAACABtMoiyKSpHv37hk+fHi9jT9lypSMHz9eGQUAAAAAAAAAAAAAAAAAAAAwz2i0RRGlUik/+tGP6m38oUOHplOnTtl0000zZsyYepsHAAAAAAAAAAAAAAAAAAAAoKYabVFEfevSpUv+85//5O23385mm22WoUOHljsSAAAAAAAAAAAAAAAAAAAAsIBTFPE91lprrVx99dUZOXJktt9++4wZM6bckQAAAAAAAAAAAAAAAAAAAIAFmKKIH7DDDjskSd5///107969zGkAAAAAAAAAAAAAAAAAAACABZmiiG+oqqpKZWVlPvvsswwePDi//OUvkyRFUWTgwIG54YYbyhsQAAAAAAAAAAAAAAAAAAAAWGA1LXeAunDnnXfmrrvuyhtvvJEPP/ww48aNy9SpUzNt2rQ6Gb9UKqUoihRFkf79++fggw+uk3EBAAAAAAAAAAAAAAAAAAAAaqNRF0WMGDEi3bt3zwsvvJAkKYqiXuYplUrVZREvv/xyvcwBAAAAAAAAAAAAAAAAAAAA8EMabVHExx9/nK222iqjRo2apSCiVCrV67zNmzev1/EBAAAAAAAAAAAAAAAAAAAAvktFuQPMqVNOOSXvv/9+kq/LIWbcZmfmIona+OZxpVIpe+211xyNBQAAAAAAAAAAAAAAAAAAADC3mpY7wJwYPXp0/vGPf3yrGOL7CiHmpCyiVCrNctzuu++e3//+97UeBwAAAAAAAAAAAAAAAAAAAKAuNMqiiLvuuitfffVVdVFEURRp0aJFttpqq6yxxhpZdtll06pVqyy88MK55557cuedd2aXXXbJfvvtV+M5LrzwwgwZMiSHHHJI9ttvv3Tt2jUdOnSor1MCAAAAAAAAAAAAAAAAAAAA+EGNsijiscceq77fvHnz9OnTJ8cee2xatmz5rX3XWWed3HnnnXn77bdz6KGH1niO1VdfPZtvvnnuv//+nHfeeUoiAAAAAAAAAAAAAAAAAAAAgLKrKHeAOfHWW29V37/11ltzyimnzLYkIkm6du2arl27Zvjw4Xn44YdrPMfGG2+c448/Pp9++mkOOOCAFEUx17kBAAAAAAAAAAAAAAAAAAAA5kajLIoYM2ZMSqVSdt111+y2224/uH/Pnj1TFEX+8Ic/1Gqes846K23atMlTTz2Vc889d07jAgAAAAAAAAAAAAAAAAAAANSJRlkU8eWXXyZJfvKTn9Ro/4MPPjgtW7bMfffdlxEjRtR4nvbt2+ewww5LURQ555xzMnjw4DlICwAAAAAAAAAAAAAAAAAAAFA3GmVRRNOmTZMkK6ywQo32b9OmTX72s5+lqqoqv//972s11/77758kmT59enr27JmiKGp1PAAAAAAAAAAAAAAAAAAAAEBdaZRFEYsuumiSr8sbaur4449PURS5+uqrM2bMmBof16VLl+r7//vf/3LPPffU+FgAAAAAAAAAAAAAAAAAAACAutQoiyKWWmqpJMlLL71U42O6du2aLbfcMpWVlTnllFNqfNy0adNmeXzbbbfV+FgAAAAAAAAAAAAAAAAAAACAutQoiyLWX3/9FEWR/v37Z9KkSTU+rlevXimKIrfccktuv/32Gh3zr3/9q/p+URR57rnnap0XAAAAAAAAAAAAAAAAAAAAoC40yqKIzTbbLEkycuTI7LPPPhk3blyNjtt1112z3nrrpSiK9OjRI88+++z37v/hhx/mzDPPTKlUqt72wQcfzHlwAAAAAAAAAAAAAAAAAAAAgLnQKIsi9tlnn7Ru3TpJ8uCDD2bFFVfMPvvsk8MPPzw9e/bM6aefnv/85z+zPfacc85JkkycODHbbbdd/vrXv6Yoim/tN2jQoGy55ZYZNWrULNubNGlSx2cDAAAAAAAAAAAAAAAAAAAAUDNNyx1gTiyyyCI58sgjc+mll6ZUKmXs2LG58847Z9mnb9+++e1vf5vf/e53s2zfZZddsssuu+SBBx7IpEmTcswxx+Tcc8/NTjvtlGWWWSZjx47NoEGD8uKLL85SIDHj/korrVT/JwgAAAAAAAAAAAAAAAAAAAAwG42yKCJJzjnnnNxzzz159913UyqVZil1mGFGWUSpVJple//+/dOlS5d8+eWXKYoio0aNyrXXXlv98xljffO4UqmU3XbbrR7OBgAAAAAAAAAAAAAAAAAAAOCHVZQ7wJxq0aJF7rnnniy11FJJvi5xmPmWJFOnTs20adO+dWzHjh0zYMCAWY4riqL6NmP7N7Vu3TonnHBCfZ0SAAAAAAAAAAAAAAAAAAAAwPdqtEURSbL66qvn8ccfz3rrrTdLycOMf+67775p1qzZbI/da6+9cskll8xSDPHNookZiqJIRUVFbrzxxiy++OL1eEYAAAAAAAAAAAAAAAAAAAAA361puQPMrVVXXTWDBg3KP/7xj9x66615991306ZNm+y666455ZRTvvfYk046KUsuuWSOPfbYTJgwIUlmKYmYUSKxxBJL5G9/+1t22mmn+jsRAAAAAAAAAAAAAAAAAAAAgB/Q6IsikqRJkyY58MADc+CBB9b62AMPPDA77bRT/vrXv+buu+/OiBEjMm7cuLRv3z5rr712dtttt/To0SOtWrWqh+QAAAAAAAAAAAAAAAAAAAAANTdfFEXMrcUXXzy//vWv8+tf/7rcUWCe8+GHH6aqqqrcMRqVJk2aZKmllpplm+ex9jyPdaOioiJLL710uWPME7x+as/7sG54HuuGz7Ovee3Unvdg3fA81g2fZf/P66d2vAfrhuexbvgs+39eP7XnfVg3PI91w+fZ17x2as97sG54HuuGzzJgXuEzvPb8u7BueB7rhv+m+JrXTu15D9YNz2Pd8Fn2/7x+as/7cO55DuuGz7L/5/VTe96HdcPzWDd8nn3Na6f2vAfrhuexbvgs+39eP7XnfVg3PI91w+fZ/E9RRC28+uqr6dSpU5o3b17uKNBgqqqq/MuzlioqKr61zfNYe55H6prXT+15H9YNzyN1yWun9rwH64bnkbrm9VM73oN1w/NIXfP6qT3vw7rheaQuee3Unvdg3fA8AsxffIbXnn8X1g3PI3XJa6f2vAfrhueRuub1U3veh3PPc0hd8/qpPe/DuuF5pC557dSe92Dd8DxS17x+as/7sG54HqFmvv1O4TttvfXWeffdd8sdAwAAAAAAAAAAAAAAAAAAAFhAKYqooQ8//DBffPFFuWMAAAAAAAAAAAAAAAAAAAAACzBFETX0xBNPpFQqlTsGAAAAAAAAAAAAAAAAAAAAsABTFFFDd911V7kjAAAAAAAAAAAAAAAAAAAAAAs4RRE18NFHH+XOO+8sdwwAAAAAAAAAAAAAAAAAAABgAacoogbOPPPMTJkypdwxAAAAAAAAAAAAAAAAAAAAgAWcoogfcPPNN+faa68tdwwAAAAAAAAAAAAAAAAAAAAARRHf55577kmPHj1SKpXKHQUAAAAAAAAAAAAAAAAAAABAUcR3GTBgQPbbb79MnTq13FEAAAAAAAAAAAAAAAAAAAAAkiRNyx3g+4wcOTL//ve/88ILL+Tjjz/O9OnTs+SSS2attdbKTjvtlM6dO9f5nNOnT8+pp56ayy+/PEVRpFQq1fkcAAAAAAAAAAAAAAAAAAAAAHNiniyKGDZsWHr16pW77747VVVVs93nlFNOydZbb51zzz03m2yySZ3MO2LEiOy///557rnnlEQAAAAAAAAAAAAAAAAAAAAA85yKcgf4pn/84x9Zd911c+edd2b69OkpiuI7b48++mi23HLL9O7de67nveGGG7Luuut+b0lE27Zts+iii871XAAAAAAAAAAAAAAAAAAAAABzYp4qirj66qtz0EEHZcKECdVlDd93S5Lp06fnnHPOybHHHjtHc44dOzbdu3fPYYcdlnHjxlXPWxRF9T5FUWTzzTfPyy+/nA4dOtTJuQIAAAAAAAAAAAAAAAAAAADU1jxTFPHoo4/mmGOOSVVV1SxFEEVRfOdtxn5FUaR///7p169freZ8+OGHs9Zaa+X222+fZbwk1eNWVFTk7LPPzmOPPZbll1++zs8bAAAAAAAAAAAAAAAAAAAAoKbmiaKISZMm5eCDD8706dO/VRAxo7zhm7cZ+yT/X+rw29/+NsOHD//B+aZOnZqTTjopO++8c0aPHl09z8yKosgKK6yQJ554ImeddVYqKuaJpwoAAAAAAAAAAAAAAAAAAABYgM0T7Qf9+vXLmDFjZimA+GYhxMy3JNU/n/E4SSorK3Paaad971yvvPJK1l9//VxxxRWpqqqa7ThFUeTAAw/MK6+8kk022aSuTxcAAAAAAAAAAAAAAAAAAABgjjQtd4Cqqqr079+/uhQiySzFDc2aNUvXrl2z9NJLp2XLlvnwww/zzjvvZPTo0dX7znzMXXfdlVGjRqVjx47fmqtv37757W9/m6lTp1aXUXxzzjZt2uSPf/xjDjzwwPo8bQAAAAAAAAAAAAAAAAAAAIBaK3tRxBNPPJExY8bMUtpQFEW6du2a3/zmN9l5553TsmXLbx33wgsv5Morr8wNN9wwy7HTp0/PVVddlbPPPrt62/vvv59DDjkkTzzxRHUBxczHzJizW7duuemmm7LCCivU8VkCAAAAAAAAAAAAAAAAAAAAzL2Kcgd44oknqu8XRZFSqZQLL7wwgwcPzl577TXbkogk2WCDDXL99dfnsccey2KLLZbk6/KHoihyzz33VO/397//PWuvvXZ1SUSpVPpWKUVFRUXOOuusPPnkk0oiAAAAAAAAAAAAAAAAAAAAgHlW2YsiXnzxxST/XxJx3XXXpVevXjU+fsstt8xjjz2WpZZaqnrbq6++mrfeeiv7779/DjnkkIwbN656/JkVRZHll18+jz32WM4+++w0adKkbk4KAAAAAAAAAAAAAAAAAAAAoB6UvSji3XffTZKUSqWceOKJOeigg2o9RufOnXPddddVl0EURZH11lsvt956a/W2GdtnKIoi3bt3zyuvvJLNNtuszs4HAAAAAAAAAAAAAAAAAAAAoL6UvShi+PDhSZK2bdumd+/eczzOjjvumEMPPbS6DKKysrK6JGKGGWURrVq1yoABA3LzzTenbdu2c5UfAAAAAAAAAAAAAAAAAAAAoKGUtShi8uTJmTx5ckqlUg455JC0adNmrsY7+eSTq++XSqXqYogZiqLIRhttlJdeeimHHnroXM0FAAAAAAAAAAAAAAAAAAAA0NDKWhTxxRdfVN/fYYcd5nq8tdZaK+uvv/4s5RAzyiJKpVLOOOOMPP3001l55ZXnei4AAAAAAAAAAAAAAAAAAACAhlbWoohx48ZV319rrbXqZMzttttulsdFUaRjx4555JFHct5556VJkyZzPPaHH36Y6dOnz21EAAAAAAAAAAAAAAAAAAAAgDlS1qKIqVOnVt9fYokl6mTM9ddfv/p+URTZe++987///S9bbbXVXI+944475u23357rcQAAAAAAAAAAAAAAAAAAAADmRFmLIqZNm1Z9v3nz5nUyZpcuXarvX3TRRbntttuy6KKL1snY06dPr5NxAAAAAAAAAAAAAAAAAAAAAObEPFMU8cUXX9TJmO3atau+v9lmm9XJmDN88skndToeAAAAAAAAAAAAAAAAAAAAQG2UtSiiqqqq+v6oUaPqZMy2bdvWyTjf9MILL+Szzz6rl7EBAAAAAAAAAAAAAAAAAAAAaqKsRREzGzJkSJ2M07JlyzoZZ2aTJ0/OL37xizofFwAAAAAAAAAAAAAAAAAAAKA2mpY7wAyvvvpq9t133zodc8yYMRk2bFitjimKIlOnTs3EiRMzevTovPzyy7nhhhsybNiwlEqlOs0HAAAAAAAAAAAAAAAAAAAAUBvzTFHE5ZdfnhtvvLFOx+zevXudjFMURZ2MAwAAAAAAAAAAAAAAAAAAADA35pmiiAkTJmTChAl1Nl5dljuUSiVlEQAAAAAAAAAAAAAAAAAAAEDZzTNFEaVSqc7GmlHqUJdjAgAAAAAAAAAAAAAAAAAAAJTbPFMUUR9mFEbMLYUTAAAAAAAAAAAAAAAAAAAAwLxgviyKUOwAAAAAAAAAAAAAAAAAAAAAzI/mqaKIoijKHWG2FE8AAAAAAAAAAAAAAAAAAAAA84J5piiiVCpl0003zQYbbJCOHTumVatWWXjhhRu8pKEoiv9j776j7KrLtgHfe2ZSCaRAKCEQCAFCsVCkiCCEjkiVKggBBAEVXfoCivJSBJGiqJSP3kFEmhTpVZQa6gtoSMEkQEhIICSkZ39/sDISkkDKOXPmJNe11l7MPjnze+6z1xr951n3yZQpUzJhwoS89dZbee655/Loo4+2aAYAAAAAAAAAAAAAAAAAAACAOWkVRRFLLbVU7r333my00Ua1jjJHjz32WHbZZZd8+OGHtY4CAAAAAAAAAAAAAAAAAAAALMYaah0gSU4//fRWWxKRJFtssUV+/etf1zoGAAAAAAAAAAAAAAAAAAAAsJireVFEY2Nj9t9//1rH+FwHHnhgmpqaah0DAAAAAAAAAAAAAAAAAAAAWIzVvCiie/fu6dy5c61jfK5OnTqlR48etY4BAAAAAAAAAAAAAAAAAAAALMZqXhTRqVOnWkeYZ/WUFQAAAAAAAAAAAAAAAAAAAFj01LQoonPnztloo41qGWG+fOUrX8kSSyxR6xgAAAAAAAAAAAAAAAAAAADAYqqplsPXXXfdXHvttbWMMF8uv/zyWkcAAAAAAAAAAAAAAAAAAAAAFmMNtQ4AAAAAAAAAAAAAAAAAAAAAwLxRFAEAAAAAAAAAAAAAAAAAAABQJxRFAAAAAAAAAAAAAAAAAAAAANQJRREAAAAAAAAAAAAAAAAAAAAAdUJRBAAAAAAAAAAAAAAAAAAAAECdUBQBAAAAAAAAAAAAAAAAAAAAUCcURQAAAAAAAAAAAAAAAAAAAADUCUURAAAAAAAAAAAAAAAAAAAAAHVCUQQAAAAAAAAAAAAAAAAAAABAnVAUAQAAAAAAAAAAAAAAAAAAAFAnFEUAAAAAAAAAAAAAAAAAAAAA1AlFEQAAAAAAAAAAAAAAAAAAAAB1QlEEAAAAAAAAAAAAAAAAAAAAQJ1QFAEAAAAAAAAAAAAAAAAAAABQJxRFAAAAAAAAAAAAAAAAAAAAANQJRREAAAAAAAAAAAAAAAAAAAAAdUJRBAAAAAAAAAAAAAAAAAAAAECdUBQBAAAAAAAAAAAAAAAAAAAAUCeaah2gGgYPHpzHHnssI0aMyOjRo/ODH/wgvXv3nuN7p0+fnlNPPTVf+MIXssUWW6R79+4tnBYAAAAAAAAAAAAAAAAAAABg3iwyRREfffRRLrzwwpx//vl58803Z/m3vfbaa65FEUOGDMnDDz+cU045JU1NTfnmN7+Z73//+9lqq61aIjYAAAAAAAAAAAAAAAAAAADAPGuodYBKuOuuu7LKKqvk2GOPzdChQ1OWZfP1efr06ZNHH300AwYMSL9+/XLrrbdmm222yW677ZYhQ4a0QHoAAAAAAAAAAAAAAAAAAACAeVP3RRGnnXZadt1114wePTplWaYoiuZrfnz5y1/OPffck+uuuy6dOnXKHXfckS9/+cu5/fbbq5QcAAAAAAAAAAAAAAAAAAAAYP7UdVHERRddlF/+8peZMWPGLOUQZVku8Jn77bdf7r///nTq1Ckffvhh9thjj5x99tmVigwAAAAAAAAAAAAAAAAAAACwwOq2KOK5557LD37wg1kKImb69P382mijjXLBBRck+bh04rjjjsull166UGcCAAAAAAAAAAAAAAAAAAAALKy6LYo49thjM23atFleK8tylmthfPvb385GG22UoihSlmWOOuqovPTSSwt1JgAAAAAAAAAAAAAAAAAAAMDCqMuiiKeffjoPP/xwiqJI8nFBRLt27XLwwQfnwgsvzO233577779/oeccdthhKcsyRVFk2rRp+eEPf7jQZwIAAAAAAAAAAAAAAAAAAAAsqKZaB1gQd9555yz3m2yySa688sqsscYaFZ2zxRZbzHL/+OOP55///Gc23XTTis4BAAAAAAAAAAAAAAAAAAAAmBcNtQ6wIB566KHmn7/whS/k/vvvr3hJRJKstNJKs7126623VnwOAAAAAAAAAAAAAAAAAAAAwLyoy6KI4cOHJ0natm2bW265JUsssURV5pRlOdtrjz76aFVmAQAAAAAAAAAAAAAAAAAAAHyeploHWBDvvvtuiqLI3nvvnd69e1dtzrBhw5p/LooiZVlmxIgRVZtXSxMnTszIkSMzbty4TJ48OVOmTEm7du3SsWPHdOjQIV26dEnXrl1rHRMAAAAAAAAAqAF7BQAAAAAAAADQetRlUcRMO+ywQ1XPHzBgwGyvjRo1qqozq60sywwYMCCPP/54BgwYkFdffTUDBw7M+PHjP/d3l1hiiay88spZZZVVssEGG2STTTbJJptsYtEDAAAAAAAAABYR9goAAAAAAAAAoPWry6KIpZdeOm+99VZ69OhR1TnXXHPNbK+1bdu2qjOr5YEHHsgNN9yQ2267Le+//37z62VZzvMZ48ePz6uvvprXXnstf/vb35IkRVFk0003zT777JNvfetbWX755SsdHQAAAAAAAACoMnsFAAAAAAAAAFA/GmodYEGsvvrqSZIxY8ZUbcYLL7yQ+++/P0VRzPJ6z549qzaz0sqyzKWXXpq1114722+/fa688sqMHTs2ZVk2X8nHSxnzes08d+Y1Y8aM/OMf/8gxxxyTlVdeOQceeGBeeeWVWn5sAAAAAAAAAGAe2CsAAAAAAAAAgPpUl0URm222WcqyzFNPPVWV86dNm5b+/ftn+vTpza+VZZmiKLL++utXZWalPfTQQ/nCF76QI444Iq+//nrzAsa8LGnM7UrmvPwx89+nTZuW66+/Pl/60pey33775Z133qnlIwAAAAAAAAAA5sJeAQAAAAAAAADUr7osithtt92SJNddd10mT55c0bPLskz//v3z4osvNi8rfNI3vvGNis6rtClTpuSYY47Jdtttl9dee222JY65mddv/fi835253PHnP/85a621Vq666qpqfEwAAAAAAAAAYAHYKwAAAAAAAACA+leXRREbbLBBNtxww7z11ls59dRTK3bu1KlTc8ABB+S6665rXmD45CJDt27dsueee1ZsXqWNHj06W221Vc4777zMmDEjSWZbxJiXb/iY3+uTPrnY8cEHH+SQQw7JT37yk9neBwAAAAAAAAC0LHsFAAAAAAAAALBoaKp1gAV1+umnZ7vttssZZ5yRNddcMwceeOBCnffMM8/kkEMOyauvvtr82sxvzZj535/97Gdp167dwkavinfffTf9+vWb5ds+ksyySNG5c+estdZaWXvttdO7d+8st9xyWXbZZdO9e/e0a9eu+WpsbMz06dMzY8aMTJo0KZMnT8748eMzbty4vP/++xk1alRGjhyZYcOGZejQoRk4cGDGjBkzS55Pzj/33HMzefLknHfeeS33QAAAAAAAAACAZvYKAAAAAAAAAGDRUbdFEdtss0369++fK664IgcffHBefvnlnHjiienUqdN8nfPYY4/loosuyk033ZTp06fPVg6RfLycsOGGG+ZHP/pRFT7JwpsyZUp23XXXvPrqq7N880aHDh2y0047Zeutt85WW22VNddcs2oZ3nrrrQwYMCB///vfc/fdd+eVV15JkuYsF154Yfr27Zvvf//7VcsAAAAAAAAAAMzOXgEAAAAAAAAALFrqtigiSS644IK88soreeaZZ3LOOefkyiuvzL777pudd94566yzTvP7pk+fnjFjxuSDDz7IqFGj8vzzz+fpp5/O448/nkGDBiX57zdkfLokoizLLL/88rn55pvT0NDQ8h9yHpxwwgl56qmnmrOvuuqqOe6447LffvtlySWXbJEMPXr0SI8ePbLzzjvnjDPOyBtvvJE//OEPueyyyzJp0qSUZZnjjjsuO+20U3r37t0imQAAAAAAAAAAewUAAAAAAAAAsKhpnc0H86hdu3a57777svHGG6csy7z33ns5//zzs+OOO2bllVdO8nHRw5Zbbpnu3bunT58+2XTTTXPUUUflyiuvzBtvvJGyLJuLIeZUEtGjR488+OCD6dmzZy0/6lwNHDgw5557boqiSENDQ0466aT861//yuGHH95iyxxz0qdPn/zhD3/Iiy++mA022CBJMmnSpPz4xz+uWSYAAAAAAAAAWNzYKwAAAAAAAACARU9dF0UkSefOnfP444/npz/9aZI0Fz98uvBhTtfMcoiZ70syy+/ssMMOef7557PWWmu1/AebR7///e8zffr0NDQ05IYbbsiJJ56YpqamWsdq1qdPnzz88MP5yle+krIsc+edd+bVV1+tdSwAAAAAAAAAWCzYKwAAAAAAAACARU/dF0UkSVNTU84888zcf//92WyzzWb5t0+WQXz6+rSZBRIrrrhizjvvvNx9993p3r17S32MBXLzzTenKIocfvjh+da3vlXrOHO0xBJL5MYbb0z79u2TJFdffXWNEwEAAAAAAADA4sFeAQAAAAAAAAAsehaJooiZ+vXrl8cffzzPPfdcDj300PTq1au5/OHzrg4dOmTrrbfOtddem8GDB+eoo46q9cf5XMOHD8/IkSOTJN/97ndrnOazrbLKKunfv3/KsswDDzxQ6zgAAAAAAAAAsMizVwAAAAAAAAAAi6amWgeohvXWWy+XXHJJkuSdd97JP//5zwwbNixjx47N2LFj89FHH2WppZZKt27dsswyy+TLX/5y1l9//TQ11dfjeOedd5p/XnvttWuYZN7ssMMOufDCCzNkyJBaRwEAAAAAAACARZ69AgAAAAAAAABYNNVXM8ICWH755bP77rvXOkZVtGvXrvnniRMnpm3btjVM8/k6duyYJPnoo49qnAQAAAAAAAAAFn32CgAAAAAAAABg0dRQ6wAsuJ49e6YoiiTJY489VuM0n+/FF19MkiyzzDI1TgIAAAAAAAAAiz57BQAAAAAAAACwaFIUMR8OPfTQvP3227WO0axr165Zd911U5ZlTjnllMyYMaPWkeZqypQpueiii1IURdZbb71axwEAAAAAAACARZ69AgAAAAAAAABYNCmKmEcTJ07MlVdembFjx9Y6yiwOOOCAJMmAAQNy0EEHtdqljsMPPzwDBw5Mkuy00041TgMAAAAAAAAAiwd7BQAAAAAAAACw6FEUMY9efvnlWkeYo8MPPzxLL710kuT666/PZpttljfeeKPGqf5r6NCh2W677XLNNdckSTp37ty8hAIAAAAAAAAAVJe9AgAAAAAAAABY9CiKmEdnnHFGrSPMUefOnXPWWWelLMskyVNPPZV11lknBx98cJ5//vma5frHP/6RQw89NGuttVYefPDBlGWZoihy2mmnpVOnTjXLBQAAAAAAAACLE3sFAAAAAAAAALDoaap1gGooyzLvv/9+Jk+enKlTpzYvO8yPqVOnZuzYsRk0aFCuuuqq3HPPPSmKogppF97BBx+cxx57LFdeeWWKosjUqVNzzTXX5JprrkmvXr2y884756tf/WrWW2+9rLHGGlX5HMOGDctzzz2Xe++9N7fffntGjhyZJM3PviiK7LLLLjnyyCMrPhsAAAAAAAAAmDt7BQAAAAAAAACwaFkkiiJGjx6dK6+8Mg888EBeeeWVjBw5MjNmzKh1rBZ18cUXZ9iwYXnwwQdTFEXzIsXQoUNz/vnn5/zzz0+StGvXLj179pztWn755dOxY8d07NgxHTp0aP5vkkyaNKn5Gj9+fN56662MGDEiw4cPz5AhQzJgwIC89957zVk+WcwxM8vmm2+e6667rgWfCAAAAAAAAAAwk70CAAAAAAAAAFh01HVRxOTJk3PyySfn97//fSZNmpRk1mWCSqnGN2VUWlNTU+66664ccsghuf7662fJ/MlnMmnSpLzxxhsZNGhQxWZ/+pl/evYee+yRa6+9Nu3bt6/YTAAAAAAAAABg3tkrAAAAAAAAAIBFR0OtAyyoMWPGZIsttshvfvObTJw4MWVZpizLFEVR8atetG3bNtdee23OOuustG/fvnnRYk6faebzqsQ1p+dVlmXat2+fc889N3/5y18scwAAAAAAAABAjdkrAAAAAAAAAIBFQ1OtAyyofffdN88880yS1FWZQ0v4yU9+kt122y1HH3107rvvviSzP6NqPbOZCx577LFHzjnnnPTq1Wuu73333XczatSo+Tr/jTfeWNiIAAAAAAAAALBYq4e9AjsFAAAAAAAAADB3dVkUceedd+aBBx6Y41LCzG+7qKR6LKJYbbXVcs899+TJJ5/Maaedlrvuuqv53+b2eT7v2X3e77Vp0yb77bdfjj322Ky99tqfm/GCCy7IySef/LnvAwAAAAAAAAAqq7XvFdgpAAAAAAAAAIC5q8uiiCuuuGK218qyTLdu3bLzzjtn/fXXT8+ePdOpU6e0a9dugWbMmDEjkydPzogRI3LhhRdmwIABCxu7JjbZZJPccccdefPNN3PDDTfkxhtvzIsvvjjLe2YuasxrIcYnFz8aGxuz2Wab5Zvf/Gb23XffrLjiipULDwAAAAAAAABUlb0CAAAAAAAAAKg/dVkU8dRTTzUvH5RlmaIocvDBB+f8889Phw4dKj7vO9/5Tvr165d//OMfFT+7pfTq1SvHH398jj/++IwcOTL/+Mc/8o9//CMvvvhihgwZkmHDhmXKlCmfeUZRFFl11VWzzjrrZJ111smXvvSlbLfddunatWsLfQoAAAAAAAAAoBrsFQAAAAAAAABA/ajLoohRo0Yl+W9JxDbbbJPLL7+8avPatGmT4447LrvuumvVZrSk5ZZbLrvvvnt233335tfKssy7776bcePG5aOPPspHH32UsizTqVOnLLnkkllyySXTuXPntGnTpmI5jjrqqOy1117z9TtvvPFGdtttt4plAAAAAAAAAABm1Rr2CuwUAAAAAAAAAMDc1WVRRIcOHfLhhx823//P//xP1WdutNFGVZ9RS0VRZLnllstyyy3XYjOXXXbZLLvssi02DwAAAAAAAABYMC29V2CnAAAAAAAAAADmrqHWARZEnz59ZrnfcMMNqz5z2WWXTVEUVZ8DAAAAAAAAAAAAAAAAAAAAMDd1WRSx5ZZbpizL5vt27dq1yNzBgwdnjTXWaJFZAAAAAAAAAAAAAAAAAAAAAJ9Wl0UR3/nOd2a5f/PNN1tk7sorr5ympqYWmQUAAAAAAAAAAAAAAAAAAADwaXVZFPHFL34xu+yyS/P9fffdV8M0AAAAAAAAAAAAAAAAAAAAAC2jLosikuS8885Lly5dkiRXXHFFi8xsamrKq6++2iKz5tVWW22VW2+9NTNmzKjqnGnTpuWNN97I008/nSeffDL/93//lw8//LCqMwEAAAAAAACAhWOvAAAAAAAAAAAWPU21DrCgevbsmZtuuik77rhjXnrppVx33XX59re/XbV548aNq/rSxIJ49NFH89hjj6Vnz5458sgj893vfjdLL710Rc5+/fXXc9111+Wee+7Jiy++mOnTp8/2np49e2brrbfOnnvumZ122ilFUVRkNgAAAAAAAACw8OwVAAAAAAAAAMCip6HWARbG1ltvnWuvvTYNDQ354Q9/mP/85z9Vm/XKK6+06mWFYcOG5YQTTshKK62U/v37L9RZr7/+enbdddess846Of300/Pcc89l2rRpKctytmvYsGG56qqrsssuu2S11VbLn//85wp9IgAAAAAAAACgUuwVAAAAAAAAAMCio66LIpJk7733zvXXX58JEyZkl112yfjx46sy57e//W1Vzq2UoihSlmUmTZqUq6++eoHPOe200/LlL385d955Z/PSxszz53bNNHTo0Oy3337ZYost8tJLLy30ZwIAAAAAAAAAKsNeAQAAAAAAAAAsOppqHaAS9tprryy77LLZfffds9tuu+XSSy9NQ8PCdWBMmzYtEyZMyPDhw3PVVVfllltumWV5oTWaudSxICZOnJh99tknd9111yxLHJ/2eeeXZZknnngim266aa644orsvffeC5QHAAAAAAAAAKgsewUAAAAAAAAAsGhYJIoi7r///uZvu3j44Yez2mqr1ThRyyvLcoGLLKZNm5add945jzzyyCznfPrnJNl4442zyy67ZIsttsiqq66aZZZZJhMnTszIkSPz1FNP5a677sott9ySiRMnZr/99svAgQNzwgknVOZDAgAAAAAAAAALxF4BAAAAAAAAACw66rooYujQofnOd76TJ554ovm1Bf3mi8XZEUcckYcffjhFUcx1mWOHHXbIKaeckg033HC232/btm06d+6cNdZYIwceeGAGDRqUn/70p7n99ttz4oknplu3bjnyyCNb9DMBAAAAAAAAAJVhrwAAAAAAAAAAWpeGWgdYUAMHDsxmm22WJ554ImVZNl8zlxIqfS2qzjjjjFxxxRWzfcNHURQpyzKdO3fOjTfemLvvvnuOyxxzstpqq+XWW2/NGWeckaIocswxx+TBBx+s2mcAAAAAAAAAAKrDXgEAAAAAAAAAtD51WRQxffr07Lvvvnn77beTZLEodKiG//u//8uJJ54412/7WH311fPkk09mr732WqDzjz322Jx99tmZNm1aDjzwwIwbN65i2QEAAAAAAACA6rJXAAAAAAAAAACtU10WRdx44415/vnnZ/u2ipk/V/paVB1zzDGZNm1aktmXOXr37p3HHnssa6yxxkLN+NGPfpSDDjoo77zzTk488cSFzgwAAAAAAAAAtAx7BQAAAAAAAADQOjXVOsCCuOGGG2a5L4oiZVmmsbEx/fr1y+abb57VVlstXbp0SYcOHZoXFebH9OnTM3ny5AwbNiznn39+Xn755UrFbxVuueWWPPTQQ83P7pPLHN26dcu9996b5ZZbriKzzjzzzNx666254IILcuSRR2bNNdesyLkAAAAAAAAAQHXYKwAAAAAAAACA1qsuiyKee+65WRYQkmSDDTbIn/70p6y22moVn3fwwQdnm222yRNPPFHxs2vl1FNPne21mYsdv//97yv6HLt3754DDjggF1xwQX7/+9/nggsuqNjZAAAAAAAAAEDl2SsAAAAAAAAAgNarodYBFsSYMWNmue/Tp08eeeSRqpREJEnbtm1z4oknVuXsWnjhhRfy4osvzvKtHzP/u9NOO+Xb3/52xWfuscceSZJrr702kyZNqvj5AAAAAAAAAEBl2CsAAAAAAAAAgNatLosiunXrluS/31Rx8sknZ4kllqjqzPXXX7+q57ekK6+8svnnoihm+fn000+vysy+ffsmSSZMmJAHHnigKjMAAAAAAAAAgIVnrwAAAAAAAAAAWre6LIro27dvyrJsvt96662rPrNbt26zzGxtPrmY8VmmT5+e6667bpb3zyzc2GWXXfKFL3yhKvmWXXbZ5p8tdAAAAAAAAABAy7JXAAAAAAAAAACLjrosith5551nue/cuXOLzB06dGjWWGONFpk1rxobG+dYYDG3UouXX34577333hzfc/DBB1c830zvv/9+888vvvhi1eYAAAAAAAAAAP9lrwAAAAAAAAAAFj11WRRx0EEHpVOnTs33b775ZovMXXnlldPU1NQis+bVG2+8kaOOOirt27dv/gaPJFl99dVzySWXZOrUqbO8/8knn2z++ZPf/tGpU6fsuOOOVcv57LPPzpIZAAAAAAAAAKg+ewUAAAAAAAAAsOipy6KIpZdeOj/+8Y+b7x999NEapqmtXr165bzzzsubb76Zn//85+nSpUvKsszgwYPzve99L6uuump+97vf5aOPPkqSPPXUU7P8/swlkA033DBt2rSpWs4bb7yxed4nvwUEAAAAAAAAAKgeewUAAAAAAAAAsOipy6KIJPnlL3+ZDTfcMGVZ5uKLL26RmX369Gm131qxzDLL5Fe/+lXefPPNnHnmmenRo0fKssxbb72Vn/70p+nVq1dOOeWU/P3vf5/j72+00UZVyzZ48ODccMMNzd80Mnny5KrNAgAAAAAAAABmZ68AAAAAAAAAABYddVsU0dTUlJtvvjkrrrhiBgwYkNtvv72q8yZNmpTBgwdnypQpVZ2zsDp16pSf/vSnGTJkSC6++OKsscYaKcsy7733Xk4++eQMHjw4ycffwPFJq6++etUyfe9735vluXXs2LFqswAAAAAAAACAubNXAAAAAAAAAAD1r26LIpJkpZVWykMPPZTll18+P/7xjzN+/PiqzXrzzTebv7miHrRp0yaHHXZYXnvttfz5z3/OhhtumLIsU5ZliqKY7bP07NmzKjkuvvjiPPDAA7PMW3755asyCwAAAAAAAACYN/YKAAAAAAAAAKB+1XVRRPLxN1Y8/PDDmTx5cg477LCqzbn88surdnY1FUWRb33rW3n66adz3333pV+/fs2LHZ/Uo0ePis/+8MMP87Of/ax5mWPmMsnaa69d8VkAAAAAAAAAwPyzVwAAAAAAAAAA9afuiyKSZI011sijjz6aJ554Ij/84Q8rcub06dMzZsyYPPvss/n+97+fs88+uyLn1tI222yTBx54IM8++2z23HPPWb6No2PHjhWf9+ijj2bs2LGzvb7ddttVfBYAAAAAAAAAsHDsFQAAAAAAAABAfWiqdYAF0djYONd/O//883P++edXfObMb61YFKy//vq56aab8sYbb+Q3v/lNrr322nTo0KHic6ZNmzbba8sss0wOOOCAis8CAAAAAAAAACrDXgEAAAAAAAAAtG4NtQ6wILp06ZKyLFv0WhT16dMnl1xySYYMGZJlllmm4ud/7Wtfy1JLLZXk46KNpqamXHnllenUqVPFZwEAAAAAAAAAlWWvAAAAAAAAAABap7osijj00EOTJEVRtNi1KFt++eXTpk2bip+7zDLL5I477sg222yTXXbZJY8++mh23HHHis8BAAAAAAAAAKrHXgEAAAAAAAAAtC5NtQ6wII488sj89re/TVmWST7+VolFvcyhXm2++ea59957ax0DAAAAAAAAAGiF7BUAAAAAAAAAwPxrqHWABbHqqqtm++23by6KmFkSUZZlVS4AAAAAAAAAAAAAAAAAAACA1qCp1gEW1NFHH52//e1vST4uiFh66aXTr1+/9O7dO926dUuHDh3Svn37NDQ0pLGxcb7OLssyU6ZMydixY/Pvf/87t912W8aOHVuNjwEAAAAAAAAAAAAAAAAAAAAwz+q2KGLHHXdM7969M2TIkGy88cZ54IEHssQSS1Rl1m9+85tss802efnll6tyPgAAAAAAAAAAAAAAAAAAAMC8aKh1gAVVFEWOOOKIJMmee+5ZtZKIJFlmmWXyu9/9rmrnAwAAAAAAAAAAAAAAAAAAAMyLui2KSJJDDz007dq1y9ixY6s+a8MNN0xZllWfAwAAAAAAAAAAAAAAAAAAADA3dV0U0a1bt+yzzz55+OGHqz5rySWXzKqrrpq2bdtWfRYAAAAAAAAAAAAAAAAAAADAnDTVOsDCOu2009KuXbsWmTVo0KAWmQMAAAAAAAAAAAAAAAAAAAAwJ3VfFNGjR49aRwAAAAAAAAAAAAAAAAAAAABoEQ21DlBPfvWrX2X06NG1jgEAAAAAAAAAAAAAAAAAAAAsphRFzKNp06blf//3f/Puu+/WOgoAAAAAAAAAAAAAAAAAAACwmFIUMY+GDBmSsixrHQMAAAAAAAAAAAAAAAAAAABYjCmKmEcXXXRRiqKodQwAAAAAAAAAAAAAAAAAAABgMdZUq8HTp0/PnXfemUGDBmWNNdbITjvtlIaG1tNbMX369IwdOzYDBw7MZZddlssvv1xRBAAAAAAAAAAAAAAAAAAAAFBTNSmKGD58eHbeeee8/PLLza+tt956+etf/5oePXp87u83NjZWMx4AAAAAAAAAAAAAAAAAAABAq9RQi6FHHXVUXnrppZRl2Xw9//zzOfroo+fp9zt37jzL77bEBQAAAAAAAAAAAAAAAAAAAFBrNSmKePDBB1MUxSxXWZa577775un3Dz744CSZ7YxqXgAAAAAAAAAAAAAAAAAAAAC1VpOiiC5duszX65925JFHzlLeUJZlBVIBAAAAAAAAAAAAAAAAAAAAtG41KYo4/PDD51ju8P3vf3+efn/11VdPv379ms+YWRpRlmVVLgAAAAAAAAAAAAAAAAAAAIDWoKkWQ0888cQ0NTXlrLPOyrhx49K1a9f8/Oc/z09+8pN5PuN73/teHnzwwSQfF0Qss8wy2XbbbbPKKquka9eu6dChQ9q1a5eGhoY0NjbOV76yLDNlypSMGTMmr776au6444588MEH83UGAAAAAAAAAAAAAAAAAAAAQKXVpCiiKIqccMIJOeGEE/Lee+9l6aWXnu8zdtttt6ywwgp55513summm+b+++9Px44dq5A2GTlyZHbccce8+OKLVTkfAAAAAAAAAAAAAAAAAAAAYF401DrAgpREJEljY2MOO+ywJMm+++5btZKIJFluueVy7rnnVu18AAAAAAAAAAAAAAAAAAAAgHlR86KIhXH44YenoaEh48ePr/qs9dZbr+ozAAAAAAAAAAAAAAAAAAAAAD5LXRdFrLjiitl5553z0EMPVX3WkksuWfUZAAAAAAAAAAAAAAAAAAAAAJ+lqdYBFtYZZ5yRhoaW6buYPn16i8wBAAAAAAAAAAAAAAAAAAAAmJOaFkVMnTo1b7/99ue+r127dlluueXm+G9rrrlmpWMBAAAAAAAAAAAAAAAAAAAAtEo1LYp4+umns8UWW3zme4qiyE477ZS//vWvLZQKAAAAAAAAAAAAAAAAAAAAoHWqaVFEkpRlOdtr3bp1y6GHHpqddtopG2ywQTp16lSDZAAAAAAAAAAAAAAAAAAAAACtS82LIpKkKIrmn3fcccdcdtllWW655WqYCAAAAAAAAAAAAAAAAAAAAKD1aRVFETN985vfzG233VbrGAAAAAAAAAAAAAAAAAAAAACtUkOtA8y0wgor5Oqrr651DAAAAAAAAAAAAAAAAAAAAIBWq9UURXz3u9/NUkstVesYAAAAAAAAAAAAAAAAAAAAAK1WqymK2HbbbWsdAQAAAAAAAAAAAAAAAAAAAKBVazVFEWuuuWatIwAAAAAAAAAAAAAAAAAAAAC0aq2mKKJr1661jvC53nnnnUyfPr3WMQAAAAAAAAAAAAAAAAAAAIDFVKspimhoaDVR5mq77bbLv/71r1rHAAAAAAAAAAAAAAAAAAAAABZTrb+doRWZPn16rSMAAAAAAAAAAAAAAAAAAAAAizFFEfPhvffeq3UEAAAAAAAAAAAAAAAAAAAAYDGmKGIeDRw4MKNGjap1DAAAAAAAAAAAAAAAAAAAAGAxpihiHp122mm1jgAAAAAAAAAAAAAAAAAAAAAs5ppqHaA1mzhxYl544YVccsklufrqq1MURa0jAQAAAAAAAAAAAAAAAAAAAIuxVlMU0bt371pHaDZlypRMmDAh48aNq3UUAAAAAAAAAAAAAAAAAAAAgGatpihi6NChtY4AAAAAAAAAAAAAAAAAAAAA0Kq1mqKIoihqHeEzlWVZ6wgAAAAAAAAAAAAAAAAAAADAYq6h1gFas7IsFUQAAAAAAAAAAAAAAAAAAAAArUZTrQO0ZkVR1DoCAAAAAAAAAAAAAAAAAAAAQLNWUxRRlmWtI8yVwggAAAAAAAAAAAAAAAAAAACgNWg1RRFXXHFFrSM0mzx5ciZMmJC33347AwYMyCOPPNKqiywAAAAAAAAAAAAAAAAAAACAxUOrKYo46KCDah1hrp599tnsuOOOGTNmTK2jAAAAAAAAAAAAAAAAAAAAAIuxhloHqAcbbrhhzjzzzFrHAAAAAAAAAAAAAAAAAAAAABZziiLm0T777JM2bdrUOgYAAAAAAAAAAAAAAAAAAACwGFMUMY86duyYHj161DoGAAAAAAAAAAAAAAAAAAAAsBhTFDEfllhiiVpHAAAAAAAAAAAAAAAAAAAAABZjraYoYvr06bWO8Ll22223dO3atdYxAAAAAAAAAAAAAAAAAAAAgMVUU60DzPTRRx9lySWXrHWMz3TqqafWOgIAAAAAAAAAAAAAAAAAAACwGGuodYCZRo4cWesIAAAAAAAAAAAAAAAAAAAAAK1aqymKePnll2sdAQAAAAAAAAAAAAAAAAAAAKBVazVFEddff32tIwAAAAAAAAAAAAAAAAAAAAC0aq2iKKIsy9xyyy3561//WusoAAAAAAAAAAAAAAAAAAAAAK1WqyiKKIoiZVlm3333zU033VTrOAAAAAAAAAAAAAAAAAAAAACtUqsoikg+LouYNGlS9t133+y222555JFHUpZlrWMBAAAAAAAAAAAAAAAAAAAAtBqtoiiiLMvmUoiyLPPXv/41W2+9dbp06ZKvf/3rOemkk2obEAAAAAAAAAAAAAAAAAAAAKAVaKrl8DXWWCNXXHHF576ve/fuLZAGAAAAAAAAAAAAAAAAAAAAoHWraVFE9+7dc9BBB9UyAgAAAAAAAAAAAAAAAAAAAEDdaKh1AAAAAAAAAAAAAAAAAAAAAADmjaIIAAAAAAAAAAAAAAAAAAAAgDqhKAIAAAAAAAAAAAAAAAAAAACgTjTVOkBL6dev3yz3RVHkwQcfrFEaAAAAAAAAAAAAAAAAAAAAgPm32BRFPPLIIymKIklSlmXzzwAAAAAAAAAAAAAAAAAAAAD1oqHWAQAAAAAAAAAAAAAAAAAAAACYN4oiAAAAAAAAAAAAAAAAAAAAAOqEoggAAAAAAAAAAAAAAAAAAACAOqEoAgAAAAAAAAAAAAAAAAAAAKBOKIoAAAAAAAAAAAAAAAAAAAAAqBOKIgAAAAAAAAAAAAAAAAAAAADqhKIIAAAAAAAAAAAAAAAAAAAAgDqhKAIAAAAAAAAAAAAAAAAAAACgTiiKAAAAAAAAAAAAAAAAAAAAAKgTiiIAAAAAAAAAAAAAAAAAAAAA6oSiCAAAAAAAAAAAAAAAAAAAAIA6oSgCAAAAAAAAAAAAAAAAAAAAoE4oigAAAAAAAAAAAAAAAAAAAACoE4oiAAAAAAAAAAAAAAAAAAAAAOpEU60DtKSyLGsdAQAAAAAAAAAAAAAAAAAAAGCBLTZFEUOGDKl1BAAAAAAAAAAAAAAAAAAAAICFstgURfTq1avWEQAAAAAAAAAAAAAAAAAAAAAWSkOtAwAAAAAAAAAAAAAAAAAAAAAwbxRFzIfVVlstb7zxRq1jAAAAAAAAAAAAAAAAAAAAAIspRRHzaOzYsRkyZEimTJlS6ygAAAAAAAAAAAAAAAAAAADAYkpRxDz65z//maIoah0DAAAAAAAAAAAAAAAAAAAAWIwpipgH48aNy/HHH1/rGAAAAAAAAAAAAAAAAAAAAMBirqnWASqpLMsMGjQoI0aMyJgxYzJ58uRMnTo1ZVnO91lTp07N2LFjM2jQoPz1r3/N22+/naIoqpAaAAAAAAAAAAAAAAAAAAAAYN4sEkURd955Z/7f//t/eeSRRzJx4sSKn78gRRMAAAAAAAAAAAAAAAAAAAAAlVbXRREDBw7MwQcfnCeffDJJ9QodiqJQFgEAAAAAAAAAAAAAAAAAAADUXN0WRbz44ovZeuutM3bs2OYSh6IoapwKAAAAAAAAAAAAAAAAAAAAoHoaah1gQUyePDl77rlnxowZk+TjggglEQAAAAAAAAAAAAAAAAAAAMCirqnWARbE5ZdfnsGDB89WDlGWZY0SAQAAAAAAAAAAAAAAAAAAAFRfQ60DLIibbrppttfKssz222+fyy+/PC+88EJGjx6dSZMmZcaMGQt0TZ8+PR999FEGDhyYo48+ugafEgAAAAAAAAAAAAAAAAAAAGBWTbUOsCBeeumlFEWR5OOCiIaGhlx22WU5+OCDKzajKIq0b98+q622Wv74xz/mww8/zDXXXFOx8wEAAAAAAAAAAAAAAAAAAADmV0OtAyyIcePGJfm4JKIoihxxxBEVLYmYkyOPPLKq5wMAAAAAAAAAAAAAAAAAAAB8nrosiujcufMs94cddljVZ/bt2zdlWVZ9DgAAAAAAAAAAAAAAAAAAAMDc1GVRxLrrrjtLaUPfvn2rPrNz587p3bt32rZtW/VZAAAAAAAAAAAAAAAAAAAAAHNSl0URO+644yz3kyZNapG5b7zxRvr06dMiswAAAAAAAAAAAAAAAAAAAAA+rS6LIr7zne+kXbt2zfeDBg2qYRoAAAAAAAAAAAAAAAAAAACAllGXRRHLL798vv/97zff33rrrS0y9/HHH8/EiRNbZBYAAAAAAAAAAAAAAAAAAADAp9VlUUSSnHrqqVlnnXVSlmWuuuqqTJ48uarzyrLMlltumSFDhlR1DgAAAAAAAAAAAAAAAAAAAMDc1G1RRPv27XPnnXdm2WWXzdtvv51TTjmlqvNGjRqVsiyrOgMAAAAAAAAAAAAAAAAAAADgs9RtUUSS9OrVKw899FC6d++eM888Mw8++GDVZj311FMpiqJq5wMAAAAAAAAAAAAAAAAAAAB8nrouikiStddeO4888khWXHHF7L333vnXv/5V8RkfffRRfvnLX1b8XAAAAAAAAAAAAAAAAAAAAID50VTrAJXQt2/fPPnkk/nqV7+a7bbbLieffHIaGhauA2PatGmZMGFChg8fnptvvjmDBw9OURQVSgwAAAAAAAAAAAAAAAAAAAAw/+q+KGLUqFE599xzc80112TEiBEpyzKHHnpoRWeUZVnR8wAAAAAAAAAAAAAAAAAAAAAWRF0XRdx5553p379/xowZ01zmUBRFxYsdqnEmAAAAAAAAAAAAAAAAAAAAwPyq26KIu+++O3vssUemTZuW5OMyh5k++TMAAAAAAAAAAAAAAAAAAADAoqIuiyI++OCD9O/fP9OmTVMKAQAAAAAAAAAAAAAAAAAAACw26rIo4qKLLsqoUaOaSyLKspzlZwAAAAAAAAAAAAAAAAAAAIBFUUOtAyyIO+64Y5b7oihSlmV69+6d0047LY899lhGjBiRCRMmZMaMGQt0TZs2LRMmTMjrr7+e7373uzX6pAAAAAAAAAAAAAAAAAAAAAD/1VTrAAvi1VdfTVEUSZKyLFMURY444oicd955aWxsrMiMhoaGdOjQIWussUYuuuiilGWZyy67rCJnAwAAAAAAAAAAAAAAAAAAACyIhloHWBAfffRRkv+WRGy99da58MILK1YSMSdHHHFE1c4GAAAAAAAAAAAAAAAAAAAAmBd1WRSx3HLLzXJ/3HHHVX1m3759U5Zl1ecAAAAAAAAAAAAAAAAAAAAAzE1dFkVssMEGs5Q2bLjhhlWfucQSS2TVVVdN27Ztqz4LAAAAAAAAAAAAAAAAAAAAYE7qsihi9913n+W+sbGxReYOGjQoffr0aZFZAAAAAAAAAAAAAAAAAAAAAJ9Wl0UR++yzT1ZeeeXm+0GDBtUwDQAAAAAAAAAAAAAAAAAAAEDLqMuiiDZt2uT0009vvr/99ttbZO6wYcMyffr0FpkFAAAAAAAAAAAAAAAAAAAA8Gl1WRSRJPvvv38OPPDAlGWZSy+9NFOnTq36zFVXXTX/+te/qj4HAAAAAAAAAAAAAAAAAAAAYE7qtigiSS6++OJstdVWGTFiRP7whz9UddaHH36YGTNmVHUGAAAAAAAAAAAAAAAAAAAAwGep66KIdu3a5c4778zmm2+ek046KYMGDararNdeey1FUVTtfAAAAAAAAAAAAAAAAAAAAIDPU9dFEUnSoUOH3H333dlggw2yxx57ZPz48RWfMWPGjJxyyikVPxcAAAAAAAAAAAAAAAAAAABgfjTVOsCCeOyxx2Z77bjjjsvhhx+e7bffPqeffnqKolioGVOnTs0HH3yQwYMH57rrrsuLL7640GcCAAAAAAAAAAAAAAAAAAAALIy6LIrYcsst51ra8NZbb6Vfv34tnAgAAAAAAAAAAAAAAAAAAACg+hpqHWBBrL766inLssUuAAAAAAAAAAAAAAAAAAAAgNagLosijjzyyCRJURQtcgEAAAAAAAAAAAAAAAAAAAC0BnVZFNG/f/907Nix+b4syxqmAQAAAAAAAAAAAAAAAAAAAGgZdVkU0blz5+y///7NBRFFUaQsy6peAAAAAAAAAAAAAAAAAAAAALXWVOsAC+roo4/OpZdemiQpyzLbbbdddt111/Tu3TvdunVLhw4d0r59+zQ0NKSxsXG+zi7LMlOmTMnYsWPz73//O5deemkef/zxanwMAAAAAAAAAAAAAAAAAAAAgHlWt0URX/rSl7LpppvmySefzD777JMbbrihKnM23njjHHjggdl3331z0003VWUGAAAAAAAAAAAAAAAAAAAAwLxoqHWAhXH00UenLMt85Stfqfqsn/3sZ1WfAQAAAAAAAAAAAAAAAAAAAPBZ6rooYq+99sqyyy6bIUOGVH1W3759U5Zl1ecAAAAAAAAAAAAAAAAAAAAAzE1dF0W0adMmhx12WEaMGFH1We3atUv//v3TtWvXqs8CAAAAAAAAAAAAAAAAAAAAmJOmWgdYWCeffHIaGxtbZNZJJ52UZZddtkVmAQAAAAAAAAAAAAAAAAAAAHxaQ60DLKyWKokoyzKrrLJK/vWvf7XIPAAAAAAAAAAAAAAAAAAAAIBPq/uiiJby9ttvpyzLWscAAAAAAAAAAAAAAAAAAAAAFmOKIubR3/72txRFUesYAAAAAAAAAAAAAAAAAAAAwGJMUcQ8eOqpp3LsscfWOgYAAAAAAAAAAAAAAAAAAACwmGuqdYBKmT59ep555pm88sorGTFiRMaMGZPJkydn6tSpKctyvs+bOnVqxo4dm0GDBuXf//53yrJMURRVSA4AAAAAAAAAAAAAAAAAAAAwb+q+KOLdd9/NmWeemcsvvzwffPBBxc9fkJIJAAAAAAAAAAAAAAAAAAAAgGqo66KIm266KUcccUQ++OCDqhU6FEWRRGEEAAAAAAAAAAAAAAAAAAAAUHt1WxRxww035MADD8yMGTOS/LfQAQAAAAAAAAAAAAAAAAAAAGBRVZdFESNHjswRRxyRGTNmzLUgoizLisxSQAEAAAAAAAAAAAAAAAAAAAC0FnVZFHH++edn/Pjxs5U4zCyH6NKlS3r27JlOnTqlXbt2CzRjxowZmTx5ct56660MHz58oTMDAAAAAAAAAAAAAAAAAAAALKy6LIq46667ZrkvyzKdOnXKCSeckH322SerrLJKRefdfPPNOeiggzJx4sSKngsAAAAAAAAAAAAAAAAAAAAwP+qyKGLgwIEpiiLJxyURSy65ZJ544omsu+66VZm355575qWXXsqvfvWrqpwPAAAAAAAAAAAAAAAAAAAAMC8aah1gQUyZMiXJxyURRVHkl7/8ZdVKImbaf//9q3o+AAAAAAAAAAAAAAAAAAAAwOepy6KIZZdddpb7PfbYo+oze/XqlbIsqz4HAAAAAAAAAAAAAAAAAAAAYG7qsihi/fXXn6W0YaWVVqr6zPbt2+eQQw5J165dqz4LAAAAAAAAAAAAAAAAAAAAYE7qsihi1113neV+9OjRLTL30ksvzQorrNAiswAAAAAAAAAAAAAAAAAAAAA+rS6LIvbbb7907969+f7VV1+tYRoAAAAAAAAAAAAAAAAAAACAllGXRRHt27fPr3/96+b766+/vkXm/upXv8ro0aNbZBYAAAAAAAAAAAAAAAAAAADAp9VlUUSSHHLIIdlrr71SlmX+/Oc/56233qrqvGnTpuV///d/8+6771Z1DgAAAAAAAAAAAAAAAAAAAMDc1G1RRJJcddVV+epXv5oJEybkqKOOquqsESNGpCzLqs4AAAAAAAAAAAAAAAAAAAAA+Cx1XRTRvn373HPPPdl0001zxx135JxzzqnarPvuuy9FUVTtfAAAAAAAAAAAAAAAAAAAAIDPU9dFEUnSqVOn3H///dlhhx1y/PHH59Zbb634jFdeeSU///nPK34uAAAAAAAAAAAAAAAAAAAAwPxoqnWASujYsWPOOeec7LTTTtl///2zzz77pKFh4Towpk2blgkTJmT48OF54YUXMnXq1BRFUaHEAAAAAAAAAAAAAAAAAAAAAPOv7osiHnzwwZx44ol58sknkyRlWeaaa66p2PllWVbsLAAAAAAAAAAAAAAAAAAAAICFUddFEccff3zOOuusJP8tdCiKouLlDtU4EwAAAAAAAAAAAAAAAAAAAGB+1W1RxK9//euceeaZzfdFUczxZwAAAAAAAAAAAAAAAAAAAIBFRV0WRQwaNCgnnXTS5xZClGW50LOUTgAAAAAAAAAAAAAAAAAAAACtRV0WRZx//vmZOnVqiqJIWZbNZQ4ziyHatm2bXr16pUuXLunQocMClT1Mnz49kydPzogRI/LWW29VND8AAAAAAAAAAAAAAAAAAADAgqjLoogHHnigufzhk2URBx10UA4//PBsvPHGaWhoqNi8G264IYccckimTJlSsTMBAAAAAAAAAAAAAAAAAAAA5lddFkUMHTq0+eeyLNPQ0JCrr746+++/f1Xm7bfffhkxYkSOO+64qpwPAAAAAAAAAAAAAAAAAAAAMC8aah1gQcyYMSPJxyURRVHkiCOOqFpJxEy77rprVc8HAAAAAAAAAAAAAAAAAAAA+Dx1WRTRs2fPWe4PP/zwqs/s1atXyrKs+hwAAAAAAAAAAAAAAAAAAACAuanLooivf/3rs5Q2rLnmmlWf2bZt2/Tv3z9du3at+iwAAAAAAAAAAAAAAAAAAACAOanLooh99tlnlvsPP/ywReZedtllWWGFFVpkFgAAAAAAAAAAAAAAAAAAAMCn1WVRRL9+/bLxxhs337/++us1TAMAAAAAAAAAAAAAAAAAAADQMuqyKCJJ/vjHP6ZNmzZJkuuuu65FZl577bUZN25ci8wCAAAAAAAAAAAAAAAAAAAA+LS6LYrYcMMNc+aZZ6Ysy1x//fUZPXp0VeeVZZmDDjoow4cPr+ocAAAAAAAAAAAAAAAAAAAAgLmp26KIJDnmmGNy7LHHZvz48fn5z39e1VnvvfdeyrKs6gwAAAAAAAAAAAAAAAAAAACAz9JU6wAL64wzzsj06dPz29/+NnvuuWe23377qsx55plnUhRFVc4GAAAAAAAAAAAAAAAAAAAAmBd1XxSRJGeddVaKosj++++fJ554In379q3o+cOGDcuPf/zjip4JAAAAAAAAAAAAAAAAAAAAML/qsijilFNOme21Tp06pWPHjvn617+eo446KkVRLNSMqVOn5oMPPsjgwYPzyCOP5KOPPlroMwEAAAAAAAAAAAAAAAAAAAAWRl0WRZx00klzLW0oy3KORRILoyzLip4HAAAAAAAAAAAAAAAAAAAAsCAaah1gQWyxxRYpy3KOV1EUc/23Bb3mVkoBAAAAAAAAAAAAAAAAAAAA0JLqsiji6KOPTpIURTHbNbfXF+YCAAAAAAAAAAAAAAAAAAAAaA3qsihijz32SI8ePWodAwAAAAAAAAAAAAAAAAAAAKBFNdU6wIJobGzMYYcdllNOOSVFUSRJyrJs/vcOHTqkQ4cOad++fRoaGtLY2Dhf55dlmSlTpuT999/PpEmTKpodAAAAAAAAAAAAAAAAAAAAYEHVZVFEkhxxxBE5/fTTM3369LRv3z6//OUvs+uuu6Z3795p165dxeYMGzYsF198cc4444zMmDGjYucCAAAAAAAAAAAAAAAAAAAAzK+GWgdYUCussEJ22223JB+XRhx//PFZa621KloSkSQrrbRSTj311Pzyl7+s6LkAAAAAAAAAAAAAAAAAAAAA86tuiyKS5Oijj05ZlllhhRWqPus73/lO1WcAAAAAAAAAAAAAAAAAAAAAfJa6Lor4+te/nnXWWScvvfRS1WettNJKKcuy6nMAAAAAAAAAAAAAAAAAAAAA5qap1gEW1nHHHZfBgwdXfU5jY2Ouuuqq9OzZs+qzAAAAAAAAAAAAAAAAAAAAAOak7osiDjjggBabdeCBB7bYLAAAAAAAAAAAAAAAAAAAAIBPa6h1AAAAAAAAAAAAAAAAAAAAAADmTVOtA7SEESNGZPjw4Rk9enTGjRuXJZdcMksvvXTWXnvtdO7cudbxAAAAAAAAAAAAAAAAAAAAAObJIlsUcc899+TGG2/Mo48+mjfffHOu7+vVq1e233777LLLLtlhhx1SFEULpgQAAAAAAAAAAAAAAAAAAACYdw21DlBpV111VdZZZ5184xvfyNVXX52hQ4emLMu5XkOHDs3FF1+cnXfeOb169cppp52W8ePH1/pjAAAAAAAAAAAAAAAAAAAAAMxmkSmKePPNN7PtttvmkEMOyWuvvdZcBFEUxedeM987fPjwnHjiiendu3cuuOCCWn8kAAAAAAAAAAAAAAAAAAAAgFksEkUR9957b774xS/moYceSlmWSdJcApGk+bW5+XRpxOjRo/ODH/wgO+20U0aPHl31/AAAAAAAAAAAAAAAAAAAAADzou6LIm699dbssssu+fDDD1OW5SwFETN98r4syzlen3zvzMKIe++9N1tssUXefvvtFvs8AAAAAAAAAAAAAAAAAAAAAHPTVOsAC+Ppp5/O/vvvn6lTp85WDpFklgKIhoaGrLTSSuncuXOWWmqpdO7cOY2NjZkwYUImTJiQd955J//5z38yY8aMJP8tl3j99dezzTbb5Omnn84SSyzRMh8MAAAAAAAAAAAAAAAAAAAAYA7qtihi0qRJ2X///TN58uTZSiLKskz79u2zyy67ZMstt8x6662XL37xi+nQocPnnvnaa6/lrrvuyk033ZSXX345RVHk9ddfz5FHHpmrr766mh8JAAAAAAAAAAAAAAAAAAAA4DM11DrAgjrnnHMyePDgWUoiyrLM2muvnUsvvTTvvPNO/vSnP+V73/teNt54488tiUiS9u3bZ7311ssvfvGLvPjii7n66quz9NJLpyzLXHfddXn88cer+ZEAAAAAAAAAAAAAAAAAAAAAPlNdFkVMmTIl5557bnNJRFmWWWqppfK73/0uL7zwQg455JAstdRSCz3ngAMOyGOPPZYePXokSX7xi18s9JkAAAAAAAAAAAAAAAAAAAAAC6ouiyLuuuuuvPfee0k+LolYd91188orr+SYY45JY2NjRWf17ds3V199dZLk73//ewYOHFjR8wEAAAAAAAAAAAAAAAAAAADmVV0WRdx7773NP/ft2zd///vfs+KKK1ZtXr9+/bL11lsnSW666aaqzQEAAAAAAAAAAAAAAAAAAAD4LHVZFPHCCy8kSRoaGnL99ddnqaWWqvrMPffcM2VZ5sknn6z6LAAAAAAAAAAAAAAAAAAAAIA5qcuiiMGDB6coimyzzTb58pe/3CIzV1111STJK6+80iLzAAAAAAAAAAAAAAAAAAAAAD6tLosixo0blyTZddddW2xmURRJkvfee6/FZgIAAAAAAAAAAAAAAAAAAAB8Ul0WRTQ2NiZJVllllRab+frrrydJJk6c2GIzAQAAAAAAAAAAAAAAAAAAAD6pLosiunXrluS/hREt4eabb06SLLHEEi02EwAAAAAAAAAAAAAAAAAAAOCT6rIoYu21106SvPTSSy0y75577sljjz2WoijSs2fPFpkJAAAAAAAAAAAAAAAAAAAA8Gl1WRSxySabpCzL3HDDDVWfNWjQoBx00EHN91/60peqPhMAAAAAAAAAAAAAAAAAAABgTuqyKGKvvfZKkjz//PP585//XLU5//znP7PFFltk1KhRza9tu+22VZsHAAAAAAAAAAAAAAAAAAAA8Fnqsihi3XXXzVe+8pWUZZkjjjgiTz/9dEXPf//99/PTn/40W265Zd5+++0URZEkWWKJJbL77rtXdBYAAAAAAAAAAAAAAAAAAADAvKrLoogkOemkk5IkH3zwQbbccsv85je/yeTJkxfqzEGDBuWHP/xhVlpppfzud7/L1KlTUxRFyrJMURQ54ogjstRSS1UgPQAAAAAAAAAAAAAAAAAAAMD8q9uiiB133DG77757kmTSpEn5+c9/nl69euV//ud/8ve//z2TJk363DPeeuut3H///fnZz36WL37xi1ljjTVy/vnnZ8KECc3lEDOtsMIKOfHEE6v2eQAAAAAAAAAAAAAAAAAAAAA+T1OtAyyMSy65JAMGDMh//vOflGWZd999N7/97W/z29/+No2NjVl55ZXTs2fPLLnkkmnXrl0mTpyY8ePHZ9y4cRk6dGjGjRvXfFZZls0/f7IgoizLtGnTJn/605+y5JJLtujnAwAAAAAAAAAAAAAAAAAAAPikui6K6NatWx566KFsscUWGTFiRIqiaC58mDZtWgYPHpwhQ4bM9nufLIX4pE8WRMx8X2NjY6699tp87Wtfq/wHAAAAAAAAAAAAAAAAAAAAAJgPDbUOsLBWXXXVPPXUU/nqV7+asixTFMUsV1mWs11JZnvfJ0smko9LIrp27Zq77747e+21V60+HgAAAAAAAAAAAAAAAAAAAECzui+KSJIePXrk0Ucfzemnn55OnTrNUvgwp0KIoiiSZJb3zXzvzDKJ3XffPS+//HK23XbbFv0sAAAAAAAAAAAAAAAAAAAAAHPTVOsAldLY2Jjjjz8+/fv3z1lnnZXLL78877//fpI0F0N82idfn1kasfHGG+cXv/hFvvGNb1Q9c62MGTMmL7zwQl599dUMHDgw77zzTkaOHJlx48Zl8uTJmTJlStq1a5eOHTumQ4cO6dKlS3r16pWVV145q6yySjbYYIOsuuqqtf4YAAAAAAAAAEAV2CsAAAAAAAAAgNZtkSmKmGm55ZbL2WefnVNOOSW33HJLbr/99jz00EMZO3bsHN9fFEXWWWedbLnlljn44IOz/vrrt3DilvH444/nL3/5Sx566KG89tprzcUYnzSn1+ZWstG9e/dssskm+eY3v5k99tgjXbt2rXhmAAAAAAAAAKBl2CsAAAAAAAAAgPqxyBVFzNSxY8cccMABOeCAA5Ik//nPfzJw4MC8//77mTJlSrp27Zqll146q6++erp06VLbsFUyduzYXHzxxbngggsyfPjwJHNe2vi0oiia3ze397/77ru54447cscdd+Soo47Kdtttlx/96EfZeuutK/cBAAAAAAAAAICqsVcAAAAAAAAAAPVpkS2K+LSVV145K6+8cq1jtIjJkyfnd7/7Xc4444x8+OGHsy1lzO3bPOb3PTPPnTp1au6+++7cfffd2WCDDXLqqadm++23X7DwAAAAAAAAAEBV2SsAAAAAAAAAgPrWUOsAVNazzz6bL33pSznhhBMybty4lGWZoihmuSrlk2eWZZmyLPPss89mp512yj777JN33nmnYrMAAAAAAAAAgIVnrwAAAAAAAAAA6p+iiEXIH//4x2y22WYZOHDgLIscczJzAWN+r7n55KyyLPOXv/wlG2ywQZ555pmqfFYAAAAAAAAAYP7YKwAAAAAAAACARUNTrQNQGccee2zOOeec2RY5Pr2E0bZt26y88spZbrnlsuyyy6Z79+5p165d89XY2Jjp06dnxowZmTRpUiZPnpzx48dn3Lhxef/99zNq1KiMHDkyo0ePni3Dp+e+/fbb2XLLLXPbbbdl2223rf5DAAAAAAAAAADmyF4BAAAAAAAAACw6FEUk2XzzzdOvX7+ccMIJadu2ba3jzLeTTz45Z599dpKPlypmLnE0NjZmgw02yFZbbZVNNtkka621Vvr06ZOGhoaFnjl58uQMHTo0AwcOzEsvvZQBAwbkiSeeyMiRI5tzJMnEiROz11575Yknnsg666yz0HMBAAAAAAAAgPljrwAAAAAAAAAAFi01K4oYOnRo/vCHPyzQ737hC19I//79K5bl8MMPz5FHHpkbb7wxl156ab72ta9V7Oxqu+uuu3LKKac0L3KUZZlNNtkkhx56aL71rW+lc+fOVZnbrl27rLnmmllzzTWz8847N78+YMCA3Hzzzbnsssvy7rvvpiiKjBs3LnvvvXdeeOGFtGnTpip5qJ5KLAAtbmYuNH2S5zj/PMfK8Mz+y7OYf/4OK8NzrAzP7GOew/zzN1gZnmNleGb/5VnMH3+DleE5VoZn9l+exfzzd1gZnmNleGYf8xzmn7/ByvAcK8MzY17ZK6Da/O/R/PP/hZXhOVaGZ/Yxz2H++RusDM+xMjyz//Is5p+/w4XnGVaGZ/ZfnsX883dYGZ5jZXhmH/Mc5p+/wcrwHCvDM/svz2L++TusDM+xMjyzRV9RzvyaiBb2xBNPZPPNN5/jH+unlWWZpqambLfddvn2t7+d3XbbLR06dKhonldeeSV77rlnhgwZkt/85jf58Y9/XNHzq2HixIlZffXV89ZbbyVJ+vbtm/POOy/9+vWrcbKPvxnk7LPPzq9+9atMmTIlycffUPKLX/yi+T3vvvtuRo0aNV/nvvrqq9l7772b72+77bb06dOnMqEBAAAAAAAA4FPeeOON7Lbbbs33zz33XNZff/3aBZoP9bxXYKcAAAAAAAAAgNauljsFNSuKmDp1am6//fb8+te/zvPPPz/bv8/8Jot27drlu9/9bn72s59lhRVWqGqm999/PzvvvHP++c9/Zv/998+VV16ZxsbGqs5cGH/84x9zzDHHpCiK7LHHHrn22mvTrl27WseaxWOPPZadd94548ePT+fOnTNs2LB06tQpSXLSSSfl5JNPrnFCAAAAAAAAAJh3t912W3bddddax5gn9bxXYKcAAAAAAAAAgHrTkjsFDS0yZQ7atGmTb33rW3nqqaey9dZbJ/m4HGLmVZZl9t133wwePDh/+MMfql4SkSRdunTJAw88kG984xu5/vrrs//++2fGjBlVn7ugrr766iTJBhtskBtvvLHVLXMkyRZbbJFLLrkkSTJu3Lhcc801NU4EAAAAAAAAAIsHewUAAAAAAAD/v707j9OxXvw//r5nY5gxZN+TLFlCtlD2g1RUUiSkoo721Pl2WknrSeVUsqSD6GhfRFSI1ClrRGXNmuw7w5iZz++P+RnGXPe49/u6rvv1fDzmcbivua/rM+NzXtfnnvvqGgAA3ClqN4o4JSEhQQMHDszzWGpqqiZPnqz//ve/EblBxJkKFy6sjz76SG3atNFHH32kAQMGRPT4vjp8+LCWLVsmj8ejxx9/XHFxUf+n9OrGG29UmzZtJEkzZsyI8mgAAAAAAAAAAAAAAHA/risAAAAAAAAAAAAAAMC9EqI9AEnaunVr7p/T0tL0zTffqHHjxlEbT1JSkj7//HM1b95cU6ZM0eWXX67bb789auOxsmnTJhlj5PF41Lp162gP55z69++v+fPna/ny5bmPDR48WD179vRrP4cOHdKSJUtUrFgxFS9eXJUrV7blbzwBAAAAAAAAAAAAALjDiRMn8lzXcOqGBnbn9OsKuKYAAAAAAAAAAAAAAGB30bymwGOMMRE7mhe1a9fW2rVrVaRIEc2dO1fNmjWL9pAkSUuXLlWLFi2UlJSkZcuWqWbNmtEeUq4lS5aoWbNm8ng8Sk9PV1JSUrSHVKB58+apffv2SkpK0vHjx6M9HAAAAAAAAAAAAAAAXI3rCgAAAAAAAAAAAAAAcK+4aA9g1qxZWrt2rTwej4YPH26bm0RIUuPGjXXnnXfq2LFj+uc//xnt4eRRpkyZ3D+vXr06iiPxzfbt2yVJKSkpUR4JAAAAAAAAAAAAAADux3UFAAAAAAAAAAAAAAC4V9RvFPHGG29Ikpo1a6YHHnggyqPJ7+GHH1ZCQoI+++wzLV26NNrDyVWlShWVLl1akjRmzJgoj+bcPvroI0lS9erVozwSAAAAAAAAAAAAAADcj+sKAAAAAAAAAAAAAABwr6jeKGL37t2aNWuWPB6PHnnkkWgOxavKlSurffv2kk7f1MIurrrqKhljNG7cOH3xxRfRHo5Xn332mT777DN5PB61a9cu2sMBAAAAAAAAAAAAACAmcF0BAAAAAAAAAAAAAADuFNUbRUyfPl3Z2dk6//zz1b1792gOpUDdu3eXMUafffaZTp48Ge3h5Lr//vvl8XiUnZ2tG264QaNGjYr2kPKZPHmybrrppty/DxgwIIqjAQAAAAAAAAAAAAAgdnBdAQAAAAAAAAAAAAAA7hTVG0XMmjVLHo9HXbt2jeYwzqlZs2aSpEOHDmn27NlRHs1p9evXz71A4sSJE7r33nvVvn17zZs3L7oDk7RgwQJ17txZt9xyi44fPy6Px6PevXurVq1a0R4aAAAAAAAAAAAAAAAxgesKAAAAAAAAAAAAAABwJ48xxkTr4DVr1tSGDRs0depU3XDDDdEaxjmlp6eraNGi8ng8evLJJ/XUU09Fe0i5Dhw4oCZNmmjjxo0yxsjj8UiS6tWrp+uuu05XX321GjVqlPt4OC1cuFCffvqpPv30U61fv16ScsdUvnx5/fzzzypdunTYxwEAAAAAAAAAAAAAAHJwXQEAAAAAAAAAAAAAAO4TtRtFpKenKzU1VcYY/fbbb7b/jRApKSlKT09Xt27d9Omnn0Z7OHmsWbNGLVu21IEDByTlXEQhKfcijuTkZNWvX18XX3yxqlatqkqVKuX5KFKkiM/Hys7O1l9//aVt27Zp48aNWrZsmZYuXaqff/5ZBw8ezHd8Y4xSU1M1Z84cNWnSJIRfNQAAAAAAAAAAAAAA8AXXFQAAAAAAAAAAAAAA4C5Ru1HEpk2bdMEFF8jj8Wjnzp0qVapUNIbhs/Lly2vXrl2qXbu2fv3112gPJ58lS5aoW7du2rlzZ+5jZ/7TFvSbP4oWLaoiRYqoSJEiSk5Ozv1fSTp+/Hjux5EjR7R7925lZ2fn24fVsYwxOu+88zRjxgw1b9486K8RAAAAAAAAAAAAAAAEhusKAAAAAAAAAAAAAABwj6jdKGL58uW65JJL5PF4lJGRofj4+GgMw2fnnXeeDhw4oPLly+vPP/+M9nAsbdmyRddcc42WL1+e7wIOf/+Zz7wow5/PP/N4TZs21QcffKCqVav6dWwAAAAAAAAAAAAAABB6XFcAAAAAAAAAAAAAAIA7xEXrwCdPnsz9c3p6erSG4bNDhw5Jkg4ePBjlkXhXpUoVLV68WM8884wKFSqU77dx+PJxijHGr+ef+bwiRYroxRdf1A8//MDFHAAAAAAAAAAAAAAA2ATXFQAAAAAAAAAAAAAA4A5Ru1FE8eLFc/+8f//+aA3DJ3/99Zeys7Ml5b3BhR3Fx8fr0Ucf1e+//65BgwYpKSnJ62/vOPuiDcn7hRvnYoxRamqq/vGPf2jdunV6+OGHlZCQEJKvCQAAAAAAAAAAAAAAhAbXFQAAAAAAAAAAAAAA4Hwe4+3d/jDbvXu3ypYtK4/Ho5kzZ6pTp07RGIZPZsyYoauvvlpSzg0u9u3bF+UR+e6vv/7SuHHj9P7772v16tW5j/tykUZBzpw2devWVd++fXXnnXeqWLFiQe0XAAAAAAAAAAAAAABEDtcVAAAAAAAAAAAAAADgPFG7UUR2drZSUlJ04sQJDR8+XI8++mg0huGTJ554Qs8++6wkqXLlytq8eXOURxSYFStWaNasWfrf//6nH3/8UXv27AloP+XKlVODBg10xRVXqFu3bjr//PNDO1AAAAAAAAAAAAAAABBxXFcAAAAAAAAAAAAAAIAzRO1GEZLUokULLVy4UM2aNdNPP/0UrWGc00UXXaQ1a9bI4/GoZcuWWrBgQbSHFBLbt2/Xxo0btWnTJm3btk2HDh3SsWPHdOzYMRljlJKSotTUVKWmpqpEiRKqVauW6tatqxIlSkR76AAAAAAAAAAAAAAAIMy4rgAAAAAAAAAAAAAAAHtKiObBGzdurIULF2rx4sVat26datSoEc3hWFq6dGnuTSIkqVatWlEeUehUqFBBFSpUUKtWraI9FAAAAAAAAAAAAAAAYDNcVwAAAAAAAAAAAAAAgD3FRfPg7du3z/3zc889F8WReDd8+HBJkjFGknTxxRdHczgAEBHr1q3T/fffr+LFi+feKMcpvvvuO91www1KTExU27Ztoz0cAFFGzwC4CU0D4Aa0DIBb0DMATkbDAABAKLCmAOAGtAyAm9A0AG5BzwC4AS0D4HR0DHCOhGge/Morr1RqaqoOHz6sKVOm6IEHHrDVjRj+97//adq0afJ4PLk3iujQoUOURwUA4ZGdna0ZM2bojTfe0DfffJPbPSc4evSopkyZolGjRmnlypXRHo7mzZunMmXKqE6dOtEeChCT6Fno0DMg+mgaADegZcHLysrS3r17deDAAR04cECJiYkqXry4ypYtqyJFivi0j4yMDC1atEgVK1ZUtWrVwjxiwJ3oWfDoGRA9NAwAAIQCa4rQ4X04IHpoWejQMiD6aBoAt6BnweN9OCD6aFnwaBkQXXQMcKao3iiiUKFC6t69u6ZMmaKsrCz16tVLixcvVtGiRaM5LEnS4cOH1a9fvzyPVahQQXXr1o3SiAAgPPbt26e3335bo0eP1saNG6M9HL+sW7dOb775piZMmKCDBw9GeziSpN27d6tLly5q1KiRfvzxx2gPB4gp9Cy06BkQXbHctCVLluj48eMhGUt8fLwSExOVmJioYsWKqUSJEkpLS3PcnW0Bp4rllgXr+PHjmjFjhubOnaulS5dqxYoVlm2Mi4vTBRdcoEaNGqlLly666qqrVKZMGct9Tps2TT179tR9992nkSNHhvkrANyFngWOngHRF8sNW758uY4cORL0OOLi4pSQkKDExEQVLVpUKSkpKlmypAoVKhT0vgEAcIpYXlOEA+/DAdFBy0KLlgHRFctN45oCwF1iuWfB4n04wD5oWeBoGWAPsdwxriuAK5go+/nnn43H4zFxcXEmLi7OXHXVVebEiRNRHVNmZqa59tprc8d16n8fe+yxqI4LsLuqVasaST5/VK9e3WRlZUVlrNnZ2aZWrVp+jbdq1apRGWu4/PXXX+bWW281ycnJ5/za7Wbp0qWmc+fOxuPxFDjuNm3aRHxszz77bO7xly1bFvHjIzTombPQs/CgZ+5B05yFpvk/Z/39KFy4sKlVq5a59tprzbPPPmsWL15ssrOzI/NNQsBombPQssAtW7bM9O3b16SmpgbUuLi4ONO1a1fz5Zdf5mlbRkaGueSSS4wkc99994Vl7PANPXMWehY4euZONMxZaJgxV199talevbopXbr0OfcVyEdqaqq56KKLTNeuXc2QIUPMpEmTzNq1ayPzTQIAB2NN4SysKcKD9+Gcj5Y5Cy0LD1rmHjTNWWga1xTAO3rmLPQscLwP5260zFloWeBomXvRMWehY1xXAHeIU5Q1bNhQ3bt3lzFGkvTll1+qS5cuUbvrcXZ2tvr06aPPPvssz91A4+LiNGjQoKiMCXCKDRs26MCBA1qxYoVGjhypihUrnvPzP/744wiNLq9p06ZpzZo1BX5O9+7d9c0332jv3r3Kzs7Wpk2bIjO4CElMTNTatWv1f//3f3rjjTfUqlWraA/JZwkJCYqPj9err76q0aNHq3bt2tEekiQpKytLY8aMyf376NGjozgaBIOeOQs9Cz165i40zVloWs4cPHnypPbu3atvv/1WvXv3Duk4jx8/rjVr1ujTTz/VY489pqZNm6py5cp6/PHHtWvXrpAeC6FDy5yFlvlv5cqVuvbaa3XJJZdo8uTJOnz4cO62pk2bavjw4Zo5c6Y2bdqkgwcPKiMjQzt37tRvv/2mqVOnavDgwTr//POVnZ2tL7/8Ul27dlXt2rU1YsQIvf/+++ratauWLVsWka8FBaNnzkLP/EfP3I2GOQsNy5kH69ev165du7Rjxw49++yzSkpKCtk4Dx8+rN9//11ffvmlXn75ZfXv3181a9ZUpUqV9Pe//10//PBDyI4FAG7CmsJZWFOEHu/DuQMtcxZaFnq0zF1omrPQNK4pgHf0zFnomf94Hy420DJnoWX+o2XuR8echY5xXQFcItp3qjDGmJUrV5rExEQTFxdnPB6PiYuLM5UqVTIzZ86M6Di2bNliWrVqlWccp/739ttvj+hYADfYt2+fady4cYF3RWratGlUxnbZZZcVOK77778/KuOKpiNHjpjSpUs74q5fZ1u9enVE717ozUcffZTn+EWLFjUHDhyI6BgQHvTMWehZ8OiZu9E0Z6FpOZ5//nmv86JkyZLm7rvvNv/5z3/MkiVLzKZNm8y+ffvMyZMnzcGDB82WLVvM0qVLzfjx482dd95pKlWq5HVfhQsXNkOHDjUnT54M/TcEIUXLnIWWeXfy5EkzdOhQk5CQkGf/cXFxpm/fvmb16tU+7ysrK8t88sknplmzZgXOQe6Wby/0zFnomXf0LDbRMGehYTk+/PBDr/MiISHBNGrUyAwcONCMHTvW/PDDD2bNmjVm7969JjMz0xw+fNhs3brVzJ8/37zxxhvmxhtvNMWLFy9wrjVp0sTMnj079N8UAHAR1hTOwpoieLwP5060zFloWfBombvRNGehaTm4pgBW6Jmz0DPveB8uttEyZ6Fl3tGy2EXHnIWO5eC6AjiNbf4fOnTo0Dw3Zzj152uuucYsXbo0rMc+ceKEeeWVV8x5552X5+YQp/6cmppqduzYEdYxAG61bNmyAk9kkszcuXMjOqaFCxcWOJ7ExERz6NChiI7JLm6++WZHLuaMMaZ69ephe1Hqq7Zt2+Ybw7///e+IjgHhQ8+chZ4Fh565H01zFpqW8yZBiRIlQvIDvMzMTPP555+bRo0aFfgDt507d/o9TkQWLXMWWpbf5s2bLd8Eq1mzplm2bFnA+83KyjIjRowwycnJlt9z3gS1H3rmLPQsP3oW22iYs9CwHN4u9g9kf8ePHzcfffSRadq0aYHz7oorruD9ZgAoAGsKZ2FNERzeh3MvWuYstCw4tMz9aJqz0DSuKYB39MxZ6Fl+vA8HY2iZ09Cy/GgZ6Jiz0LEcXFcAJ4mTTTz++OO65JJLZIyRx+ORx+ORMUbTpk1T06ZN1aFDB7399ts6cOBAyI65ZcsWPfvss6pevboeeugh7d+/P/f4knL//Oqrr6ps2bIhOy4QSxo1aqRKlSoV+Dn/+te/IjSaHC+99FKB2+vWravU1NQIjcZeqlWrFu0hBKxKlSpRPf6qVas0b968fI+PHj068oNBWNAzZ6FngaNnsYGmOQtNkxISEtS8efOQ7Cs+Pl7dunXTwoUL9eSTT+b+DOBMS5YsUZs2bbRz586QHBPhQcuchZbl9dtvv6lVq1ZaunRpnsevuOIKLVmyRI0aNQp433FxcRoyZIjmzp2rtLS0YIeKCKBnzkLP8qJnoGHOQsNyNG7cOGT7KlSokHr06KFFixbpww8/VIUKFSw/b+bMmWrUqJG+++67kB0bANyENYWzsKYIHO/DuRstcxZaFjhaFhtomrPQNK4pgHf0zFnoWV68D4dTaJmz0LK8aBkkOuY0dCwH1xXASWxzo4j4+Hh98sknqlixYu5jp24WYYzRvHnzNGjQIJUrV06XXXaZHnroIX300UdatWqVDh8+fM79Z2dna+PGjZo+fboeeeQRtWjRQhdccIGefPJJ/fnnn3luUCGdvklE7969ddttt4Xt6wZiQa1atQrcPmvWLK1cuTIiY/njjz/06aefFvg5lStXjshY7Kh48eLRHkLAihUrFtXjv/HGG5aPr169Wt9++22ER4NwoWfOQc8CR89iB01zDpqWo2rVqiHblyQlJiZq2LBhev311y23r169Wn379pUxJqTHRWjRMuegZactX75cl19+ubZt25bn8datW+uTTz4J2RtMl156qWbPnh319SV8Q8+cg56dRs9wCg1zDhqW41wXIQXq+uuv16pVq9SlSxfL7X/99Zc6dOig6dOnh+X4AOB0rCmcgzVF4Hgfzv1omXPQssDRsthB05yDpuXgmgJ4Q8+cg56dxvtwOBstcw5adhotw5nomHPQsRxcVwAnsc2NIqScO7Z89dVXKlGiRO5jp27ecOqGERkZGfrxxx/16quv6sYbb1SDBg1UvHhxlShRQrVq1VLDhg3VokULtW3bVi1atFCDBg1UrVo1JScn68ILL1T37t310ksvadGiRcrOzs53g4gzdejQQf/5z38i+S0AXKlUqVK5f7b6/5oUuTt/vfrqq8rKyipwLCkpKREZix0VLlw42kMIWFJSUtSOffDgQU2ZMsXr9jfffDOCo0E40TPnoGeBoWexhaY5B03LEa4f4t9111267777LLd98803euutt8JyXIQGLXMOWpZj586d6tatm/bt25fn8QoVKuizzz4L+fepSZMmGjVqVEj3ifCgZ85Bz3LQM5yJhjkHDctRtGjRkO3rbCVKlNCMGTM0cOBAy+2ZmZnq2bMn//EUAFhgTeEcrCkCw/twsYGWOQctCwwtiy00zTloWg6uKYA39Mw56FkO3oeDFVrmHLQsBy3D2eiYc9CxHFxXACex1Y0iJKlOnTqaPXu2KlasmOcOm6du5nDmTSPO/Dh48KDWrVunX375RYsWLdKCBQu0aNEirVy5Ups3b9bJkyfzPefMG0SceSxjjNq1a6fPPvssqj9UB9yiUKFCuX++4oorLD/nvffe09atW8M6jn379mnChAmSck78HTt2tPy8WP7/fWJiYrSHELBo/rtNmDBBR48e9br9s88+019//RXBESFc6Jlz0LPA0LPYQtOcg6blSE5ODtm+zvbMM8+oYsWKltuee+45nTx5MmzHRnBomXPQMunkyZO67rrrLOfjuHHj8tw8N5Ruvvlm9erVKyz7RujQM+egZ/QM+dEw56BhOcJ9YUtcXJzGjh2rW2+91XL78ePHdc0112jz5s1hHQcAOA1rCudgTREY3oeLDbTMOWhZYGhZbKFpzkHTcnBNAbyhZ85Bz3gfDt7RMuegZbQM1uiYc9CxHFxXACex3Y0iJKlhw4ZasmSJWrRokecGDqecedOIsz8k5bkZREGff+pzT33Oqb8PGjRIX331lYoUKRKJLxdwvTPvrnXHHXdY3rU3MzNTr7zySljHMXr06Nw3qnr37q0KFSqE9XhOlJCQEO0hBCwuLjqnNGPMOe88mJmZqXHjxkVoRAgneuYc9Mx/9Cz20DTnoGk5vN21NxRSUlLUv39/y22bN2/WggULwnZsBIeWOQcty7nj+f/+9798j1999dW68sorQ3IMb15++eU8b7bBfuiZc9Azeob8aJhz0LAc4Xx9eeYxxowZozZt2lhuP3TokPr166fs7OywjwUAnII1hXOwpvAf78PFDlrmHLTMf7Qs9tA056BpObimAN7QM+egZ7wPB+9omXPQMloGa3TMOehYDq4rgJPY8kYRklSmTBnNnz9fw4cPV6FChfLdMOLMm0Gcuc3bDSG8PefMG0SkpqZq4sSJGjNmjKODBthZsWLFNGjQIMtt48eP1/79+8Ny3BMnTuj111/P/ftDDz0UluM4XSQWMeESrTdBZ82apfXr10uSateurR49elh+3ltvvaWsrKxIDg1hRs/sjZ75j57FNppmbzQtMrp37+5125w5cyI4EgSKltlbrLdsw4YNeuaZZyy3PfHEE0Hv/1wqVKiggQMHhv04CA16Zm/0jJ6hYDTM3mK9YZGWmJioyZMnKy0tzXL7d999p9deey3CowIAZ2BNYW+sKfzH+3CxiZbZGy3zHy2LbTTN3mhaZHBNgTvQM3uL9Z7xPhx8RcvsjZbRMpwbHbO3WO9YpHFdAULB1jM/ISFBjz32mFatWqWrr75akvLc4OHMG0GcfRMIqw9vz5Ny7gD066+/ql+/fpH+MoGYc9999ykxMTHf40eOHNGbb74ZlmNOnjxZO3fulCRdccUVqlevXliOg9jzxhtv5P757rvv1t133235eX/++ac+//zzSA0LEULP4Cb0DDQNse7888/3uu2PP/6I3EAQFFoGu3rwwQd1/PjxfI+3bdtWTZs2jcgY/vnPf3JzXAehZ7AregZf0DDgtMqVK3u9GE6Snn32WR05ciSCIwIA52BNATfhfbjYRcvgJrQMNA2xjmsK3IOewa54Hw7+oGWwK1oGX9Ex4DSuK0CwbH2jiFMuuOACff7551q5cqX69++vxMRErzd/ONeHdPqmEvHx8erdu7eWLVumd999VxUrVozmlwnEjEqVKql3796W215//XXLFwXBMMbolVdeyf37ww8/HNL9I3Zt2LBBs2bNkpRzR7v+/furbdu2qlOnjuXnh+vFCqKHnsEt6BkkmgaUKFHC67a9e/dGcCQIBi2DHf3666/64osvLLfddNNNERtHhQoV1KlTp4gdD8GhZ7AjegZf0TAgr0GDBnn9Dwn27NmT57fWAABOY00Bt+B9uNhGy+AWtAwSTQO4psA96BnsiPfh4C9aBjuiZfAHHQPy4roCBMMRN4o4pU6dOpowYYJ27typd999Vz179lTx4sVzb/zgy0eRIkXUtWtXvfnmm/rrr7/07rvvqkGDBtH+0oCY89BDD1k+vnPnTk2aNCmkx5oxY4Z+//13SVLjxo3Vrl27kO4fsWvUqFHKzs6WJA0YMEApKSmSpMGDB1t+/ty5c7V27dqIjQ+RQc/gBvQMp9A0xLLdu3d73ZaamhrBkSBYtAx2M2LEiNwb3p4pMTFRPXr0iOhY+vTpE9HjITj0DHZDz+APGgaclpSU5PU37UrSq6++qszMzAiOCACcgzUF3ID34UDL4Aa0DKfQNMQyrilwF3oGu+F9OASClsFuaBn8RceA07iuAMFw1I0iTklLS1Pv3r31/vvva+/evdq8ebOmT5+uV155RU888YTuvfde3Xrrrbrjjjv0wAMP6MUXX9TUqVO1cuVKHThwQNOnT9edd96pkiVLRvtLAWJW/fr11aVLF8ttI0aMyH1jKRRGjBiR+2dvi8hw+fHHH/Xwww+rTZs2Kl++vAoXLqzChQurXLlyuuyyy3T//fdr1qxZysrKCtsY1q5dq+eee06dOnVS5cqVlZycrCJFiqhatWq67rrrNGnSJGVkZITt+JK0ZMkSPf7442rXrp0qVaqk5ORkJScnq2rVqmrVqpWeeOIJLVy4MKxjCLVjx45pwoQJkiSPx5NnMdavX7/cN0TPZIzR6NGjIzZGRAY9o2f0DG5C02ia05sWjGXLlnndVr169QiOBMGiZbTMTi07cOCA/vvf/1pua9Kkic4777yIjueaa65R/fr1I3pMBI6e0TN65h09sz8aRsPs1DA76N+/vxITEy237d69W3Pnzo3wiADAGVhTsKZw+pqC9+Eg0TJaRsvgLjSNpjm9acHgmgJ3oWf0zE494304BIqW0TJa5h0tcwY6Rsfs1DE74LoCBMwAQJj179/fSDKSzLfffpv7+Jw5c3IfP/vjww8/DMmxlyxZkrvP888/32RmZlqO68yP/v37B3XMrKws89///tfUrl3b69d39kelSpXMG2+8YU6ePBnkV3zamjVrzNVXX208Hs85j1+9enUze/ZsM2HCBMvtgfrmm29M06ZNff4+tGvXzixevDigY1n9e7Zp0ybgsZ/L2LFjc4/TtWvXfNvvvPNOy6+xePHi5tixY2EbF8KLntEzekbP3ISm0TSnNe2pp56yHF+oGult7kky06dPD8kxEHq0jJbZvWXvvvuu1zE98MADAY0H7kTP6Bk9g5PRMBpm94adLdyvL71p27at1+/NbbfdFtZjA4ATsKZgTeG0NYUveB8u9tAyWkbLaJmb0DSa5rSmcU0BvKFn9MzuPeN9OPiCltEyWgano2N0zO4dOxvXFcBJuFEEgLDztpgzxphLLrnE8sTVrFmzkBz7xhtvzN3nv//9b6/jCtVibtOmTaZ169Z59te6dWvz2muvmW+++cZ8/vnn5tVXXzUtWrSwPHajRo3MmjVrgvyqjRk1apRJSkrK3a/H4zFdunQxY8eONV9//bWZOnWque+++0xaWlru5yQkJJjOnTuHZDGXnp5ubr311tznV6hQwTz00EPmo48+MnPnzjVTpkwxN998c54xnjmO0aNH+33MSL8JWr9+/dzjzJw5M9/2lStXel2YjR8/PmzjQnjRM3pGz+iZm9A0mua0poXzB26bNm2y/LqlnB+8hvKHrggtWkbL7N6ynj17el1Lvf/++36PBe5Fz+gZPYOT0TAaZveGnS1aF3S88MILXltaoUKFsB4bAJyANQVrCqetKXzB+3Cxh5bRMlpGy9yEptE0pzWNawrgDT2jZ3bvGe/DwRe0jJbRMjgdHaNjdu/Y2biuAE7CjSIAhF1Bi7mpU6d6PXmd/bn+2rhxo4mPjzeSTIkSJcyRI0e8jisUi7klS5aY8847L3c/5cuXN19//bXXz//6669N+fLl8x2/ePHi5vvvvw9oDMYYM2TIkDz7q1Klipk3b57l5x4+fNj06dPH679BIIu5/fv3m2bNmuUuIh955BGvd4dft25dnjcTz/x4+umn/TpuJN8EnTdvXu4xatSoYbKzsy0/7/LLL7f82ho3bhyWcSH86Jk1ekbP4Ew0zRpNs2/TwvUDt6ysLNOxY0ev3+exY8cGtX+EFy2zRsvs07ISJUp4/dpXrFjh1zjgbvTMGj2jZ3AGGmaNhtmnYWeL1gUds2fPLvDfYdeuXWE9PgDYHWsKa6wp7LumOBfeh4tNtMwaLaNlcCaaZo2m2bdpXFMAb+iZNXpmn57xPhx8Qcus0TJaBuegY9bomH06djauK4CTcKMIAGFX0GIuMzPTVK1a1fLEdcUVVwR13HvvvTd3X48++miB4wp2MbdixYo8d9AqWbKkWbt27Tmft3nzZlOhQoV8Y0hJSTHLli3zexxDhw7Ns59q1aqZzZs3n/N5DzzwQEgWcxkZGebSSy/Nfd6ECRPO+ZxDhw7lec6pD4/HY6ZNm+bzsSP5Juj111+fe4yz7yZ3pvfee8/r93ThwoVhGRvCi555R8/oGZyHpnlH0+zZtHD8wO3EiROmb9++Xr/HnTt39nrBG+yBlnlHy6Lfss2bNxf4tR84cMDnMcD96Jl39Iyewf5omHc0LPoNsxKtCzr27NlT4L9DQRcIAUAsYE3hHWsKe64pzoX34WITLfOOltEyOA9N846m2bNpXFMAb+iZd/Qs+j3jfTj4ipZ5R8toGZyBjnlHx6LfMStcVwAn4UYRAMKuoMWcMcaMHDnS68lr5cqVAR1z3759JiUlxUgyhQoVMn/99VeB4wpmMXfw4EFTo0aNPPt49913fX7+smXLTEJCQr5xVKxY0ezfv9/n/UyfPt14PJ7c5yckJJhFixb59NyMjAxzySWXBL2Ye/jhh3Of8+CDD/r8vNWrV5vChQvnO27JkiXN4cOHfdpHpN4E3bZtW+6/V2pqqjl06JDXz83IyDDlypUL2YsGRB89Kxg9o2dwFppWMJpmv6aF+gdu3333XYHf3+bNm/v8dSJ6aFnBaFl0WzZ9+nSvX3exYsV8/hoQG+hZwegZPYO90bCC0TD3v770R9GiRb3+O7z22mthPz4A2BlrioKxprDfmqIgvA8Xu2hZwWgZLYOz0LSC0TT7NY1rCuANPSsYPeN9ODgDLSsYLaNlsD86VjA65v7XmP7gugL4K04AEGW33XabSpQoYbntX//6V0D7HDNmjI4cOSJJ6tu3r8qVKxfw+M7lH//4h9atW5f79/r166t3794+P79Ro0a666678j3+559/6sEHH/RpH4cPH9add94pY0yecTVt2tSn5ycmJmrYsGG+DdiLuXPnasSIEZKkkiVL6qmnnvL5ubVq1VKvXr3yPb53716NHj06qHGF2ujRo5WZmSlJ6t+/v1JTU71+bmJiogYOHGi57f3339e+ffvCMkZEDz2jZ/QMbkLTaJpTmvbnn3/qww8/1JIlS7R161YdOnRIJ0+elDFGWVlZOnbsmHbs2KFly5bpww8/1COPPKJ69eqpdevWWrZsmeU+b7vtNs2bN08pKSkR/moQarSMlkWzZWvXrvW6rUyZMmE9NtyHntEzegYno2E0zCmvLyOhYsWKXrft378/giMBAOdhTcGawklrCt6Hgze0jJbRMrgJTaNpTmka1xTgXOgZPeN9OLgBLaNltAxOR8fomFNeY0YC1xXAX9woAkDUpaSk6O9//7vltvfee09bt271a38ZGRl6/fXXJUkej0dDhgwJeozerFy5UuPHj8/z2MCBA+XxePzaz7BhwyxfAE2YMEHffvvtOZ//6KOPatu2bbl/T0pK0v333+/XGLp27aqqVav69ZwzPfXUU7mLyV69eqlYsWJ+Pb958+aWj48aNSrgMYVaRkaG3nrrLUk5c+vuu+8+53PuuOMOxcfH53v8+PHjmjBhQsjHiOiiZ/RMomdwD5pG0yRnNG39+vW64YYb1LRpU1WpUkVpaWlKSkpSXFycEhISVLRoUZUvX16NGzfWDTfcoBdffFG//vqr5b5at26t77//XuPHj1fhwoUj/JUgHGgZLZOi17KCfiCfnJwc1mPDfegZPZPoGZyLhtEwyRmvLyOhoP+w6uDBgxEcCQA4D2sK1hSSM9YUvA+HgtAyWibRMrgHTaNpkjOaxjUFOBd6Rs8k3oeD89EyWibRMjgbHaNjkjNeY0YC1xXAX9woAoAt3HPPPSpUqFC+x0+ePKlXX33Vr329++67+uuvvyRJV111lWrXrh2SMVoZNmyYsrKy8jzWvXt3v/eTlpamQYMGWW574YUXCnzuunXr9Oabb+Z5rEePHipdurRfY4iLi1ObNm38es4py5Yt0/fff5/79yuvvNLvfVSoUMHy8c2bN2v9+vUBjSvUPvjgA+3atUuS1KlTJ9WqVeucz6lYsaK6detmuW3MmDF57tQGd6Bn9IyewU1oGk1zQtNCIT4+Xv/3f/+nKVOmqFWrVtEeDkKMltGyaLWsoB/I8yYoAkHP6Bk9g5PRMBoWK68vz6Wgbh46dCiCIwEAZ2JNwZrCCWsK3ofDudAyWkbL4CY0jaY5oWmhwDUF7kfP6Bnvw8ENaBkto2VwOjpGx2LlNea5cF0B/MWNIgDYQrly5dS3b1/LbW+99ZYOHDjg875efvnl3D8//PDDwQ7Nqy1btuizzz7L81j58uVVpUqVgPbn7ev/+uuvvd6dWJJee+01ZWdn53kskMWUJDVo0CCg5529mKxXr57f+yhatKjXbd99953f+wuHU3eTk3JegPjqrrvusnx8/fr1+vrrr4MeF+yFntEzegY3oWk0zQlNq169ut577z3Nnj1bCxYsyP347rvvNGvWLH3yySd6/fXXNWTIELVu3dryt3pkZWXpxRdfVJUqVXTppZdq3LhxOnHiRBS+GoQDLaNl0WrZkSNHvG6zekMLOBd6Rs/oGZyMhtEwJ7y+jISz/y3PlJCQEMGRAIAzsaZgTeGENQXvw+FcaBkto2VwE5pG05zQNK4pgC/oGT3jfTi4AS2jZbQMTkfH6JgTXmNGAtcVwF/cKAKAbQwZMkQejyff40eOHMm3WPBm5syZuQuf5s2b6/LLLw/pGM80adKkfHf8CuYOYzVr1lSzZs0st33wwQeWjx88eFATJ07M93jTpk0DGsN5550X0PPmzJmT5+9VqlSRx+Px66Njx45e9//nn38GNK5QWrJkiRYtWiQp542DK664wufndujQweud9X2d23AWekbPvKFncCKaRtO8sUPTJKlSpUq68cYb1aFDB1122WW5H5dffrk6d+6sa6+9VnfffbdGjBih+fPna//+/Xr//ffVvn17y/0tXLhQd9xxh2rVqpXvh7dwLlpGy7wJZ8sSExO9buPCMQSKntEzb+gZnICG0TBv7PL6MhLS09O9bitSpEgERwIAzsWagjWFN3ZYU/A+HHxFy2iZN7QMTkTTaJo3dmiaxDUF8B09o2fe8D4cnISW0TJvaBmcgo7RMW/s8hozEriuAP7iRhEAbKN27dq6+uqrLbe99tprOn78+Dn3MWLEiNw/P/TQQyEbm5XPP/8832OVKlUKap9t27a1fHzevHmWj0+fPj3f3fdSUlJUo0aNoMbhj7/++kubNm0K6zH27NkT1v374sw75d99992Ki/PvFDp48GDLx2fMmKGtW7cGNTbYDz2jZ97QMzgRTaNp3tihaYEoXLiwbrjhBs2ZM0dz585V9erVLT9v8+bNuvbaa/XYY49FeIQIB1pGy7wJZ8sK+oH8sWPHwnZcuBs9o2fe0DM4AQ2jYd449fVlIAr6LTdly5aN3EAAwMFYU7Cm8MYOawreh4OvaBkt84aWwYloGk3zxg5NCwTXFMQuekbPvOF9ODgJLaNl3tAyOAUdo2PeOPU1ZiC4rgD+Soj2AADgTA8//LCmTZuW7/GdO3dq0qRJuuOOO7w+d9myZZo7d66knLuZX3fddWEb58GDB7Vs2bJ8j6empga130aNGlk+vnDhQmVmZiohIW+2rRZ5pUqVsrx7Wrj8+OOP+R779ttv8401GOXKlQvZvgKxe/duvf/++5KkokWLasCAAX7vo3///nr00Ud19OjRPI9nZWVp7NixeuaZZ0IyVtgHPaNnVugZnIqm0TQr0W5aKLRr107Lly9Xjx499PXXX1t+znPPPadSpUrpgQceiPDoEGq0jJZZCWfLCtr3oUOHwnZcuB89o2dW6BmcgobRMCtueH3pC2NMgb/lpGrVqhEcDQA4G2sK1hRWor2m4H04+IuW0TIrtAxORdNompVoNy0UuKYg9tAzemaF9+HgNLSMllmhZXASOkbHrLjhNaYvuK4AgeBGEQBs5bLLLtOll16qn376Kd+2l19+WQMHDvR6l/Iz7/j14IMP+n03c38sX75cxph8jxcqVCio/XpbzJ04cUK7d+9W+fLl8zxutZhLS0sLagz+srrTe7169VSqVKmIjiOc3nrrLZ04cUKS1K9fv4C+x2lpaerTp4/GjRuXb9v48eP11FNPKTExMeixwj7oGT2zI3qGQNE0muZmKSkp+vzzz9W6dWstXrzY8nMeeughtW7dWo0bN47w6BBKtIyWRVqVKlW8btu+fbvlmzaAL+gZPYs0eoZQomE0LJZt3bpVGRkZXrfXrl07gqMBAGdjTcGawo54Hw7+omW0zI5oGQJF02iam3FNQWyhZ/Qs0ngfDuFAy2hZpNEyhBodo2OxjOsKEIjwlQ4AAvTwww9bPr5u3Tp9+umnltu2bNmiDz/8UFLOXa8CuZu5P9atW2f5eHp6elD7rVGjhtc7du3ZsyfP348fP67169fn+7xg7zzmr/379+d77ODBgxEdQzhlZWVpzJgxuX8fPXq0PB5PQB9Wb4BKOXe1++STTyL1JSGC6Bk9sxN6hmDRNJrmZoULF9bkyZO9vhmRnZ2tIUOGRHhUCAdaRssiqV69el63ZWZmavPmzREcDdyGntGzSKJnCDUaRsNildVvkzmlSJEiBfYWAJAfawrWFHbC+3AIFC2jZXZCyxAsmkbT3IxrCmILPaNnkcT7cAgXWkbLIomWIRzoGB2LVVxXgEBwowgAtnPNNdfowgsvtNz20ksvWT4+cuRIZWZmSpIGDx6s5OTksI1Pkg4cOGD5+JEjR4Lab1xcnNfF2KFDh/L8fffu3Zafd+zYsaDG4C+rxZy3sTnR559/bnlns1B78803w34MRB49o2d2Qs8QLJpG09yuVq1auvnmm71unz9/vtasWRPBESEcaBkti6TatWuraNGiXrf/+uuvERwN3Iae0bNIomcINRpGw2KV1W+8OaVVq1aKj4+P4GgAwPlYU7CmsBPeh0OgaBktsxNahmDRNJrmdlxTEDvoGT2LJN6HQ7jQMloWSbQM4UDH6Fis4roCBIIbRQCwnbi4OK931l24cKHmz5+f57GDBw9q/PjxknLu2nv33XeHfYwZGRmWj5+94ApEsWLFLB8/e5F39l3AQjkGf1gtHn/++eeIjiGcXn/99dw/jxs3TgsWLAjqY/jw4ZbH+e6773gB7EL0jJ7ZCT1DsGgaTYsFt912W4Hbv/jiiwiNBOFCy2hZJCUkJKhNmzZet3///fcRHA3chp7Rs0iiZwg1GkbDYtWMGTO8buvevXsERwIA7sCagjWFnfA+HAJFy2iZndAyBIum0bRYwDUFsYGe0bNI4n04hAsto2WRRMsQDnSMjsUqritAILhRBABb6t+/v0qXLm257V//+leev48dO1aHDx+WJN1yyy1enxdKJUqUsHx848aNQe87LS3N8vGSJUvm+Xt6errl5+3bty/oMfjDavG5aNGiiI4hXH799VfNmzdPknTRRRdp4MCBuuyyy4L6GDJkiNf5wx3z3Yme5UfPIo+eIVRoWn40zV1atGihIkWKeN3+22+/RXA0CBdalh8tC5+rrrrK67az36wC/EXP8qNn4UPPEGo0LD8a5m6rV6/WqlWrLLclJiaqR48eER4RALgDa4r8WFNEHu/DIVi0LD9aFnm0DKFC0/Kjae7CNQWxg57lR8/Ch/fhEC60LD9aFj60DOFAx/KjY+7GdQUIFDeKAGBLycnJXu/eNXPmzNyT3smTJ/Xaa69Jyrlb2IMPPhiR8Z29sDpl7dq1ysrKCmrf8fHx+R5LS0tTxYoV8zzmbUG5b98+7dixI6gx+OO8887L99iCBQsidvxweuONN3L/fNddd4Vkn8nJybrlllsst02ePFlHjhwJyXFgH/QsL3oWHfQMoULT8qJp7hMfH68LL7zQ6/ZI/hsifGhZXrQsvHr27KmEhATLbYsXL9amTZsiOyC4Cj3Li56FFz1DqNGwvGiY+40dO9brth49eqhcuXIRHA0AuAdrirxYU0QH78MhWLQsL1oWHbQMoULT8qJp7sM1BbGDnuVFz8KL9+EQLrQsL1oWXrQM4UDH8qJj7sd1BQgUN4oAYFt33XWX5Z13jTF66aWXJElTp07Vn3/+KUnq3r27atSoEZGx1axZ0/LxEydOaP369UHt++jRo/kea9iwYb7HvC0oJWnp0qVBjcEfpUqVyvfYhg0bcu8yH6x169YpMzMzJPvyx8GDBzV58mRJUmpqqvr16xeyff/973+Xx+PJ9/jhw4c1ZcqUkB0H9kHPTqNn9AzOR9NOo2mRb1okFC1a1Os2qx+8wplo2Wm0LLwtK1WqlHr27Gm5zRiTu06LNGNMVI6L0KNnp9EzegbnoWGn0TB3vr48Zffu3Ro/frzltri4OD3yyCMRHhEAuAtritNYU/A+HJyLlp1Gy2gZnI+mnUbT3PkzH64piB307DR6xvtwcC5adhoto2VwJjp2Gh1z52vMU7iuAMHgRhEAbKtkyZIaMGCA5bapU6dq69atGjFiRO5jDz/8cKSGposvvlhpaWmW2+bOnRvUvq0Wc507d873WMmSJZWcnGy5j++++y6oMfjDaqEpFXwXK3/cdtttevrpp0OyL39MmDAh99+if//+Sk1NDdm+a9SooQ4dOlhuGz16dMiOA/ugZ6fRM3oG56Npp9G0yDctEnbu3Ol1W4UKFSI4EoQTLTuNloW/Zf/4xz8sL4SVpDFjxuj48eNhH8OZJk+erMsvv1zZ2dkRPS7Cg56dRs/oGZyHhp1Gw9z5+vKUYcOGef1NuX369FGDBg0iPCIAcBfWFKexpuB9ODgXLTuNltEyOB9NO42mufNnPlxTEDvo2Wn0jPfh4Fy07DRaRsvgTHTsNDrmzteYp3BdAYLBjSIA2NqDDz5oeYfdkydPqmfPnlq5cqUkqVWrVmrRokXExhUXF6fLL7/cctuMGTMC3m9mZqb27t2b7/Grr74632Px8fFq3ry55X6mTJmirKysgMdhNS5vLrnkEsu7s3344YdauHBhUMddvny5FixYoHr16gW1H38ZY/Tmm29Kkjwej+66666QH+Pvf/+75eO//PKLvv/++5AfD9FHz3LQM3oGd6BpOWhaZJsWCUePHs29q7CVSy+9NIKjQbjRshy0LPwta9iwoXr16mW5bfv27Ro1alTYx3DKqlWrdOedd6pt27aKi+NHw25Bz3LQM3oGZ6JhOWiY+15fnvL99997/Y+fSpUqleeiJQBA4FhT5GBNwftwcDZaloOW0TK4A03LQdPc9zMfrimIPfQsBz3jfTg4Gy3LQctoGZyLjuWgY+57jXkK1xUgWJzpANjaBRdcoOuuu85y25kLhYceeihSQ8p1yy23WD4+d+5cHTp0KKB9btiwQSdPnszzWPPmzb0uZlq3bm35+Pbt2zVt2rSAxmAlIyPD67bExETLhXRWVpZuvfVWnThxIuDjPvLII4qPj1ebNm0C3kcgZs2apXXr1kmSOnTooNq1a4f8GN26dfN692jumO9O9Iye0TO4CU2jadFoWiTMmDHD6/cmMTFRV1xxRYRHhHCiZbQski3717/+pWLFillue+aZZ7R58+awj2H//v3q0aOHKlSooMcffzzsx0Pk0DN6Rs/gZDSMhrn19aUk7dixQzfddJPX31I0duxYlSlTJsKjAgB3Yk3BmoL34eAGtIyW0TK4CU2jaW79mQ/XFMQeekbPeB8ObkDLaBktg9PRMTrm1teYEtcVIDS4UQQA23v44YcL3F6zZk1169YtQqM5rXv37qpYsWK+x9PT0zVu3LiA9vnrr7/me2zw4MFeP9/bQleShgwZoqNHjwY0jrOlp6cXuH3AgAGWj//222+65ZZbAroD2dSpU/XVV1/pqquuUtmyZf1+fjBeeeWV3D+H4075kpSQkOD1BcFHH32kv/76KyzHRXTRM3pGz+AmNI2mRbpp3n4AFirGGL366qtet19//fUqV65cWMeAyKNltCxSLatUqZJee+01y20HDhxQ7969C7zjdrDS09N19dVXa8OGDRo/frwKFy4ctmMhOugZPaNncDIaRsPc9vpSkg4dOqRu3bpp69atltsfe+yxAv99AQD+Y03BmoL34eAGtIyW0TK4CU2jaW77mQ/XFMQuekbPeB8ObkDLaBktg9PRMTrmtteYEtcVIHS4UQSAsDvzjlEF3T3Km6ZNmxZ416chQ4YoLs7/nHkbi69jTEhI0COPPGK57bXXXgvoxcuMGTPy/L127drq06eP189v0KCBOnToYLlt48aNGjJkiN9jsHLgwIECt99www2qVKmS5bb33ntP/fr1y3c3s4IsWrRId9xxhyTp7rvv9uk5xhifHjuXFStWaPbs2ZKksmXL6qqrrvJ7H77q27ev5eMZGRl64403wnZcBI6e+Y6e5aBn9MzOaJrvaFqOaDZNUlB3k/XF6NGj9dNPP1luK1y4sJ599tmwHh+BoWW+o2U5otmy/v37a9CgQZbbfvzxR910001heSP0xIkTuvHGG/XDDz/ohRdecO2dtZ2OnvmOnuWgZ/TMTmiY72hYDre/vtyzZ486duyoxYsXW24fOHCghg8fHtYxAIATsabwHWuKHLwPx/twdkTLfEfLctAyWmZnNM13NC2H23/mwzUFzkXPfEfPcvA+HO/D2REt8x0ty0HLaJnd0DHf0bEcbn+NyXUFCCkDAGHWvXt3I8lIMp9++mlA+5g+fXruPs78KFOmjElPTw96XGd+dO/e3ed9ZGVlmSZNmlju59///rdf40lPTzelSpXKs49p06ad83lff/215fFPfTz++OM+HX///v2mZcuWlvv45JNPzvn8N954o8BxNGjQwCxbtuyc+5kyZYpJTU01ksxVV13l09iNMaZXr175jtmiRQufn39Kt27dcp8/aNAgv5/vr1q1all+v9LS0szevXvDfnz4h575hp7loGf0zO5omm9oWo5oN80YY26//XbLr6FNmzYB7e9Mn332mUlISPD6fRo5cmTQx0B40DLf0LIcdmhZRkaGadeundev5ZprrjEHDx4MaN9WDh48mHu83r17h2y/CD165ht6loOe0TO7oWG+oWE57NCwgQMHWn4NoXh9uXjxYlO1alWv36f777/fZGdnB30cAHAj1hS+YU2RI9prCt6Hgze0zDe0LActo2V2R9N8Q9NyRLtpxnBNAbyjZ76hZzns0DPeh4MVWuYbWpaDltEyO6JjvqFjOezQMa4rgJNwowgAYdesWbPcE9Wbb74Z0D6ys7NNnTp18p34nn766ZCM68yPpk2b+rWfn3/+2RQqVCjfflJTU826det83s/w4cPzPP/222/3+bm33XZbgQupfv36FfgiasWKFaZevXpen9+2bVuTmZmZ+/m7du3Kt4/s7GzTpUuXAscRHx9vunTpYt59913z+++/myNHjpijR4+a1atXm3HjxuX5N0lJSTHr16/3+XvQuXPnfMe76KKLfH6+McYsWLAgz/Pfeecdv54fiFtuucXr92vIkCFhPz78Q898Q8/oGT1zBprmG5oW/aad0rFjR8vxB/MDt8zMTPP888+bpKQkr9+f2267LeD9I/xomW9omX1aZowxR44cMR06dPD6tVxwwQXm+++/D3j/pyxZssRcdNFFRpLp0aOHycjICHqfCB965ht6Rs/omT3RMN/QMPs0rFOnTpbjD+b15YEDB8yQIUNMfHy85b5TUlLMu+++G/D+ASAWsKbwDWuK6K8peB8OBaFlvqFltIyWOQNN8w1Ni37TTuGaAnhDz3xDz+zTM2N4Hw750TLf0DJaRsvsi475ho7Zp2NcVwAn4UYRAMIqIyPDFC1aNPeEdeeddwa8r//85z95Tn5FihQxe/bsCcm4zvwoWrSo3y8M3n77bct9XXTRRWb37t3nfP6CBQtMcnJy7vNatmxpjh496vPxjxw5YmrWrFngQqp8+fLmySefNMuXLzcHDx40+/btM9999525/fbbc+903LRpU6/Pr169urniiitM1apVTe3atS3HsXPnTlOhQoUCx+Hrx8cff+zz12+MMeeff36+fSQnJ/v8b5menm5q166d5/n//e9//RpDIO69916v34OEhASzdOnSsI8BvqFn9IyeFYyeOQtNo2lOadopR48ezb0z7NkfLVq0MCdPnvRrf+np6eadd94xl1xySYFf75AhQ7gjq43RMlrmtJadKT093fTu3bvAcXbr1s0sXrzY731v3rzZ3HPPPbnf+z59+vjdSUQWPaNn9MwaPXMGGkbDnNawo0ePmmLFilmOqXnz5ubEiRN+7e+3334z//d//2fS0tK8fq3XXXed+eOPP/zaLwDEGtYUrCmcsqbgfTgUhJbRMlpWMFrmLDSNpjmlaadwTQG8oWf0zGk9OxPvw+EUWkbLaJk1WuYcdIyOOa1jXFcAp+FGEQDC6rXXXstz0ipTpozZv39/QPs6ceKEKV++fO6+7r777oDH9frrrxe4kJgwYYLf+3z55Zct93XBBReYhQsXen3ee++9l2fx0LJlywLv0OXNhg0bTMWKFQNePD322GNmwoQJBX5O4cKFzR133FHg3cx+/fVXU7Zs2aAWci+88IJfX/u3337rdV9jxow55/MzMzPNDTfckO+57dq1C+sLRas3Xs/+qFKlCgs9m6Bn9IyeeUfPnIem0TQnNO2U7Oxsc8cddxQ4tkKFCpmGDRuavn37mueff96MGzfOfPDBB+arr74yc+fONZ9++qmZOHGiefzxx03nzp0L/EGbJHP++eebmTNn+vX1IvJoGS1zUsu8GTdunNc3m0591KpVyzz22GPmiy++MH/++We+i82OHj1qFi9ebEaNGmU6deqU+4ZNcnJySMaI8KNn9Iye5aBnzkTDaJiTGpaVlXXO36KSlJRkGjdubPr162eeffZZM3nyZDNr1iwzf/58880335iPP/7YjBgxwtx6663mwgsv9Lqf+Ph4c80115gFCxb49bUCQKxiTcGawglrCt6Hw7nQMlpGy7yjZc5D02iaE5p2CtcUoCD0jJ45qWfe8D4caBkto2U5aJlz0TE65qSOcV0BnIgbRQAIix07dpgnn3zSxMfH5zuJ1atXz3z99dcBvbn0/PPP554IA3ljaOfOnWbo0KG5LwgKOmE///zzft9V7KOPPrK8Y1RcXJy58sorzZgxY8w333xjpk+fbl599VXTokWL3M/xeDzmwQcfDOpue1u2bDENGzb0a+GUkJBgRo4caYwxXhdzJUqUMI8++qjZuXOnT+PYvHmzadKkid+LuPj4eL8WX/v27TOfffaZKVeu3Dn/LdetW5fvjl1//PGHGTNmjGnQoIHX57ds2dJMmjTJrF27NiRviGZnZ5s9e/aYb775xrRv396n70uxYsXM448/bpYuXerX3eAQGvSMntEza/TMmWgaTXNC07Zu3Wo2btxoli9fbt555x3TsmVLv8ccyEdCQoJp27ateeedd7irtM3RMlrmhJb5Y/v27ebWW281cXFxPn0tcXFxpnjx4qZs2bKmSJEilp/TvXt38/vvvwc8JkQGPaNn9IyeORkNo2FOaNjGjRvN77//bhYuXGjefvtt06xZM7/H7O/Xd9lll5kXX3zRbN682fd/WACIYawpWFM4YU3B+3A4F1pGy2iZNVrmTDSNpjmhaVxTAF/QM3rmhJ75g/fhYhMto2W0jJY5HR2jY07oGNcVwA24UQSAkEUL3ewAAEiHSURBVOnUqZOpW7euqVixovF4POc8sRUpUsRceOGFpm7dumbUqFE+HWP//v0mJSXF9OzZM2zjOvPD4/GYSpUqmTp16phOnTr5dLzt27ebAQMGmKSkJJ+P0bVrV/Pzzz/7/DUV5Pjx4+aJJ57w+kLo7IX1Dz/8kPvcsxdzlStXNq+88oo5fPiw3+M4efKkeemll8x5553n0/fhsssuM8uWLfN5//7+W576GDBggDHGmOHDh/v93Li4OPPuu+/6/b04UygWhRMnTgxqDDg3epaDnuWgZ9bomXPQtBw0LYfdm2aMMVWrVg1JY87uXnJysklLSzPly5c39evXNx07djT9+/c3L7zwgpkxY0bAdydGZNCyHLQshxNaFoiNGzeaf/7zn6ZChQoBHb9YsWKmb9++ZtGiRUGNA+FFz3LQsxz0jJ45DQ3LQcNyOKFhBf0HUIF8JCQkmNTUVFO6dGlTu3Zt07FjRzNgwADz0ksvmblz55oDBw74/X0EgFjEmiIHa4ocdl9T8D4cvKFlOWhZDlpmjZY5B03LQdNy2L1pxnBNAbyjZznoWQ4n9CwQvA/nfrQsBy3LQctomRPRsRx0LIcTOsZ1BXADjzHGCABCYO3atcrIyAjouWXKlFGZMmV8+txNmzYpLS1NJUqUCPu4zpSUlKSaNWv6/Pk7duzQxx9/rLlz52rVqlXavn270tPTVbRoUZUqVUoNGjRQq1at1LNnT1WpUiXo8Z1t7969mjx5smbNmqVffvlFu3fvVnx8vCpXrqzmzZvrhhtu0FVXXaW4uLjc50ycOFEDBgxQ/fr19dBDD6l3795KTEwMahzp6en6+OOPNWPGDC1btkzbtm1TRkaGSpcurYoVK6pNmza69tpr1apVK7/2u2rVqoDGU6JECVWsWFG7du3Srl27/H5+pUqVVLx48YCOLQU+7lCOAedGz/KiZznoWV70zDloWl40LYddmwZ4Q8vyomU53NyylStXas6cOfrll1+0Zs0abdmyRYcPH9bRo0eVmJiotLQ0FS9eXDVr1lTDhg3VrFkzdezYUYUKFQrJ8RE+9CwvepaDntEzp6BhedGwHG5uGAAgPFhT5MWaIodd1xS8DwdvaFletCwHLcuLljkHTcuLpuWwa9OAgtCzvOhZDjf3jPfh3ImW5UXLctAyWuYkdCwvOpbDzR0D7IAbRQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADhE3Lk/BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHbAjSIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcghtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAQ3igAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAIbhQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgENwoAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCG4UQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBDcKMIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh+BGEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7BjSIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcghtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAQ3igAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAIbhQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgENwoAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCG4UQQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBDcKMIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAh+BGEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7BjSIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcghtFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAQ3igAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAIbhQBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgENwoAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCESoj0AAADCYeLEidq0aVPu34cOHRq1scAemBMA3IKeAQAQHZyDcTbmBAAA0cN5GABgF/PmzVNKSoqaNGkS7aEAQEjRNwBuQMsAOBX9AuBGtA2AG9AyAHbkMcaYaA8CQORt2rRJX3zxhb755hutWbNGu3fv1tGjR1WqVCmVKVNGTZo0UadOndS5c2cVK1bM7/0vX75cR44cCXqccXFxSkhIUGJioooWLaqUlBSVLFlShQoVCnrfcK+ZM2eqa9eueR7z9XS3cuVKHTx4MBzDCkhaWprq168f7WE4XqBzgpYhHMJ9DpZomZvRM9gJPcPZeJ0JN+N1Js7Gugx2wroMVlibwc1YmwEA7GDmzJl66qmntHjxYvXv318TJ04M+zE7duyoOXPmBPTcuLg4rV27VtWrV8/zeFZWln788cegx+bxeHLXdoUKFVLRokWVmpqqkiVLKj4+Puj9A4gct/TtlO+//z6YoYVclSpVVKVKlWgPA3A9WhZetAwIH7f0i9eaAM7klradwtoMiE20LLxoGRAcbhQBxJjNmzdr2LBhmjx5sjIzM8/5+cWLF9eDDz6o++67z6+LRbt166bffvtNhw4d0p49e3y+QM9XqampqlSpkqpVq6aLLrpIF198sVq0aKEaNWqEZP/nn3++Nm/eHPDz4+LiVKhQIRUqVEipqakqW7asypcvnzvWtm3bqmLFiiEZK/Las2eP6tevrx07duR53Nc52LZtW82fPz8cQwtImzZtNG/evNy/Mzf9F8ycoGWxN1/CKVLnYImWuXVu0jPmjF3Qs3m5f2du5uB1pm+YL87F68yCxeLcZF3GfLEL1mXzcv/O3DyNtZlvmDPOxdqsYMxNAAi/2bNn68knn8zzH7xE4qLQJUuWqGnTpgE//8orr9T06dPzPX748GE1atRIxhjt3bs35DdU8ng8Ou+881SlShVdcMEFqlu3rho1aqSWLVuqTJkyITtGME6dPwsXLqy0tDSVLVtWFSpUUN26ddWgQQO1bdtWpUqVCslYATtzW99OCbYRofbUU09p6NChkqShQ4dq2LBhQe0vKSlJhQoVUnJyssqUKaOyZcuqevXqql+/vpo1a6YmTZooLi4uBCMHnIGWRQYtA0LPbf3itSavNQHJfW07hbUZazPEFloWGbQMCJIBEDOmTZtm0tLSjCS/P84//3yzbNmygI67c+dO8+yzz5qkpKSAju3PR8WKFc2dd95pvv/++5B8zw4cOGDmzZtnrr/++pCPtWHDhubNN980R48eDclYkaN79+6W329ftWnTJuzz1J+PNm3aWI6Tuem7YOfEKbQsNuZLuET6HEzL3Dk36Rlzxg7oWRvLccby3OR1pv9ieb44Fa8zmZtnY13GfLED1mVtLMcZ63OTtZn/Yn3OOBFrM+YmAETLvHnzTOvWrS3b2r9//7Afv0ePHkH1f+bMmT4d5/fffzd9+/aNyHmwfv365oknnjDr168P+vuTnZ1t9u7da2bOnGnat28f0nHGxcWZVq1amSlTppiMjIygxwrYjdv7Fome+fPx1FNP5Rvj8ePHzerVq81zzz1nihUrFtLjlSpVytxzzz1m7dq1YfoXBOyBltEywKnc3q9TeK2Z/4PXmnAzt7ctEi3z54O1GRAetIyWAU7iMSbEv+IHgC2NHz9egwYNCuq3ehUuXFhTp07VNddcE9DzP/roI/Xs2dNyW0JCgurXr68mTZqoSZMmqlevnkqVKqVSpUopLS1N6enpOnDggP744w+tXLlSCxYs0FdffaUDBw54PV6TJk30wgsvqEOHDgGN92yPPPKIXnzxRa/bq1SpokaNGql69eoqXbq0jDHauXOnli9frh9++MHrb2+rWLGiRo4cqeuvvz4k44xlb731lgYNGmS5zde5f/ZvEytevLgGDx6szp07q3r16ipRooQKFy5seecwb7+J7Mw7m50tPT1dO3bs0M8//6yPP/5YH3zwQZ65cvZvE7PC3PQuFHPibLTMvfMlXKJxDqZlp7llbtKz/JgzkUfP6NnZeJ0ZvFiaL07F60xrsTw3WZflx3yJPNZltMwKa7PgxdqccSLWZtaYmwAQXv/73//05JNPas6cOV4/J9y/PWzt2rW66KKLlJ2dHdDza9SooTVr1vj1G8LuvvtujRo1ynJbSkqKLrnkEjVp0kSNGzdWzZo1VbJkSZUsWVJFihTR0aNHtXv3bm3YsEFLly7V/Pnz9e233+rkyZOW+/N4PLr++uv17LPPqkaNGgF9jWcyxqhPnz6aOnWq1+NVr15djRo1UtWqVVWqVCllZmZq+/btWrp0qRYtWuR1bVG7dm2NHj1abdu2DXqcQLTFSt/O3nbhhRfq3nvvVcuWLVW5cmWlpaUpKSnJch/e9vvtt99adsAYo6NHj2rLli368ccfNWnSJC1YsCDP5xT0+kGSVqxYoWbNmikjI8Nye7FixdSgQQPVq1dPpUuXVmpqqg4cOKA1a9Zo3rx52rNnj+Xz4uPjdc8992j48OFKSUnxenzAaWgZLQOcKlb6dTZea/JaE+4WK21jbZaDtRncipbRMsCRwn0nCgDR99VXX5mEhISQ3DGpcOHC5ocffgh4LJUqVbLcr7ffmFSQ48ePm48++sg0bdq0wDFfccUVZseOHQGP+ZSDBw+a+Ph4y2P069evwOfu2bPHDB061BQpUsTrOO+55x5z8uTJoMdpjDHbt283u3btCsm+/LFmzRpz7NixiB/XGGPWrl1rihYt6vX766szf5tYo0aNzLZt2wJ67pkfVnc282bBggWmfPnyfv1/w0lzM5JCNSes0DJa5qtonYNpmXtaZgw988ZJc4ae0TO7zs1g8DqTlkUKrzNpmZ2wLrPmpPnihpaxLqNlVlib0bNIYW1GzwAglixcuNB07tzZpzVUuH972G233RbUGu/f//6338dcv3691/35c+47Ze/evWbkyJFe14uSTEJCghkyZEhIfpPqr7/+6vU4Tz75ZIHP3bp1q7n//vu9rrHj4uLM888/H/QYgWiJtb6dvX5OT0/3eXzejvvtt9/6vI8333zTJCUl+dXQnj17ej12dna21+dlZmaaTz75xNSrV8/r8+vWrWs2bNjg8/gBu6JltIyWwalirV9n47UmrzXhTrHWNtZmrM3gTrSMltEyOBk3igBc7uDBg6ZMmTJ5Tl41atQwzz33nPnxxx/N7t27TUZGhtm+fbuZM2eOuffee01KSkqBC4bSpUubffv2BTSe7t27W+4zkItEz/Thhx+aChUqeB1z+fLlzfz584M6hjHG66LA10XeunXrTM2aNb2Os0+fPgUuTnyxa9cuU6dOHVO/fn2ze/fuoPblj19//dWUKVPGdO7c2Rw/fjxixzXGmJMnT5pmzZoVOG99depCz0qVKvn9/QvFRaLG5Pwg9NT/D339/4YT5mYkhXJOWKFltMwX0TwH0zJ3tMwYenYuTpgz9Iye2XVuBoPXmbQsUnidScvshHVZwZwwX9zQMtZltMwKazN6FimszegZAMSS9PR0U6pUKdOtWzfzzjvvmMWLF5uJEyeakiVLBtXjQPz55595Lpb09yMlJcUcPHgwoGOnpaWF5Nx3phMnTpjhw4ebwoULex3zpZdearZs2RLwMU5JTU0NavyLFi0yZcuW9TrOf/7zn0GPEYi0WOzbqc+/4oor/F7zeju2Pxe9G2PMe++951eDRowYEdRrnxMnTpg777zT6z4qVKhgNm7c6NfXANgJLaNltAxOFYv9ssJrTV5rwl1isW2szVibwX1oGS2jZXA6bhQBuNzDDz+ce8IqWbKkefvtt895At++fbu55pprClw43H333QGN56677rLcX7AXiRpjzL59+0yXLl28jjkhIcF88cUXQR3jiiuuCHqR99dffxV4Qeujjz4a8Pj27dtnGjZsmLuvhg0bmr179wa8P1+tXr3alCtXLve4V199dUjuvOqrJ554IvfY9evXD3jRZ8zpCz0/+ugjv8cRqotEjTFm3Lhxfv1/w+5zM9JCOSes0DJa5otonoNpmTtaZgw9Oxe7zxl6Rs/sOjeDxetMWubElvmL15n2n5uRxrqsYHafL25pGesyWmaFtRk9c2LP/MXazP5zEwDc6PDhw/ke++9//xt0j/01ZMiQ3OPMmTMnbMexUrdu3ZCd+872yy+/mAsvvNDrealChQpB//auiy66KOjx//rrrwXeaG3cuHFBjRGIhljrmyRTuHBhs3Xr1oCea/Xh70Xvxhhz0003+dyg999/3+ux/TFgwACv+6lZs6Y5cuSI318HYBe0zL/n0jLAPmKtX1Z4rclrTbhPrLWNtRlrM7gTLfPvubQMsBduFAG42IEDB3LvjFmrVi3zxx9/+Pzc7Oxsc++993o98SUkJJhdu3b5PaZ//OMflvsLxUWixhiTlZVlBg4c6HXchQsXNnPnzg14/zfccENIFnkzZ870Osb4+Hjz448/+j22Q4cOWf5GrcaNG5v9+/f7vT9frV271vLCwuuvv95kZmaG7bin/PDDDyY+Pt5IMq1btzZvv/12UIu+Nm3amCpVqgT0m7NCeZFoZmamKV++vM//37Dz3Iy0UM8JK7QsBy3zLtrnYFrm/JYZQ898Yec5Q8/omV3nZrCiPSes0LIctCx0eJ2Zw85zM9JYl52bneeLW1oW7XMwLbNny6I9L6zQsxz0LHRYm+Ww89wEgFhy5MgR4/F4gu6xr/bt25f7m0qbN28elmMUxGrtEei5z8q+fftM06ZNvZ6bqlWrZv7888+oj3/06NFex5iSkuLXOhywKzf3TZK5+eabA36u1UcgF73/+uuvPjfoyy+/9Hpsf6Snp5uqVat63dfgwYP9/joAO6Nl3p9LywB7c3O/rPBaMwevNeF2bm4bazPWZogdtMz7c2kZYC9xAuBaH374oY4fP65y5cpp9uzZqlatms/P9Xg8GjlypK666irL7ZmZmfrss8/8HlPhwoX9fo4/4uLiNHbsWN16662W248fP65rrrlGmzdvDmj/hQoVCmZ4ubp06aI2bdpYbsvKytITTzzh9z7vv/9+LVq0KN/jS5cuVefOnXXo0CG/93kuGzZsUPv27bV9+/Z82z766CO99NJLIT/mmQ4fPqy+ffsqKytLxYsX1+TJkxUXF/yp7corr5TH4wnBCAMXHx+vTp06+fz5dp6bkRSuOXE2WpaDlnlnh3MwLXNuyyR65is7zxl6Rs9CwY49s8OcOBsty0HLQoPXmafZeW5GEusy39h5vrilZXY4B9My+7XMDvPibPQsBz0LDdZmp9l5bgJALClatKjKlCkTseONGjVKhw8fliQ9+uijETvuKeFe25UoUUKzZ89Ww4YNLbdv3LhR3bt3V2ZmZkD7D9X5c+DAgapevbrltiNHjui5554LyXGAaHJ7366++uqwH+Nc6tSpo6pVq/r0uaHqV+HChTV06FCv28eOHRvw62fAjmhZ+NEyIDzc3q+z8VozB6814XZubxtrM2uszeA2tCz8aBkQGtwoAnCx9957T5L0zjvvqFKlSn4/3+PxaMKECUpJSbHcPmfOnID2GW4ej0djxozxeqHboUOH1K9fP2VnZ/u971D+hwCDBw/2um327Nlas2aNX/t79tlnVbNmTcttixYtUpcuXXIXjKGwadMmtW/fXtu2bbPc3rp1a917770hO56Ve++9V3/88YckafTo0apSpUpI9tu4ceOQ7CdYTZs29flz7Tw3Iylcc+JstOw0WmbNDudgWubclkn0zFd2njP0LAc9C57demaHOWG1z3CjZfk5qWX+4HXmaXaem5HEusw3dp4vbmmZHc7BtMx+LbPDvLDaZ7jRs/yc1DN/sDY7zc5zEwBizXnnnReR46Snp+u1116TJNWvXz8qF2xGYm1XrFgxTZs2TWXLlrXcvmTJEg0bNiygfYfq/BkfH69BgwZ53T558mQdPHgwJMcCosnNfXPaa4BQrv979+6tEiVKWG7LysrSmDFjQnYswA5oWfjRMiA83Nyvs/FaMwevNREL3Nw21maszRA7aFn40TIgeNwoAnCprKws/fTTT+revbv+9re/BbyfUqVK6a677rLc5u3iQDtITEzU5MmTlZaWZrn9u+++y11ARcsVV1yhxMREr9tnz57t1/7KlSunuXPner276I8//qiuXbvq6NGjfu3XypYtW9SuXTtt2bLFcnvLli01Y8YMFSlSJOhjefPxxx9r4sSJkqS+ffuqV69eIdlvnTp1VK9evZDsK1hNmjRRnTp1In7cUM/NSAnXnIgmWpafE1pmh3MwLXNuyyR6Fi30LD96lhc9s8eciCZalp8TWuYPXmeGj51a5g/WZdFBy/KzwzmYltmvZXaYF9FEz/JzQs/8wdosfOzWMwBwmuTk5Igc5+2339bu3bslSY888khE/kOaaKlcubLGjRvndfvzzz+vJUuWRHBE+XXr1s3rthMnTuj777+P4GiA8HBr3y699FJVrlw5rMfwVfv27QO60WMwChUqpE6dOnndzvofbkPLwo+WAeHh1n5FE681gehza9tYm7E2Q2yhZeFHy4DgcaMIwKVWr16to0eP6uGHHw56X9dff73l47t27Qp63+FUuXJlPfPMM163P/vsszpy5EgER5RXamqqateu7XX7smXL/N5nxYoVNXfuXJ1//vmW27///ntdeeWVOnbsmN/7PmXbtm1q166dNm3aZLm9WbNmmjlzptffQhcK27dvz72LarVq1TRq1KiQ7fvNN99U8+bNQ7a/YDRv3lxvvvlmxI8bjrkZbuGcE9FGy/Kze8vscA6mZc5smUTP6Jn/6Fnk0DN7zIloo2X52b1lvuJ1ZnjZqWW+Yl1Gy/zFuixyaFkOO8yLaKNn+dm9Z75ibRZedusZADhN4cKFw36MzMxMvfzyy5Kk6tWr68Ybbwz7MaOtW7du6tGjh+W2rKwsPf744xEeUV61a9dWsWLFvG7n/Ak3cGvffvzxRyUlJYX9OL74+9//rttvvz3ix23WrJnXbcuXL1d2dnYERwOEFy0LP1oGhIdb+xVtvNYEosutbWNtxtoMsYWWhR8tA4LHjSIAlypUqJBef/11tWrVKuh9XXLJJZY/hIjUXbGCMWjQIK8XTO7Zs0evv/56ZAd0lgsuuMDrtkAvwq1SpYrmzp3r9c5e8+fPV7du3ZSenu73vrdv36727dvrjz/+sNx+ySWX6Kuvvirwh1bBMsbolltu0b59+xQfH693331XqampYTterArH3AyXWJgTtCw/O7eMc7B9OKllEj2jZ/QM3tmlZ8yJHLQsPzu3zBexcA62A7u0zBexMCdoWX52bhnnYPuwU8uYFznoWX527pkvYuE8bAd26hkAOE1cXPgvtXrvvfdyb9q0a9cudevWTU8//bS+/vprHThwIOzHj5bhw4d7/f5+9dVX+vHHHyM8oryqVavmdRvnT7gBfXOvgtb/mZmZ2r9/fwRHA4QXLXMvWga3o1/hw2tNIHpom3uxNkMsoWXuRcvgJtwoAnCpCy+8UHfffXdI9hUXF6cKFSrke7xcuXIh2X84JSUlFfh9ePXVV5WZmRnBEeVV0G/cCmZc1apV09y5cy3/3SRpzpw5uuaaa3TixAmf97ljxw61b99e69ats9zeoEEDffPNNypevHggQ/bZv//9b33zzTeSpMcff1wtWrQI6/FiVbjmZjjEwpygZc5qGedg+3BSyyR6JtEzegZv7NIz5kQOWuaslvkiFs7BdmCXlvkiFuYELXNWyzgH24edWsa8yEHPnNUzX8TCedgO7NQzAHCa+Pj4sB/jX//6V+6fDx8+rC+//FJPPfWUOnfurFKlSqlr16768MMP/TrXO8FFF12krl27et3+0ksvRXA0+XH+hNvRN/cqqF8SDYO70DL3omVwO/oVPrzWBKKHtrkXazPEElrmXrQMbsKNIgD45Lzzzsv3WP369aMwEv/1799fiYmJltt2796tuXPnRnhEpx06dMjrtrJlywa17wsvvFBz5871up+vv/5a1113nTIyMs65r127dqlDhw5as2aN5fa6detq9uzZlvMklFatWqV//vOfkqQWLVroiSeeCOvxYlk452YoxdKcoGXuaZm/nHwOjjantEyiZ6fQM3oGa07qmT+cPCdomXtaFkvn4GhzSstiaU7QMve0zF9OPgdHm1NaFggnzwt65p6exdJ5ONrc3DMAcLoZM2Zo5cqVXrdnZWVp5syZuuGGG1ShQgU98sgjBXbdaQYOHOh128yZM3X48OEIjiYvzp9AcGK9b9FU0PcxLi5OpUqViuBoAGejZdFDy4DgxHq/eK0JuFOsty2aWJsBoUPLooeWwU24UQQAn1jddapNmzZRGIn/SpUqpVatWnnd/sEHH0RwNHnt3LnT67by5csHvf9atWppzpw5XhcnX375pXr27KmTJ0963ceePXvUoUMH/fbbb5bba9eurblz54Z9AXTixAn16dNHx48fV2pqqqZMmRKRO7PFqnDPzVCItTlBy9zRskA4+RwcbU5omUTPzkbP6Bnyc0rP/OXkOUHL3NGyWDsHR5sTWhZrc4KWuaNlgXDyOTjanNCyQDl5XtAzd/Qs1s7D0ebmngGA073wwgs+f+6+ffv04osvqlatWpo4caKMMWEcWWT87W9/U3JysuW248eP6/PPP4/wiE7j/AkEJ9b7Fk0F9atMmTK89gL8QMuih5YBwYn1fvFaE3CnWG9bNLE2A0KHlkUPLYObcKMIAD7Ztm1bnr8XKVJEHTp0iNJo/NelSxev22bOnBnBkZx27NgxLV++3Ov2yy+/PCTHOddv+po2bZp69eqlzMzMfNv27dunjh07atWqVZbPrVGjhubOnasyZcqEZKwFefTRR/XLL79Ikt544w1dcMEFYT9mrIrU3AxWLM4JWub8lgXC6efgaHFKyyR6djZ6Rs+Ql5N65i+nzwla5vyWxeI5OFqc0rJYnBO0zPktC4TTz8HR4pSWBcrp84KeOb9nsXgejha39wwAnOx///ufvv/+e7+ft2PHDg0YMEBt27bVnj17wjCyyElOTi7whmXRWtutX79eu3bt8rqd8ydQMPoWXT/88IPXbfQL8B0tiy5aBgSOfvFaE3Aj2hZdrM2A0KBl0UXL4CbcKALAOe3ZsyffXZJ69+6tIkWKRGlE/mvSpInXbdu3b9fu3bsjOJocX3/9tTIyMiy3JScnq127diE7VoMGDfT111+rePHilts/+eQT3XTTTcrKysp97MCBA/rb3/6mFStWWD7nggsu0LfffhuRu5XOmTNHr776qiSpV69e6tevX9iPGcsiOTcDFatzgpY5u2WBcMM5OFqc0DKJnlmhZ/QMeTmlZ/5yw5ygZc5uWayeg6PFCS2L1TlBy5zdskC44RwcLU5oWaDcMC/ombN7Fqvn4Whxc88AwOmef/75oJ7/3Xff6dJLL9WaNWtCNKLoKGhtV9DNjsJp+vTpXredf/75qlOnTgRHAzgPfYueEydO6JtvvvG6vWvXrhEcDeBstCx6aBkQHPqVg9eagLvQtuhhbQaEDi2LHloGt0mI9gAA2N93332X5+8ej0f33XdflEYTmIYNGxa4ffny5frb3/4WmcH8fy+88ILXbQMGDFBycnJIj9e4cWPNmjVLnTp10qFDh/Jt//DDD5WQkKApU6bo8OHD6tSpk5YtW2a5r6pVq+rbb79VxYoVQzpGK/v371f//v1ljFGVKlU0ZsyYsB8z1kV6bvorlucELXNuywLlhnNwtNi9ZRI9Kwg9o2c4zQk9C4Qb5gQtc27LYvkcHC12b1kszwla5tyWBcoN5+BosXvLguGGeUHPnNuzWD4PR4ubewYATjd+/HgdO3ZMx48f1549e7Rt2zZt3rxZS5cu1aJFi7Rly5Zz7mPDhg1q0aKFpk+frpYtW0Zg1KFX0NpuzZo1On78uAoXLhyx8WRkZOiVV17xun3w4MERGwvgVPQteiZMmOD1t1SXKVNG119/fYRHBDgXLYseWgYEh37l4LUm4C60LXpYmwGhQ8uih5bBbbhRBIBz+uyzz/L8vXfv3qpfv350BhOgkiVLqmjRojp69Kjl9tWrV0f0ItFRo0Zp4cKFlttSUlL05JNPhuW4zZs315dffqkuXbroyJEj+bZPnTpVcXFx2rBhgxYvXmy5j8qVK+vbb79VlSpVwjLGs9155536888/FRcXpylTpigtLS0ix41V0Zqb/ojlOUHLcjixZYFywzk4GpzQMome0TN6Rs/OzSk9C4Qb5gQty+HElsXyOTganNCyWJ4TtCyHE1sWKDecg6PBCS0LhhvmBT3L4cSexfJ5OBrc3jMAcLqyZcsWuH3FihWaOnWqxo4dqwMHDnj9vP379+uqq67S//73P9WuXTvEowy/gtYhWVlZWrduXUTXq4899pi2bt1qua1y5cq65557IjYWwKnoW3Rs2bJFjz/+uNftTz31lFJSUiI4IsDZaFl00DIgePQrB681AXehbdHB2gwILVoWHbQMbhQX7QEAsLcjR47o888/z/17QkKCnn766SiOKHAF/ear/fv3R2wcs2bN0oMPPuh1++jRo8+52AtGq1atNH36dBUpUsRy+7vvvquffvrJcluFChU0d+5cVatWLWzjO9M777yjDz74QJL0yCOP6PLLL4/IcWNVtOemL5gTtOwUJ7UsUG46B0dStOemr+gZPTuFnsGbaM/NcHLTnKBlOZzUMs7BkRXtuekL5gQtO8VJLQuUm87BkRTtuRlubpoX9CyHk3rGeTiyoj03AQDBa9CggV544QVt2rRJQ4cOVXJystfP3b9/v3r27Kn09PQIjjA0KlWqVOD2SK7t3n77bY0YMcJyW2JioiZNmhTR3zgLuFWs9C2S9uzZo2uuuUZ79+613N6lSxfdcccdER4V4G60LPRoGRAZsdIvXmsCsSVW2hZJrM2AyKNloUfL4FbcKAJAgd555x0dOnQo9+8PP/ywqlevHsURBS41NdXrtoMHD4b9+FlZWfr3v/+tq6++WhkZGZaf8/TTT+vmm28O+1jatGmjadOm+fVDpHLlymnu3Lm68MILwziy0zZt2pR7N9SmTZtq2LBhETluLLLT3CwIcyIHLTvNCS0LhpvOwZFgp7l5LvQsBz07jZ7hTHaam+HipjlBy05zQss4B0eOneZmQZgTOWjZaU5oWTDcdA6OBDvNzXBy07ygZ6c5oWechyPHTnMTABAaaWlpeuqpp7RixQq1bNnS6+etWrVKzzzzTARHFhoFreukyKztjh8/rkcffVS333675XaPx6O33npL7dq1C/tYgFji9r5FytKlS9WyZUv9/PPPltsbNGigDz74QPHx8REeGRAbaFlo0DIg8tzeL15rArHJ7W2LFNZmQHTRstCgZXCzhGgPAIB9ZWRk6KWXXsr9e61atfTUU09FcUTBKejOWWdeCBuIH374QUOHDlXdunVVs2ZNVaxYUcWLF9fx48e1bds2ff3113rrrbe0atUqy+cXKVJEo0aN0i233BLUOPzRoUMHffrpp7rmmmt04sSJAj+3dOnSmjNnjmrVqhWRsWVnZ6tv3746dOiQihYtqnfffVcJCZyyAuHEuWmFOXEaLcvLzi0LhtvOwcFy4tz0hp6dRs/yomexwYlzM9TcNidoWV52bhnn4NBx4ty0wpw4jZblZeeWBcNt5+BgOXFuhoPb5gU9y8vOPeM8HDpOnJsAgNCpUaOG5s+fr9tvv12TJk2y/JyXX35ZgwcPVsWKFSM8usAVtK6Tgl/bTZs2TUlJSapTp45q1KihChUqqFixYjpy5Ig2b96sGTNmaNy4cdq0aZPl80uVKqV33nlHV1xxRVDjAOCdW/sWCvfdd5/q16+vWrVq6fzzz1fp0qUVHx+vXbt2afHixXrvvff0wQcfyBhj+fxevXpp3Lhx5/wPJQEEj5Z5R8sAe3Nrv3itCcQ2t7YtFFibAc5By7yjZYh1XHEDwKszfxgRHx+v8ePHq1ChQtEdVBCys7O9bgv2AsT169cH9Nuu4uPj1aNHDw0bNky1a9cOagyB6NKli6ZMmaKePXt6/ZykpCTNnj1bderUidi4nn/+eX3//feSpH//+9+qUaNGxI7tNk6dm2djTpxGy/Kza8uC4bZzcLCcOjet0LPT6Fl+9Mz9nDo3Q8ltc4KW5WfXlnEODh2nzs2zMSdOo2X52bVlwXDbOThYTp2boea2eUHP8rNrzzgPh45T5yYAIHQSEhI0ceJEFStWTK+//nq+7SdOnNBrr72mF198MQqjC0xB6zop+LXdzz//7PU3hhWkcOHCuvnmmzV06NCYu8gWiAY39i0UXnvttYCeV69ePf3zn//UTTfdFOIRASgILbNGywD7c2O/eK0JwI1tCwXWZoCz0DJrtAyxjhtFALC0d+/ePL85bNiwYbrsssuiOKLgpaene91WpEiRoPbdvn17XXXVVVq6dKl+/fVXrV27VseOHbP83OLFi6tFixa67LLL1KdPH1WtWjWoYwcjIyNDEyZM8OlzXn311YiMacmSJbkXNV533XW67bbbInJct3Lq3DwTcyIvWpafHVsWDDeeg4Pl1Ll5NnqWFz3Lj565n1PnZqi4cU7Qsvzs2DLOwaHl1Ll5JuZEXrQsPzu2LBhuPAcHy6lzM5TcOC/oWX527Bnn4dBy6twEAITeyJEj9ccff2jGjBn5tv33v//VCy+8II/HE4WR+a+gdZ0U/NruxhtvVMOGDbVs2TL99ttvWrdunTIyMiw/t0yZMmrZsqVat26tm2++WaVLlw7q2AD856a+hcKkSZO0dOlSrVixQqtXr9bOnTstPy8+Pl4NGjTQZZddpquvvlodO3aM8EgBnImW5UXLAOdwU794rQngFDe1LRRYmwHORMvyomWIddwoAoClBx54QPv27ZOU8xunHn300SiPKHgHDhzwuq1s2bJB7bty5cp64IEH8jy2Z88e7dy5U0eOHFF8fLxKlCiR+2GHxdbJkyfVs2dPffnll+f83JEjRyohIUEvvfRSWMd07Ngx9enTRydPnlTFihX11ltvhfV4scCJc/NMzIn8aFledmxZsNx4Dg6WE+fm2ehZfvQsL3oWG5w4N0PJjXOCluVlx5ZxDg49J87NMzEn8qNledmxZcFy4zk4WE6cm6HmxnlBz/KyY884D4eeE+cmACA84uLi9O6776p27drasWNHnm3btm3TqlWrVL9+/SiNzj8Freuk4Nd2tWvX1iOPPJL7d2OMdu3apV27dunYsWNKTEzMPXcWL148qGMBCJ6b+hYK/fr1U79+/XL/fuzYMW3fvl0HDx7UyZMnVaxYMZUoUUIlS5ZUUlJSFEcK4Ey0LC9aBjiHm/rFa00Ap7ipbaHA2gxwJlqWFy1DrONGEQDymTZtmiZPnixJqlatmqZMmeL4C8eMMfrzzz+9bg/Hb00qVaqUSpUqFfL9hkJmZqZ69eqladOm+fycESNGKDExUc8991zYxvXggw9q7dq18ng8mjRpks4777ywHSuW2Xluno05kRcty8uuLQuGG8/B4WLnuWmFnuVFz/KiZ7HNznMzlNw4J2hZXnZtGefgyLDz3DwbcyIvWpaXXVsWDDeeg8PFznMz1Nw4L+hZXnbtGefhyLDz3AQAhFdaWppGjhypXr165du2aNEix1wUunXr1gK3h3pt5/F4VLZs2aD/oyAA4eOWvoVDkSJFdOGFF0Z7GAB8QMu8o2WAvbmlX7zWBHAmt7QtHFibAc5By7yjZYg1cdEeAAB72bZtm2699VZJ0nnnnaeZM2eqZMmSUR5V8LZu3aqMjAyv22vXrh3B0URXVlaW+vTpo08++cRye4kSJZSQYH0foeeff15PPvlkWMY1ffp0jR07VpI0ZMgQdejQISzHgXMwJ/KjZafZtWXBcOs5GPTMCj07jZ4hFrh1TtCy0+zaMs7BOBtzIj9adppdWxYMt56DERy3zgt6dppde8Z5GACAyLjxxhtVt27dfI9v2LAhCqMJTEFjLVGiBP+RDRCj3NA3AKBlAJzKDf3itSaAs7mhbQBAywBI3CgCwBlOnjypXr16ae/evUpKStKnn36qWrVqRXtYIbFs2TKv24oUKaJ69epFcDTRk52drX79+umDDz6w3F6iRAnNmTNHU6dO9Xqh6PDhw/X000+HfGy33XZb7p9HjBghj8cT0MeAAQMs9+/t82FfzIn8aFkOO7csUG4+B4OeWaFnOegZYoGb5wQty2HnlnEOxtmYE/nRshx2blmg3HwORuDcPC/oWQ4794zzMAAAkXP33Xfne2zfvn1RGElgClrbNW3aNIIjAWA3Tu8bAEi0DIBzOb1fvNYEYMXpbQMAiZYB4EYRAM5wzz336IcfflBcXJzeeecdtW7dOtpDCpmffvrJ67ZWrVopPj4+gqOJjuzsbA0YMED//e9/LbenpaXp66+/VqNGjXT99ddr8uTJXr8vTz31lJ5//vmQjm/Xrl0h3R+cjzmRHy2zf8sC5eZzMOiZFXpGzxA73DwnaJn9W8Y5GGdjTuRHy+zfskC5+RyMwLl5XtAz+/eM8zAAAJHTrVu3fI9lZ2dHYSSBKWht16ZNmwiOBIDdOL1vACDRMgDO5fR+8VoTgBWntw0AJFoGgBtFAPj/Ro0apbFjx0qSXn/9dd14441RHlFozZgxw+u27t27R3Ak0WGM0aBBg/TOO+9Ybi9WrJi++uorNWnSJPexXr16adKkSYqLsz5VPProo3rppZfCMl4A1miZO1vm9nMwYIWe0TPEBrfPCVrmzpYBsYaWubNlbj8HIzBunxf0zJ09AwAAgalQoYKqV6+e57HU1NQojcY/u3fv1uLFi71uj4W1HQDvnNw3ADiFlgFwKif3i9eaALxxctsA4BRaBoAbRQDQF198ofvuu0+SNGzYMA0ePDjKIwqt1atXa9WqVZbbEhMT1aNHjwiPKLKMMfr73/+ut99+23J7SkqKZs6cqebNm+fb1qdPH/3nP/+Rx+OxfO4//vEPjRw5MpTDBeAFLXNny9x+Dgas0DN6htjg9jlBy9zZMiDW0DJ3tszt52AExu3zgp65s2cAACA41apVy/P3KlWqRGkk/vn444+9/qaz+vXrq27duhEeEQC7cWrfAOBMtAyAUzm1X7zWBFAQp7YNAM5Ey4DYxo0igBj3008/qVevXsrKytJ9992nJ598MtpDCrlTvyXNSo8ePVSuXLkIjiby7r33Xq/fg6JFi+rLL79Uy5YtvT6/f//+euutt7xeKPrAAw/ojTfeCMlYAXhHy9zXslg4BwNW6Bk9g/vFwpygZe5rGRCLaJn7WhYL52D4LxbmBT1zX88AAEDwSpUqlefv9erVi9JI/DNu3Div2+66664IjgSAXTm1bwBwJloGwKmc2i9eawIoiFPbBgBnomVAbONGEUAMW7Vqlbp27apjx46pf//+evXVV6M9pJDbvXu3xo8fb7ktLi5OjzzySIRHFFkFXcCZnJysL774Qpdffvk593Pbbbdp9OjRXi8UveeeezRmzJigxmqMCcnHhAkT/No/7Is5cRotc07LfBUL52CcRs9Oo2f0DO4XC3OCljmnZZyDcTbmxGm0zDkt81UsnIPhv1iYF/TMOT3jPAwAQGSlp6fn/rlw4cIF3jjKLmbOnKmff/7ZclvFihXVr1+/CI8IgB05sW8AcDZaBsCpnNgvXmsCOBcntg0AzkbLgNjGjSKAGLVhwwZ17txZ+/fv17XXXqu3337b6wWATjZs2DAdOXLEclufPn3UoEGDCI8ocv7xj39o5MiRltsKFy6sadOmqV27dj7v74477tDrr7/udfvgwYO9XpALIDi0bKTlNqe2LFbOwYAVejbSchs9g1vEypygZSMttzm1ZUCsomUjLbc5tWWxcg6Gf2JlXtCzkZbbnNozAAAQOjt37sz9c9euXZWcnBzF0ZxbVlaW/vnPf3rd/vTTT9v+awAQGU7rGwBYoWUAnMpp/eK1JgBfOK1tAGCFlgGxjRtFADFo8+bNat++vbZv365OnTpp6tSpio+Pj/awQu7777/X6NGjLbeVKlVKI0aMiPCIIuexxx7TSy+9ZLmtUKFC+uyzz9SxY0e/93vXXXd5/a1zxhgNGjRIEydO9Hu/ALyjZe5qWaycgwEr9Iyewd1iZU7QMne1DIhVtMxdLYuVczD8Eyvzgp65q2cAACB0jh8/rhUrVuT+ffDgwVEcjW9efPHFPGM+U5s2bTRgwIAIjwiAHTmxbwBwNloGwKmc2C9eawI4Fye2DQDORssAcKMIIMZs3bpV7du315YtW3T55Zfr008/VaFChYLa54svvqjZs2eHaIShsWPHDt10003Kzs623D527FiVKVMmwqOKjKFDh+q5556z3JaUlKSPP/5YnTt3Dnj/999/v9cLUI0xuu222zRlypSA9w/gNFrmrpbFyjkYsELP6Nm50DNni5U5Qcvc1TIgVtEyd7UsVs7B8E+szAt65q6eAQCA0Pr222+Vnp4uSerUqZM6dOgQ5REVbP78+Ro6dKjltuLFi+s///mPPB5PZAcFwJac1jcAsELLADiV0/rFa00AvnBa2wDACi0DwI0igBiyefNmtWnTRn/88YeaNWumGTNmqEiRIkHtc+zYsXrkkUdUsmRJnz7f20WboXTo0CF169ZNW7dutdz+2GOP6brrrgto38YYvx6PtGeffVbDhg2z3JaYmKgPPvhAV155ZdDHeeihh/T8889bbsvOztYtt9yiqVOnBn0c+M7uc9NtaFl4ubFldjgHO4Hd56Yb0bPwome+oWfOZoc5QcvCy40tg2/sPjfdhpaFlxtbZodzsBPYfW6Gmh3mBT0LLzf2DL6x+9wEANjLv/71L0lSQkKCXn311YD3E4m13apVq3Tdddfp5MmT+bbFx8frvffe0wUXXBDQvjl/Au4Tqr7ZXUGdomGA89EyWgY4Fa81c/BaE3AX1mb0C3ADWkbLAG4UAcSITZs2qW3bttq4caOaNGmir776SqmpqQHvLzs7W6+88ooGDx6sunXrqlGjRj4978SJEwEf0xd79uxRx44dtXjxYsvtAwcO1PDhwwPef0ZGhl+PR9LLL7+sxx9/3HJbQkKCpk6dqu7du4fseI888oiefvppy21ZWVnq27evPv7445Adzwm8ze9IzA87z003omXh48aW2eUc7CtaFlvoWfjQs3OjZ85nlzlBy8LHjS1zGloWO2hZ+LixZXY5B/uKlkWGXeYFPQsfN/bMaegZAECSMjMz8z0Wif/IxVeff/655s2bJ0l68MEHVadOnYD3Fe613dKlS9WuXTvt27cv37a4uDi9/fbb6ty5c8D75/wJ+CeW+uaLghoY7o4UtH8aBhSMluVFywDniKV+8VoTiB2x1DZfsDYDnImW5UXLAHtKiPYAAITf2rVr1aFDB23btk2XXnqpZs6cqeLFi/v0XGOMsrKydPz4cR08eFB//vmnFixYoIkTJ2rVqlWSpJtvvtnnsezfvz+QL8EnS5Ys0fXXX6/Nmzdbbr///vv1yiuvyOPxBHyMY8eOWT5+5MiRgPcZKhdeeKESEhLyLULj4+M1ZcoU9ejRI+THfOKJJ5SZmWl5sWhKSorOP//8kB/Tzo4ePerX46Fk57npRrQsfNzWMjudg31Fy2ILPQsfenYaPTvNDnMzVOw0J2hZ+LitZU5Ey2IHLQsft7XMTudgX9Gy8LPTvKBn4eO2njkRPQMASLL8baShuAAxOztb8+fP186dO3XJJZeoZs2afu9j7dq16t+/vySpa9eueu6554IaUzjXdpMmTdLf//53paen59tWqFAhTZo0STfeeGNQx+D8Cfgnlvrmi4LW+eF+DeCtX1JOwwoVKhTW4wNORsvyomWAc8RSv3itCcSOWGqbL1ibAc5Ey/KiZYA9caMIwOV++eUX/e1vf9OuXbskST/99JNKlCgRsv17PB716dPH58/3dgFnMA4ePKjhw4dr5MiRysrKyrc9JSVFY8eO1U033RT0sXbu3Gn5+NatW4Ped7C6d++uKVOmqE+fPrnfh7i4uJD8UKsgw4YN08mTJ/X888/nPpaSkqKZM2eqcePGYTuuHf3111+Wj2/fvj3sx7bz3HQjWhY+bmqZ3c7BvqJlsYWehQ898x09cx67zQlaFj5uaplT0bLYQcvCx00ts9s52Fe0LLzsNi/oWfi4qWdORc8AAJJ0+PDhfI8dOnQoqH2mp6erY8eO+t///ifp9Bps5MiRKlmypE/7WLVqla688kodPHhQDRo00Hvvvaf4+PiAx5SVlaVt27YF/Hxv1q9fr/vvv18zZsyw3F69enV98MEHuuSSS4I+FudPwD+x0jdfeVv/S+F/DeCtX1JOw3z93gGxiJblRcsA54iVfvFaE4gtsdI2X7E2A5yJluVFywCbMgBc68cffzQlSpQwksL20bZtW5/Hc/ToUVOsWDHL/TRv3tycOHHCr6/vt99+M//3f/9n0tLSvI7vuuuuM3/88Ye/3zpLGRkZJiUlxfI4SUlJ5ujRoyE5TrAmTpxoPB6PiYuLM5MmTYrYcR9++GEjyRQpUsTMnz8/Ysc924QJEyz/jcJty5YtXufhhRdeGNZjO2VuRkuo5wQtiwynt8xu52Bf0TJ7o2d5OWXO0DN6Zte5GSi7zQlaFhlOb1mweJ1p37kZLazL8nLKfHF6y+x2DvYVLQsvu80LehYZTu9ZsFib2XduAkCssFqbXHzxxUHt891337XsfNmyZc37779f4HOzsrLM22+/nTuuzp07mwMHDgQ1HmOMWbBggddz34MPPmiys7N93ld2drb59ttvTZ8+fUx8fLzlPgsVKmT+8Y9/mEOHDgU9dmOM2b59u9fxV6pUKSTHANwmVvrmq3feecdrR26//fawHnvQoEFejz1+/PiwHhtwOlqWFy0DnCNW+sVrTSC2xErbfMXaDHAmWpYXLQPsKUEAXOmrr77Sddddp2PHjoX1OH379vXp87Kzs3Xvvfd6vWvWwoULlZqaqvr166tu3bqqVauWqlSpotKlSys5OVkZGRk6dOiQNm7cqN9++03fffed1q9fb7mv+Ph4XX311RoyZIguu+yygL+2s40aNUpHjhyx3JaRkaGxY8fqgQceCNnxAtW/f3+lp6crMTFR/fr1i9hx//WvfykuLk4dO3ZU69atI3ZcuxgxYoTXbevXr9e8efPUtm3bsBzbKXPTDWhZ5Di5ZXY7B/uDlsUOehY59Ozc6Jlz2G1O0LLIcXLLnIyWxQZaFjlObpndzsH+oGXhY7d5Qc8ix8k9czJ6BgCQpFmzZungwYP5Hl+1apV++eUXXXzxxQHtNzk52fLxnTt36sYbb9SIESM0aNAgtWvXTpUqVdKxY8e0detWffXVV5o8ebJWrlwpj8ejBx54QC+99FLQvzXs4MGDuueee7xuf+WVVzR+/Hg1atRIF110kWrUqKFKlSrpvPPOU1JSktLT07Vv3z5t2LBBK1as0Pz587V7927LfaWmpqpfv34aMmSIqlWrFtS4z/Tiiy963bZt2zZ9+umnuvbaa0N2PMDpYqVvvjpx4oRef/11r9s//fRTvfDCC2H5LYWbNm3SBx984HX7mDFj1LdvXyUlJYX82IDT0bK8aBngHLHSL15rArElVtrmK9ZmgDPRsrxoGWBj0b5TBYDQ++STT0xiYqLXuySF6qNw4cLm4MGDlmPYuHGj+f33383ChQvN22+/bZo1axbWscTHx5vLLrvMvPjii2bz5s0h/X7u2LHDPProo17vNnrqIy4uzjz22GNmx44dIT0+/BPp3ya2cePGAu9KduqjWLFiZvTo0SG7K60xzE1fBTMnaBn8ZYdzcCBomTPQsxzMmcigZ/5z+9y0w5ygZYgWXmcyN8/GuiwH8yUy7HAODgQtCy87zAt6hmhhbcbcBIBIO3z4sFm9erV57bXXTGpqqtcelylTxowfP96sXbvWHD161K9jZGRkmAYNGgS8VmratKlZtGhRQF9fVlaW+f33381vv/1mFixYYF588UVTsWLFsK7tihQpYrp3727+85//hPTcaUzOuXvgwIE+rXVfeeUVs3///pAeH3ASt/ctENnZ2WbhwoWmdevW5xxb7dq1zYwZM0xGRkZIjn3ixAnz8ccfmypVqpzz2K1btzYLFy706zduA25Fy/KjZYAzuL1fvNbcH9LjA07h9rYFgrUZ4Dy0LD9aBtifxxhjBMBVbrnlFk2aNCnsx+nZs6fXuzE1bNhQK1asCNmxEhISlJycrMKFC6tkyZKqVKmSKleurDp16qhx48a65JJLlJaWFrLjde7cWX/++acOHDigv/76S9nZ2T4/1+PxqGLFirnjWbVqVcjGhXObOHGiBgwYkO/xUJ7u6tWrJ2OM9u3bpx07dvj13Pj4eFWqVEkpKSlq2rSpJkyY4NfzmZv+C2ZO0LLYmy/BssM52Fe0zHnoGXMmkuiZb2JpbtphTtAy58wXt+F1pnexOjdZlzFfIskO52Bf0bLIscO8oGfOmjNuwtrMO+YmAITWO++8o/79+we1j3nz5qlNmzY+fe6p3xQ2f/58n/ffunVr3XPPPerRo4c8Hk9AYzxw4IBKlCgR0HO9SUpKUnJysooUKaIyZcqoUqVKqlq1qi6++GI1btxYF198cUh/q1eozt0VK1bUV199FbJxAXYVK33z1eLFizVgwABlZmZq586dOnDggF/PT05OVoUKFVS4cGENHjxYgwcP9vm5b775pt58800dP35c27dvV3p6ul/HLl68uMqWLauEhAQ9++yz6t69u1/PB5yMluVFywDniJV+8VqT15qILbHSNl+xNgOciZblRcsAZ+FGEQBgYe3atcrIyAjJvurVqxeS/cA+QnVxZdGiRVWtWjW/nsPchD+YLygILYOTMGdQEHoGp2C+oCC0DE7BfEFBaBmchDmDgtAzAICU8x+1bNu2Lah9VKtWTUWLFvXrOV999ZU++eQTLV26VJs2bdLhw4dljFGxYsVUsWJF1atXT61atdJVV12lKlWqBDU+twjVuTspKUk1a9YMyb4AO6NveR09elQbN24Myb7KlCmjMmXK+Pz5u3bt0q5du0Jy7EqVKql48eIh2RfgBLQsL1oGOAf9cg5eawK+o215sTYDnImW5UXLAGfhRhEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOERftAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMA33CgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAIbhRBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgENwowgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH4EYRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsGNIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAByCG0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4BDeKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcAhuFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAQ3CgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAIbhRBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgENwowgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH4EYRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsGNIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAByCG0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4BDeKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcAhuFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAQ3CgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAIbhRBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgENwowgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH4EYRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsGNIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAByCG0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4BDeKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcAhuFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAQ3CgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAIbhRBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgENwowgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH4EYRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsGNIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAByCG0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4BDeKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcAhuFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAQ3CgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAIbhRBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgENwowgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACH4EYRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADsGNIgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAByCG0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4BDeKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcAhuFAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAQ3CgCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAIf4f2kr6NxiGVAAAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, - "execution_count": 25, + "execution_count": 156, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "fig.savefig(\"end_to_end_overlap.pdf\", bbox_inches=\"tight\", dpi=1000)\n", + "# fig.savefig(\"end_to_end_overlap.pdf\", bbox_inches=\"tight\", dpi=1000)\n", "fig" ] } diff --git a/pyproject.toml b/pyproject.toml index 5660136..3354ed5 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -5,9 +5,7 @@ description = "Add your description here" readme = "README.md" requires-python = ">=3.12" dependencies = [ - "atorch>=0.2.2", "ipykernel>=6.29.5", "matplotlib>=3.10.1", "scikit-learn>=1.6.1", - "torch>=2.6.0", ] diff --git a/uv.lock b/uv.lock index 3c99180..0dfe50f 100644 --- a/uv.lock +++ b/uv.lock @@ -2,15 +2,6 @@ version = 1 revision = 1 requires-python = ">=3.12" -[[package]] -name = "absl-py" -version = "2.2.1" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/40/17/fa94446133df730f1a30f89ed9f3967d62ac0c0e535522ea4d46288924a5/absl_py-2.2.1.tar.gz", hash = "sha256:4c7bc50d42d021c12d4f31b7001167925e0bd71ade853069f64af410f5565ff9", size = 243555 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/98/5e/34ccb5bfb8dae555045c2dd13375e01ac8e2c1f200a4e4051e95fb9addf0/absl_py-2.2.1-py3-none-any.whl", hash = "sha256:ca8209abd5005ae6e700ef36e2edc84ad5338678f95625a3f15275410a89ffbc", size = 277287 }, -] - [[package]] name = "appnope" version = "0.1.4" @@ -29,34 +20,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/25/8a/c46dcc25341b5bce5472c718902eb3d38600a903b14fa6aeecef3f21a46f/asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2", size = 26918 }, ] -[[package]] -name = "atorch" -version = "0.2.2" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "grpcio" }, - { name = "networkx" }, - { name = "pandas" }, - { name = "protobuf" }, - { name = "pyarrow" }, - { name = "pynvml" }, - { name = "safetensors" }, - { name = "tensorboard" }, - { name = "transformers" }, -] -wheels = [ - { url = "https://files.pythonhosted.org/packages/71/5b/6f8a680bd16dff51c10a74289cd30eeddf28c59cf93238ac76af1cb75021/atorch-0.2.2-py3-none-any.whl", hash = "sha256:a3afd3ba7edeeb46bdcc9f5edfec147ded3a5473a3371ed3e62b94fa90f2aed3", size = 787090 }, -] - -[[package]] -name = "certifi" -version = "2025.1.31" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/1c/ab/c9f1e32b7b1bf505bf26f0ef697775960db7932abeb7b516de930ba2705f/certifi-2025.1.31.tar.gz", hash = "sha256:3d5da6925056f6f18f119200434a4780a94263f10d1c21d032a6f6b2baa20651", size = 167577 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/38/fc/bce832fd4fd99766c04d1ee0eead6b0ec6486fb100ae5e74c1d91292b982/certifi-2025.1.31-py3-none-any.whl", hash = "sha256:ca78db4565a652026a4db2bcdf68f2fb589ea80d0be70e03929ed730746b84fe", size = 166393 }, -] - [[package]] name = "cffi" version = "1.17.1" @@ -90,41 +53,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/7c/fc/6a8cb64e5f0324877d503c854da15d76c1e50eb722e320b15345c4d0c6de/cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a", size = 182009 }, ] -[[package]] -name = "charset-normalizer" -version = "3.4.1" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/16/b0/572805e227f01586461c80e0fd25d65a2115599cc9dad142fee4b747c357/charset_normalizer-3.4.1.tar.gz", hash = "sha256:44251f18cd68a75b56585dd00dae26183e102cd5e0f9f1466e6df5da2ed64ea3", size = 123188 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/0a/9a/dd1e1cdceb841925b7798369a09279bd1cf183cef0f9ddf15a3a6502ee45/charset_normalizer-3.4.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:73d94b58ec7fecbc7366247d3b0b10a21681004153238750bb67bd9012414545", size = 196105 }, - { url = "https://files.pythonhosted.org/packages/d3/8c/90bfabf8c4809ecb648f39794cf2a84ff2e7d2a6cf159fe68d9a26160467/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dad3e487649f498dd991eeb901125411559b22e8d7ab25d3aeb1af367df5efd7", size = 140404 }, - { url = "https://files.pythonhosted.org/packages/ad/8f/e410d57c721945ea3b4f1a04b74f70ce8fa800d393d72899f0a40526401f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c30197aa96e8eed02200a83fba2657b4c3acd0f0aa4bdc9f6c1af8e8962e0757", size = 150423 }, - { url = "https://files.pythonhosted.org/packages/f0/b8/e6825e25deb691ff98cf5c9072ee0605dc2acfca98af70c2d1b1bc75190d/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2369eea1ee4a7610a860d88f268eb39b95cb588acd7235e02fd5a5601773d4fa", size = 143184 }, - { url = "https://files.pythonhosted.org/packages/3e/a2/513f6cbe752421f16d969e32f3583762bfd583848b763913ddab8d9bfd4f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc2722592d8998c870fa4e290c2eec2c1569b87fe58618e67d38b4665dfa680d", size = 145268 }, - { url = "https://files.pythonhosted.org/packages/74/94/8a5277664f27c3c438546f3eb53b33f5b19568eb7424736bdc440a88a31f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffc9202a29ab3920fa812879e95a9e78b2465fd10be7fcbd042899695d75e616", size = 147601 }, - { url = "https://files.pythonhosted.org/packages/7c/5f/6d352c51ee763623a98e31194823518e09bfa48be2a7e8383cf691bbb3d0/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:804a4d582ba6e5b747c625bf1255e6b1507465494a40a2130978bda7b932c90b", size = 141098 }, - { url = "https://files.pythonhosted.org/packages/78/d4/f5704cb629ba5ab16d1d3d741396aec6dc3ca2b67757c45b0599bb010478/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f55e69f030f7163dffe9fd0752b32f070566451afe180f99dbeeb81f511ad8d", size = 149520 }, - { url = "https://files.pythonhosted.org/packages/c5/96/64120b1d02b81785f222b976c0fb79a35875457fa9bb40827678e54d1bc8/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c4c3e6da02df6fa1410a7680bd3f63d4f710232d3139089536310d027950696a", size = 152852 }, - { url = "https://files.pythonhosted.org/packages/84/c9/98e3732278a99f47d487fd3468bc60b882920cef29d1fa6ca460a1fdf4e6/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:5df196eb874dae23dcfb968c83d4f8fdccb333330fe1fc278ac5ceeb101003a9", size = 150488 }, - { url = "https://files.pythonhosted.org/packages/13/0e/9c8d4cb99c98c1007cc11eda969ebfe837bbbd0acdb4736d228ccaabcd22/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e358e64305fe12299a08e08978f51fc21fac060dcfcddd95453eabe5b93ed0e1", size = 146192 }, - { url = "https://files.pythonhosted.org/packages/b2/21/2b6b5b860781a0b49427309cb8670785aa543fb2178de875b87b9cc97746/charset_normalizer-3.4.1-cp312-cp312-win32.whl", hash = "sha256:9b23ca7ef998bc739bf6ffc077c2116917eabcc901f88da1b9856b210ef63f35", size = 95550 }, - { url = "https://files.pythonhosted.org/packages/21/5b/1b390b03b1d16c7e382b561c5329f83cc06623916aab983e8ab9239c7d5c/charset_normalizer-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ff8a4a60c227ad87030d76e99cd1698345d4491638dfa6673027c48b3cd395f", size = 102785 }, - { url = "https://files.pythonhosted.org/packages/38/94/ce8e6f63d18049672c76d07d119304e1e2d7c6098f0841b51c666e9f44a0/charset_normalizer-3.4.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:aabfa34badd18f1da5ec1bc2715cadc8dca465868a4e73a0173466b688f29dda", size = 195698 }, - { url = "https://files.pythonhosted.org/packages/24/2e/dfdd9770664aae179a96561cc6952ff08f9a8cd09a908f259a9dfa063568/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22e14b5d70560b8dd51ec22863f370d1e595ac3d024cb8ad7d308b4cd95f8313", size = 140162 }, - { url = "https://files.pythonhosted.org/packages/24/4e/f646b9093cff8fc86f2d60af2de4dc17c759de9d554f130b140ea4738ca6/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8436c508b408b82d87dc5f62496973a1805cd46727c34440b0d29d8a2f50a6c9", size = 150263 }, - { url = "https://files.pythonhosted.org/packages/5e/67/2937f8d548c3ef6e2f9aab0f6e21001056f692d43282b165e7c56023e6dd/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2d074908e1aecee37a7635990b2c6d504cd4766c7bc9fc86d63f9c09af3fa11b", size = 142966 }, - { url = "https://files.pythonhosted.org/packages/52/ed/b7f4f07de100bdb95c1756d3a4d17b90c1a3c53715c1a476f8738058e0fa/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:955f8851919303c92343d2f66165294848d57e9bba6cf6e3625485a70a038d11", size = 144992 }, - { url = "https://files.pythonhosted.org/packages/96/2c/d49710a6dbcd3776265f4c923bb73ebe83933dfbaa841c5da850fe0fd20b/charset_normalizer-3.4.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:44ecbf16649486d4aebafeaa7ec4c9fed8b88101f4dd612dcaf65d5e815f837f", size = 147162 }, - { url = "https://files.pythonhosted.org/packages/b4/41/35ff1f9a6bd380303dea55e44c4933b4cc3c4850988927d4082ada230273/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:0924e81d3d5e70f8126529951dac65c1010cdf117bb75eb02dd12339b57749dd", size = 140972 }, - { url = "https://files.pythonhosted.org/packages/fb/43/c6a0b685fe6910d08ba971f62cd9c3e862a85770395ba5d9cad4fede33ab/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:2967f74ad52c3b98de4c3b32e1a44e32975e008a9cd2a8cc8966d6a5218c5cb2", size = 149095 }, - { url = "https://files.pythonhosted.org/packages/4c/ff/a9a504662452e2d2878512115638966e75633519ec11f25fca3d2049a94a/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:c75cb2a3e389853835e84a2d8fb2b81a10645b503eca9bcb98df6b5a43eb8886", size = 152668 }, - { url = "https://files.pythonhosted.org/packages/6c/71/189996b6d9a4b932564701628af5cee6716733e9165af1d5e1b285c530ed/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:09b26ae6b1abf0d27570633b2b078a2a20419c99d66fb2823173d73f188ce601", size = 150073 }, - { url = "https://files.pythonhosted.org/packages/e4/93/946a86ce20790e11312c87c75ba68d5f6ad2208cfb52b2d6a2c32840d922/charset_normalizer-3.4.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fa88b843d6e211393a37219e6a1c1df99d35e8fd90446f1118f4216e307e48cd", size = 145732 }, - { url = "https://files.pythonhosted.org/packages/cd/e5/131d2fb1b0dddafc37be4f3a2fa79aa4c037368be9423061dccadfd90091/charset_normalizer-3.4.1-cp313-cp313-win32.whl", hash = "sha256:eb8178fe3dba6450a3e024e95ac49ed3400e506fd4e9e5c32d30adda88cbd407", size = 95391 }, - { url = "https://files.pythonhosted.org/packages/27/f2/4f9a69cc7712b9b5ad8fdb87039fd89abba997ad5cbe690d1835d40405b0/charset_normalizer-3.4.1-cp313-cp313-win_amd64.whl", hash = "sha256:b1ac5992a838106edb89654e0aebfc24f5848ae2547d22c2c3f66454daa11971", size = 102702 }, - { url = "https://files.pythonhosted.org/packages/0e/f6/65ecc6878a89bb1c23a086ea335ad4bf21a588990c3f535a227b9eea9108/charset_normalizer-3.4.1-py3-none-any.whl", hash = "sha256:d98b1668f06378c6dbefec3b92299716b931cd4e6061f3c875a71ced1780ab85", size = 49767 }, -] - [[package]] name = "colorama" version = "0.4.6" @@ -231,15 +159,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/7b/8f/c4d9bafc34ad7ad5d8dc16dd1347ee0e507a52c3adb6bfa8887e1c6a26ba/executing-2.2.0-py2.py3-none-any.whl", hash = "sha256:11387150cad388d62750327a53d3339fad4888b39a6fe233c3afbb54ecffd3aa", size = 26702 }, ] -[[package]] -name = "filelock" -version = "3.18.0" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/0a/10/c23352565a6544bdc5353e0b15fc1c563352101f30e24bf500207a54df9a/filelock-3.18.0.tar.gz", hash = "sha256:adbc88eabb99d2fec8c9c1b229b171f18afa655400173ddc653d5d01501fb9f2", size = 18075 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/4d/36/2a115987e2d8c300a974597416d9de88f2444426de9571f4b59b2cca3acc/filelock-3.18.0-py3-none-any.whl", hash = "sha256:c401f4f8377c4464e6db25fff06205fd89bdd83b65eb0488ed1b160f780e21de", size = 16215 }, -] - [[package]] name = "fonttools" version = "4.56.0" @@ -265,70 +184,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/bf/ff/44934a031ce5a39125415eb405b9efb76fe7f9586b75291d66ae5cbfc4e6/fonttools-4.56.0-py3-none-any.whl", hash = "sha256:1088182f68c303b50ca4dc0c82d42083d176cba37af1937e1a976a31149d4d14", size = 1089800 }, ] -[[package]] -name = "fsspec" -version = "2025.3.0" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/34/f4/5721faf47b8c499e776bc34c6a8fc17efdf7fdef0b00f398128bc5dcb4ac/fsspec-2025.3.0.tar.gz", hash = "sha256:a935fd1ea872591f2b5148907d103488fc523295e6c64b835cfad8c3eca44972", size = 298491 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/56/53/eb690efa8513166adef3e0669afd31e95ffde69fb3c52ec2ac7223ed6018/fsspec-2025.3.0-py3-none-any.whl", hash = "sha256:efb87af3efa9103f94ca91a7f8cb7a4df91af9f74fc106c9c7ea0efd7277c1b3", size = 193615 }, -] - -[[package]] -name = "grpcio" -version = "1.71.0" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/1c/95/aa11fc09a85d91fbc7dd405dcb2a1e0256989d67bf89fa65ae24b3ba105a/grpcio-1.71.0.tar.gz", hash = "sha256:2b85f7820475ad3edec209d3d89a7909ada16caab05d3f2e08a7e8ae3200a55c", size = 12549828 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/4c/83/bd4b6a9ba07825bd19c711d8b25874cd5de72c2a3fbf635c3c344ae65bd2/grpcio-1.71.0-cp312-cp312-linux_armv7l.whl", hash = "sha256:0ff35c8d807c1c7531d3002be03221ff9ae15712b53ab46e2a0b4bb271f38537", size = 5184101 }, - { url = "https://files.pythonhosted.org/packages/31/ea/2e0d90c0853568bf714693447f5c73272ea95ee8dad107807fde740e595d/grpcio-1.71.0-cp312-cp312-macosx_10_14_universal2.whl", hash = "sha256:b78a99cd1ece4be92ab7c07765a0b038194ded2e0a26fd654591ee136088d8d7", size = 11310927 }, - { url = "https://files.pythonhosted.org/packages/ac/bc/07a3fd8af80467390af491d7dc66882db43884128cdb3cc8524915e0023c/grpcio-1.71.0-cp312-cp312-manylinux_2_17_aarch64.whl", hash = "sha256:dc1a1231ed23caac1de9f943d031f1bc38d0f69d2a3b243ea0d664fc1fbd7fec", size = 5654280 }, - { url = "https://files.pythonhosted.org/packages/16/af/21f22ea3eed3d0538b6ef7889fce1878a8ba4164497f9e07385733391e2b/grpcio-1.71.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e6beeea5566092c5e3c4896c6d1d307fb46b1d4bdf3e70c8340b190a69198594", size = 6312051 }, - { url = "https://files.pythonhosted.org/packages/49/9d/e12ddc726dc8bd1aa6cba67c85ce42a12ba5b9dd75d5042214a59ccf28ce/grpcio-1.71.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d5170929109450a2c031cfe87d6716f2fae39695ad5335d9106ae88cc32dc84c", size = 5910666 }, - { url = "https://files.pythonhosted.org/packages/d9/e9/38713d6d67aedef738b815763c25f092e0454dc58e77b1d2a51c9d5b3325/grpcio-1.71.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:5b08d03ace7aca7b2fadd4baf291139b4a5f058805a8327bfe9aece7253b6d67", size = 6012019 }, - { url = "https://files.pythonhosted.org/packages/80/da/4813cd7adbae6467724fa46c952d7aeac5e82e550b1c62ed2aeb78d444ae/grpcio-1.71.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:f903017db76bf9cc2b2d8bdd37bf04b505bbccad6be8a81e1542206875d0e9db", size = 6637043 }, - { url = "https://files.pythonhosted.org/packages/52/ca/c0d767082e39dccb7985c73ab4cf1d23ce8613387149e9978c70c3bf3b07/grpcio-1.71.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:469f42a0b410883185eab4689060a20488a1a0a00f8bbb3cbc1061197b4c5a79", size = 6186143 }, - { url = "https://files.pythonhosted.org/packages/00/61/7b2c8ec13303f8fe36832c13d91ad4d4ba57204b1c723ada709c346b2271/grpcio-1.71.0-cp312-cp312-win32.whl", hash = "sha256:ad9f30838550695b5eb302add33f21f7301b882937460dd24f24b3cc5a95067a", size = 3604083 }, - { url = "https://files.pythonhosted.org/packages/fd/7c/1e429c5fb26122055d10ff9a1d754790fb067d83c633ff69eddcf8e3614b/grpcio-1.71.0-cp312-cp312-win_amd64.whl", hash = "sha256:652350609332de6dac4ece254e5d7e1ff834e203d6afb769601f286886f6f3a8", size = 4272191 }, - { url = "https://files.pythonhosted.org/packages/04/dd/b00cbb45400d06b26126dcfdbdb34bb6c4f28c3ebbd7aea8228679103ef6/grpcio-1.71.0-cp313-cp313-linux_armv7l.whl", hash = "sha256:cebc1b34ba40a312ab480ccdb396ff3c529377a2fce72c45a741f7215bfe8379", size = 5184138 }, - { url = "https://files.pythonhosted.org/packages/ed/0a/4651215983d590ef53aac40ba0e29dda941a02b097892c44fa3357e706e5/grpcio-1.71.0-cp313-cp313-macosx_10_14_universal2.whl", hash = "sha256:85da336e3649a3d2171e82f696b5cad2c6231fdd5bad52616476235681bee5b3", size = 11310747 }, - { url = "https://files.pythonhosted.org/packages/57/a3/149615b247f321e13f60aa512d3509d4215173bdb982c9098d78484de216/grpcio-1.71.0-cp313-cp313-manylinux_2_17_aarch64.whl", hash = "sha256:f9a412f55bb6e8f3bb000e020dbc1e709627dcb3a56f6431fa7076b4c1aab0db", size = 5653991 }, - { url = "https://files.pythonhosted.org/packages/ca/56/29432a3e8d951b5e4e520a40cd93bebaa824a14033ea8e65b0ece1da6167/grpcio-1.71.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:47be9584729534660416f6d2a3108aaeac1122f6b5bdbf9fd823e11fe6fbaa29", size = 6312781 }, - { url = "https://files.pythonhosted.org/packages/a3/f8/286e81a62964ceb6ac10b10925261d4871a762d2a763fbf354115f9afc98/grpcio-1.71.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7c9c80ac6091c916db81131d50926a93ab162a7e97e4428ffc186b6e80d6dda4", size = 5910479 }, - { url = "https://files.pythonhosted.org/packages/35/67/d1febb49ec0f599b9e6d4d0d44c2d4afdbed9c3e80deb7587ec788fcf252/grpcio-1.71.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:789d5e2a3a15419374b7b45cd680b1e83bbc1e52b9086e49308e2c0b5bbae6e3", size = 6013262 }, - { url = "https://files.pythonhosted.org/packages/a1/04/f9ceda11755f0104a075ad7163fc0d96e2e3a9fe25ef38adfc74c5790daf/grpcio-1.71.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:1be857615e26a86d7363e8a163fade914595c81fec962b3d514a4b1e8760467b", size = 6643356 }, - { url = "https://files.pythonhosted.org/packages/fb/ce/236dbc3dc77cf9a9242adcf1f62538734ad64727fabf39e1346ad4bd5c75/grpcio-1.71.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:a76d39b5fafd79ed604c4be0a869ec3581a172a707e2a8d7a4858cb05a5a7637", size = 6186564 }, - { url = "https://files.pythonhosted.org/packages/10/fd/b3348fce9dd4280e221f513dd54024e765b21c348bc475516672da4218e9/grpcio-1.71.0-cp313-cp313-win32.whl", hash = "sha256:74258dce215cb1995083daa17b379a1a5a87d275387b7ffe137f1d5131e2cfbb", size = 3601890 }, - { url = "https://files.pythonhosted.org/packages/be/f8/db5d5f3fc7e296166286c2a397836b8b042f7ad1e11028d82b061701f0f7/grpcio-1.71.0-cp313-cp313-win_amd64.whl", hash = "sha256:22c3bc8d488c039a199f7a003a38cb7635db6656fa96437a8accde8322ce2366", size = 4273308 }, -] - -[[package]] -name = "huggingface-hub" -version = "0.29.3" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "filelock" }, - { name = "fsspec" }, - { name = "packaging" }, - { name = "pyyaml" }, - { name = "requests" }, - { name = "tqdm" }, - { name = "typing-extensions" }, -] -sdist = { url = "https://files.pythonhosted.org/packages/e5/f9/851f34b02970e8143d41d4001b2d49e54ef113f273902103823b8bc95ada/huggingface_hub-0.29.3.tar.gz", hash = "sha256:64519a25716e0ba382ba2d3fb3ca082e7c7eb4a2fc634d200e8380006e0760e5", size = 390123 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/40/0c/37d380846a2e5c9a3c6a73d26ffbcfdcad5fc3eacf42fdf7cff56f2af634/huggingface_hub-0.29.3-py3-none-any.whl", hash = "sha256:0b25710932ac649c08cdbefa6c6ccb8e88eef82927cacdb048efb726429453aa", size = 468997 }, -] - -[[package]] -name = "idna" -version = "3.10" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/f1/70/7703c29685631f5a7590aa73f1f1d3fa9a380e654b86af429e0934a32f7d/idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9", size = 190490 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3", size = 70442 }, -] - [[package]] name = "ipykernel" version = "6.29.5" @@ -385,18 +240,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9", size = 1572278 }, ] -[[package]] -name = "jinja2" -version = "3.1.6" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "markupsafe" }, -] -sdist = { url = "https://files.pythonhosted.org/packages/df/bf/f7da0350254c0ed7c72f3e33cef02e048281fec7ecec5f032d4aac52226b/jinja2-3.1.6.tar.gz", hash = "sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d", size = 245115 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899 }, -] - [[package]] name = "joblib" version = "1.4.2" @@ -487,53 +330,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/4c/fa/be89a49c640930180657482a74970cdcf6f7072c8d2471e1babe17a222dc/kiwisolver-1.4.8-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:be4816dc51c8a471749d664161b434912eee82f2ea66bd7628bd14583a833e85", size = 2349213 }, ] -[[package]] -name = "markdown" -version = "3.7" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/54/28/3af612670f82f4c056911fbbbb42760255801b3068c48de792d354ff4472/markdown-3.7.tar.gz", hash = "sha256:2ae2471477cfd02dbbf038d5d9bc226d40def84b4fe2986e49b59b6b472bbed2", size = 357086 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/3f/08/83871f3c50fc983b88547c196d11cf8c3340e37c32d2e9d6152abe2c61f7/Markdown-3.7-py3-none-any.whl", hash = "sha256:7eb6df5690b81a1d7942992c97fad2938e956e79df20cbc6186e9c3a77b1c803", size = 106349 }, -] - -[[package]] -name = "markupsafe" -version = "3.0.2" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/b2/97/5d42485e71dfc078108a86d6de8fa46db44a1a9295e89c5d6d4a06e23a62/markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0", size = 20537 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/22/09/d1f21434c97fc42f09d290cbb6350d44eb12f09cc62c9476effdb33a18aa/MarkupSafe-3.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf", size = 14274 }, - { url = "https://files.pythonhosted.org/packages/6b/b0/18f76bba336fa5aecf79d45dcd6c806c280ec44538b3c13671d49099fdd0/MarkupSafe-3.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225", size = 12348 }, - { url = "https://files.pythonhosted.org/packages/e0/25/dd5c0f6ac1311e9b40f4af06c78efde0f3b5cbf02502f8ef9501294c425b/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028", size = 24149 }, - { url = "https://files.pythonhosted.org/packages/f3/f0/89e7aadfb3749d0f52234a0c8c7867877876e0a20b60e2188e9850794c17/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8", size = 23118 }, - { url = "https://files.pythonhosted.org/packages/d5/da/f2eeb64c723f5e3777bc081da884b414671982008c47dcc1873d81f625b6/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c", size = 22993 }, - { url = "https://files.pythonhosted.org/packages/da/0e/1f32af846df486dce7c227fe0f2398dc7e2e51d4a370508281f3c1c5cddc/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557", size = 24178 }, - { url = "https://files.pythonhosted.org/packages/c4/f6/bb3ca0532de8086cbff5f06d137064c8410d10779c4c127e0e47d17c0b71/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22", size = 23319 }, - { url = "https://files.pythonhosted.org/packages/a2/82/8be4c96ffee03c5b4a034e60a31294daf481e12c7c43ab8e34a1453ee48b/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48", size = 23352 }, - { url = "https://files.pythonhosted.org/packages/51/ae/97827349d3fcffee7e184bdf7f41cd6b88d9919c80f0263ba7acd1bbcb18/MarkupSafe-3.0.2-cp312-cp312-win32.whl", hash = "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30", size = 15097 }, - { url = "https://files.pythonhosted.org/packages/c1/80/a61f99dc3a936413c3ee4e1eecac96c0da5ed07ad56fd975f1a9da5bc630/MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87", size = 15601 }, - { url = "https://files.pythonhosted.org/packages/83/0e/67eb10a7ecc77a0c2bbe2b0235765b98d164d81600746914bebada795e97/MarkupSafe-3.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd", size = 14274 }, - { url = "https://files.pythonhosted.org/packages/2b/6d/9409f3684d3335375d04e5f05744dfe7e9f120062c9857df4ab490a1031a/MarkupSafe-3.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430", size = 12352 }, - { url = "https://files.pythonhosted.org/packages/d2/f5/6eadfcd3885ea85fe2a7c128315cc1bb7241e1987443d78c8fe712d03091/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094", size = 24122 }, - { url = "https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396", size = 23085 }, - { url = "https://files.pythonhosted.org/packages/c2/cf/c9d56af24d56ea04daae7ac0940232d31d5a8354f2b457c6d856b2057d69/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79", size = 22978 }, - { url = "https://files.pythonhosted.org/packages/2a/9f/8619835cd6a711d6272d62abb78c033bda638fdc54c4e7f4272cf1c0962b/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a", size = 24208 }, - { url = "https://files.pythonhosted.org/packages/f9/bf/176950a1792b2cd2102b8ffeb5133e1ed984547b75db47c25a67d3359f77/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca", size = 23357 }, - { url = "https://files.pythonhosted.org/packages/ce/4f/9a02c1d335caabe5c4efb90e1b6e8ee944aa245c1aaaab8e8a618987d816/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c", size = 23344 }, - { url = "https://files.pythonhosted.org/packages/ee/55/c271b57db36f748f0e04a759ace9f8f759ccf22b4960c270c78a394f58be/MarkupSafe-3.0.2-cp313-cp313-win32.whl", hash = "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1", size = 15101 }, - { url = "https://files.pythonhosted.org/packages/29/88/07df22d2dd4df40aba9f3e402e6dc1b8ee86297dddbad4872bd5e7b0094f/MarkupSafe-3.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f", size = 15603 }, - { url = "https://files.pythonhosted.org/packages/62/6a/8b89d24db2d32d433dffcd6a8779159da109842434f1dd2f6e71f32f738c/MarkupSafe-3.0.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c", size = 14510 }, - { url = "https://files.pythonhosted.org/packages/7a/06/a10f955f70a2e5a9bf78d11a161029d278eeacbd35ef806c3fd17b13060d/MarkupSafe-3.0.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb", size = 12486 }, - { url = "https://files.pythonhosted.org/packages/34/cf/65d4a571869a1a9078198ca28f39fba5fbb910f952f9dbc5220afff9f5e6/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c", size = 25480 }, - { url = "https://files.pythonhosted.org/packages/0c/e3/90e9651924c430b885468b56b3d597cabf6d72be4b24a0acd1fa0e12af67/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d", size = 23914 }, - { url = "https://files.pythonhosted.org/packages/66/8c/6c7cf61f95d63bb866db39085150df1f2a5bd3335298f14a66b48e92659c/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe", size = 23796 }, - { url = "https://files.pythonhosted.org/packages/bb/35/cbe9238ec3f47ac9a7c8b3df7a808e7cb50fe149dc7039f5f454b3fba218/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5", size = 25473 }, - { url = "https://files.pythonhosted.org/packages/e6/32/7621a4382488aa283cc05e8984a9c219abad3bca087be9ec77e89939ded9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a", size = 24114 }, - { url = "https://files.pythonhosted.org/packages/0d/80/0985960e4b89922cb5a0bac0ed39c5b96cbc1a536a99f30e8c220a996ed9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9", size = 24098 }, - { url = "https://files.pythonhosted.org/packages/82/78/fedb03c7d5380df2427038ec8d973587e90561b2d90cd472ce9254cf348b/MarkupSafe-3.0.2-cp313-cp313t-win32.whl", hash = "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6", size = 15208 }, - { url = "https://files.pythonhosted.org/packages/4f/65/6079a46068dfceaeabb5dcad6d674f5f5c61a6fa5673746f42a9f4c233b3/MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f", size = 15739 }, -] - [[package]] name = "matplotlib" version = "3.10.1" @@ -583,15 +379,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/8f/8e/9ad090d3553c280a8060fbf6e24dc1c0c29704ee7d1c372f0c174aa59285/matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca", size = 9899 }, ] -[[package]] -name = "mpmath" -version = "1.3.0" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/e0/47/dd32fa426cc72114383ac549964eecb20ecfd886d1e5ccf5340b55b02f57/mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f", size = 508106 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c", size = 536198 }, -] - [[package]] name = "nest-asyncio" version = "1.6.0" @@ -601,199 +388,39 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c", size = 5195 }, ] -[[package]] -name = "networkx" -version = "3.4.2" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/fd/1d/06475e1cd5264c0b870ea2cc6fdb3e37177c1e565c43f56ff17a10e3937f/networkx-3.4.2.tar.gz", hash = "sha256:307c3669428c5362aab27c8a1260aa8f47c4e91d3891f48be0141738d8d053e1", size = 2151368 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/b9/54/dd730b32ea14ea797530a4479b2ed46a6fb250f682a9cfb997e968bf0261/networkx-3.4.2-py3-none-any.whl", hash = "sha256:df5d4365b724cf81b8c6a7312509d0c22386097011ad1abe274afd5e9d3bbc5f", size = 1723263 }, -] - [[package]] name = "note" version = "0.1.0" source = { virtual = "." } dependencies = [ - { name = "atorch" }, { name = "ipykernel" }, { name = "matplotlib" }, { name = "scikit-learn" }, - { name = "torch" }, ] [package.metadata] requires-dist = [ - { name = "atorch", specifier = ">=0.2.2" }, { name = "ipykernel", specifier = ">=6.29.5" }, { name = "matplotlib", specifier = ">=3.10.1" }, { name = "scikit-learn", specifier = ">=1.6.1" }, - { name = "torch", specifier = ">=2.6.0" }, ] [[package]] name = "numpy" -version = "2.2.3" +version = "2.0.2" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/fb/90/8956572f5c4ae52201fdec7ba2044b2c882832dcec7d5d0922c9e9acf2de/numpy-2.2.3.tar.gz", hash = "sha256:dbdc15f0c81611925f382dfa97b3bd0bc2c1ce19d4fe50482cb0ddc12ba30020", size = 20262700 } +sdist = { url = "https://files.pythonhosted.org/packages/a9/75/10dd1f8116a8b796cb2c737b674e02d02e80454bda953fa7e65d8c12b016/numpy-2.0.2.tar.gz", hash = "sha256:883c987dee1880e2a864ab0dc9892292582510604156762362d9326444636e78", size = 18902015 } wheels = [ - { url = "https://files.pythonhosted.org/packages/43/ec/43628dcf98466e087812142eec6d1c1a6c6bdfdad30a0aa07b872dc01f6f/numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:12c045f43b1d2915eca6b880a7f4a256f59d62df4f044788c8ba67709412128d", size = 20929458 }, - { url = "https://files.pythonhosted.org/packages/9b/c0/2f4225073e99a5c12350954949ed19b5d4a738f541d33e6f7439e33e98e4/numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:87eed225fd415bbae787f93a457af7f5990b92a334e346f72070bf569b9c9c95", size = 14115299 }, - { url = "https://files.pythonhosted.org/packages/ca/fa/d2c5575d9c734a7376cc1592fae50257ec95d061b27ee3dbdb0b3b551eb2/numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:712a64103d97c404e87d4d7c47fb0c7ff9acccc625ca2002848e0d53288b90ea", size = 5145723 }, - { url = "https://files.pythonhosted.org/packages/eb/dc/023dad5b268a7895e58e791f28dc1c60eb7b6c06fcbc2af8538ad069d5f3/numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:a5ae282abe60a2db0fd407072aff4599c279bcd6e9a2475500fc35b00a57c532", size = 6678797 }, - { url = "https://files.pythonhosted.org/packages/3f/19/bcd641ccf19ac25abb6fb1dcd7744840c11f9d62519d7057b6ab2096eb60/numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5266de33d4c3420973cf9ae3b98b54a2a6d53a559310e3236c4b2b06b9c07d4e", size = 14067362 }, - { url = "https://files.pythonhosted.org/packages/39/04/78d2e7402fb479d893953fb78fa7045f7deb635ec095b6b4f0260223091a/numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b787adbf04b0db1967798dba8da1af07e387908ed1553a0d6e74c084d1ceafe", size = 16116679 }, - { url = "https://files.pythonhosted.org/packages/d0/a1/e90f7aa66512be3150cb9d27f3d9995db330ad1b2046474a13b7040dfd92/numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:34c1b7e83f94f3b564b35f480f5652a47007dd91f7c839f404d03279cc8dd021", size = 15264272 }, - { url = "https://files.pythonhosted.org/packages/dc/b6/50bd027cca494de4fa1fc7bf1662983d0ba5f256fa0ece2c376b5eb9b3f0/numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4d8335b5f1b6e2bce120d55fb17064b0262ff29b459e8493d1785c18ae2553b8", size = 17880549 }, - { url = "https://files.pythonhosted.org/packages/96/30/f7bf4acb5f8db10a96f73896bdeed7a63373137b131ca18bd3dab889db3b/numpy-2.2.3-cp312-cp312-win32.whl", hash = "sha256:4d9828d25fb246bedd31e04c9e75714a4087211ac348cb39c8c5f99dbb6683fe", size = 6293394 }, - { url = "https://files.pythonhosted.org/packages/42/6e/55580a538116d16ae7c9aa17d4edd56e83f42126cb1dfe7a684da7925d2c/numpy-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:83807d445817326b4bcdaaaf8e8e9f1753da04341eceec705c001ff342002e5d", size = 12626357 }, - { url = "https://files.pythonhosted.org/packages/0e/8b/88b98ed534d6a03ba8cddb316950fe80842885709b58501233c29dfa24a9/numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:7bfdb06b395385ea9b91bf55c1adf1b297c9fdb531552845ff1d3ea6e40d5aba", size = 20916001 }, - { url = "https://files.pythonhosted.org/packages/d9/b4/def6ec32c725cc5fbd8bdf8af80f616acf075fe752d8a23e895da8c67b70/numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:23c9f4edbf4c065fddb10a4f6e8b6a244342d95966a48820c614891e5059bb50", size = 14130721 }, - { url = "https://files.pythonhosted.org/packages/20/60/70af0acc86495b25b672d403e12cb25448d79a2b9658f4fc45e845c397a8/numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:a0c03b6be48aaf92525cccf393265e02773be8fd9551a2f9adbe7db1fa2b60f1", size = 5130999 }, - { url = "https://files.pythonhosted.org/packages/2e/69/d96c006fb73c9a47bcb3611417cf178049aae159afae47c48bd66df9c536/numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:2376e317111daa0a6739e50f7ee2a6353f768489102308b0d98fcf4a04f7f3b5", size = 6665299 }, - { url = "https://files.pythonhosted.org/packages/5a/3f/d8a877b6e48103733ac224ffa26b30887dc9944ff95dffdfa6c4ce3d7df3/numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8fb62fe3d206d72fe1cfe31c4a1106ad2b136fcc1606093aeab314f02930fdf2", size = 14064096 }, - { url = "https://files.pythonhosted.org/packages/e4/43/619c2c7a0665aafc80efca465ddb1f260287266bdbdce517396f2f145d49/numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:52659ad2534427dffcc36aac76bebdd02b67e3b7a619ac67543bc9bfe6b7cdb1", size = 16114758 }, - { url = "https://files.pythonhosted.org/packages/d9/79/ee4fe4f60967ccd3897aa71ae14cdee9e3c097e3256975cc9575d393cb42/numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:1b416af7d0ed3271cad0f0a0d0bee0911ed7eba23e66f8424d9f3dfcdcae1304", size = 15259880 }, - { url = "https://files.pythonhosted.org/packages/fb/c8/8b55cf05db6d85b7a7d414b3d1bd5a740706df00bfa0824a08bf041e52ee/numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:1402da8e0f435991983d0a9708b779f95a8c98c6b18a171b9f1be09005e64d9d", size = 17876721 }, - { url = "https://files.pythonhosted.org/packages/21/d6/b4c2f0564b7dcc413117b0ffbb818d837e4b29996b9234e38b2025ed24e7/numpy-2.2.3-cp313-cp313-win32.whl", hash = "sha256:136553f123ee2951bfcfbc264acd34a2fc2f29d7cdf610ce7daf672b6fbaa693", size = 6290195 }, - { url = "https://files.pythonhosted.org/packages/97/e7/7d55a86719d0de7a6a597949f3febefb1009435b79ba510ff32f05a8c1d7/numpy-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:5b732c8beef1d7bc2d9e476dbba20aaff6167bf205ad9aa8d30913859e82884b", size = 12619013 }, - { url = "https://files.pythonhosted.org/packages/a6/1f/0b863d5528b9048fd486a56e0b97c18bf705e88736c8cea7239012119a54/numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:435e7a933b9fda8126130b046975a968cc2d833b505475e588339e09f7672890", size = 20944621 }, - { url = "https://files.pythonhosted.org/packages/aa/99/b478c384f7a0a2e0736177aafc97dc9152fc036a3fdb13f5a3ab225f1494/numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:7678556eeb0152cbd1522b684dcd215250885993dd00adb93679ec3c0e6e091c", size = 14142502 }, - { url = "https://files.pythonhosted.org/packages/fb/61/2d9a694a0f9cd0a839501d362de2a18de75e3004576a3008e56bdd60fcdb/numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:2e8da03bd561504d9b20e7a12340870dfc206c64ea59b4cfee9fceb95070ee94", size = 5176293 }, - { url = "https://files.pythonhosted.org/packages/33/35/51e94011b23e753fa33f891f601e5c1c9a3d515448659b06df9d40c0aa6e/numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:c9aa4496fd0e17e3843399f533d62857cef5900facf93e735ef65aa4bbc90ef0", size = 6691874 }, - { url = "https://files.pythonhosted.org/packages/ff/cf/06e37619aad98a9d03bd8d65b8e3041c3a639be0f5f6b0a0e2da544538d4/numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4ca91d61a4bf61b0f2228f24bbfa6a9facd5f8af03759fe2a655c50ae2c6610", size = 14036826 }, - { url = "https://files.pythonhosted.org/packages/0c/93/5d7d19955abd4d6099ef4a8ee006f9ce258166c38af259f9e5558a172e3e/numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:deaa09cd492e24fd9b15296844c0ad1b3c976da7907e1c1ed3a0ad21dded6f76", size = 16096567 }, - { url = "https://files.pythonhosted.org/packages/af/53/d1c599acf7732d81f46a93621dab6aa8daad914b502a7a115b3f17288ab2/numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:246535e2f7496b7ac85deffe932896a3577be7af8fb7eebe7146444680297e9a", size = 15242514 }, - { url = "https://files.pythonhosted.org/packages/53/43/c0f5411c7b3ea90adf341d05ace762dad8cb9819ef26093e27b15dd121ac/numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:daf43a3d1ea699402c5a850e5313680ac355b4adc9770cd5cfc2940e7861f1bf", size = 17872920 }, - { url = "https://files.pythonhosted.org/packages/5b/57/6dbdd45ab277aff62021cafa1e15f9644a52f5b5fc840bc7591b4079fb58/numpy-2.2.3-cp313-cp313t-win32.whl", hash = "sha256:cf802eef1f0134afb81fef94020351be4fe1d6681aadf9c5e862af6602af64ef", size = 6346584 }, - { url = "https://files.pythonhosted.org/packages/97/9b/484f7d04b537d0a1202a5ba81c6f53f1846ae6c63c2127f8df869ed31342/numpy-2.2.3-cp313-cp313t-win_amd64.whl", hash = "sha256:aee2512827ceb6d7f517c8b85aa5d3923afe8fc7a57d028cffcd522f1c6fd082", size = 12706784 }, -] - -[[package]] -name = "nvidia-cublas-cu12" -version = "12.4.5.8" -source = { registry = "https://pypi.org/simple" } -wheels = [ - { url = "https://files.pythonhosted.org/packages/ae/71/1c91302526c45ab494c23f61c7a84aa568b8c1f9d196efa5993957faf906/nvidia_cublas_cu12-12.4.5.8-py3-none-manylinux2014_x86_64.whl", hash = "sha256:2fc8da60df463fdefa81e323eef2e36489e1c94335b5358bcb38360adf75ac9b", size = 363438805 }, -] - -[[package]] -name = "nvidia-cuda-cupti-cu12" -version = "12.4.127" -source = { registry = "https://pypi.org/simple" } -wheels = [ - { url = "https://files.pythonhosted.org/packages/67/42/f4f60238e8194a3106d06a058d494b18e006c10bb2b915655bd9f6ea4cb1/nvidia_cuda_cupti_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:9dec60f5ac126f7bb551c055072b69d85392b13311fcc1bcda2202d172df30fb", size = 13813957 }, -] - -[[package]] -name = "nvidia-cuda-nvrtc-cu12" -version = "12.4.127" -source = { registry = "https://pypi.org/simple" } -wheels = [ - { url = "https://files.pythonhosted.org/packages/2c/14/91ae57cd4db3f9ef7aa99f4019cfa8d54cb4caa7e00975df6467e9725a9f/nvidia_cuda_nvrtc_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a178759ebb095827bd30ef56598ec182b85547f1508941a3d560eb7ea1fbf338", size = 24640306 }, -] - -[[package]] -name = "nvidia-cuda-runtime-cu12" -version = "12.4.127" -source = { registry = "https://pypi.org/simple" } -wheels = [ - { url = "https://files.pythonhosted.org/packages/ea/27/1795d86fe88ef397885f2e580ac37628ed058a92ed2c39dc8eac3adf0619/nvidia_cuda_runtime_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:64403288fa2136ee8e467cdc9c9427e0434110899d07c779f25b5c068934faa5", size = 883737 }, -] - -[[package]] -name = "nvidia-cudnn-cu12" -version = "9.1.0.70" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "nvidia-cublas-cu12" }, -] -wheels = [ - { url = "https://files.pythonhosted.org/packages/9f/fd/713452cd72343f682b1c7b9321e23829f00b842ceaedcda96e742ea0b0b3/nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl", hash = "sha256:165764f44ef8c61fcdfdfdbe769d687e06374059fbb388b6c89ecb0e28793a6f", size = 664752741 }, -] - -[[package]] -name = "nvidia-cufft-cu12" -version = "11.2.1.3" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "nvidia-nvjitlink-cu12" }, -] -wheels = [ - { url = "https://files.pythonhosted.org/packages/27/94/3266821f65b92b3138631e9c8e7fe1fb513804ac934485a8d05776e1dd43/nvidia_cufft_cu12-11.2.1.3-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f083fc24912aa410be21fa16d157fed2055dab1cc4b6934a0e03cba69eb242b9", size = 211459117 }, -] - -[[package]] -name = "nvidia-curand-cu12" -version = "10.3.5.147" -source = { registry = "https://pypi.org/simple" } -wheels = [ - { url = "https://files.pythonhosted.org/packages/8a/6d/44ad094874c6f1b9c654f8ed939590bdc408349f137f9b98a3a23ccec411/nvidia_curand_cu12-10.3.5.147-py3-none-manylinux2014_x86_64.whl", hash = "sha256:a88f583d4e0bb643c49743469964103aa59f7f708d862c3ddb0fc07f851e3b8b", size = 56305206 }, -] - -[[package]] -name = "nvidia-cusolver-cu12" -version = "11.6.1.9" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "nvidia-cublas-cu12" }, - { name = "nvidia-cusparse-cu12" }, - { name = "nvidia-nvjitlink-cu12" }, -] -wheels = [ - { url = "https://files.pythonhosted.org/packages/3a/e1/5b9089a4b2a4790dfdea8b3a006052cfecff58139d5a4e34cb1a51df8d6f/nvidia_cusolver_cu12-11.6.1.9-py3-none-manylinux2014_x86_64.whl", hash = "sha256:19e33fa442bcfd085b3086c4ebf7e8debc07cfe01e11513cc6d332fd918ac260", size = 127936057 }, -] - -[[package]] -name = "nvidia-cusparse-cu12" -version = "12.3.1.170" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "nvidia-nvjitlink-cu12" }, -] -wheels = [ - { url = "https://files.pythonhosted.org/packages/db/f7/97a9ea26ed4bbbfc2d470994b8b4f338ef663be97b8f677519ac195e113d/nvidia_cusparse_cu12-12.3.1.170-py3-none-manylinux2014_x86_64.whl", hash = "sha256:ea4f11a2904e2a8dc4b1833cc1b5181cde564edd0d5cd33e3c168eff2d1863f1", size = 207454763 }, -] - -[[package]] -name = "nvidia-cusparselt-cu12" -version = "0.6.2" -source = { registry = "https://pypi.org/simple" } -wheels = [ - { url = "https://files.pythonhosted.org/packages/78/a8/bcbb63b53a4b1234feeafb65544ee55495e1bb37ec31b999b963cbccfd1d/nvidia_cusparselt_cu12-0.6.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:df2c24502fd76ebafe7457dbc4716b2fec071aabaed4fb7691a201cde03704d9", size = 150057751 }, -] - -[[package]] -name = "nvidia-ml-py" -version = "12.570.86" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/ad/6e/7b0c9b88c7d520fb8639024a1a3b6dd1db03bf2c17ae85040c8758d2eb6f/nvidia_ml_py-12.570.86.tar.gz", hash = "sha256:0508d4a0c7b6d015cf574530b95a62ed4fc89da3b8b47e1aefe6777db170ec8b", size = 43147 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/d8/a8/ec37169be4e2b7063b9076ed3fe0661e87335fbca665eed3f48c415cb234/nvidia_ml_py-12.570.86-py3-none-any.whl", hash = "sha256:58907de35a845abd13dcb227f18298f3b5dd94a72d04c9e594e77711e95c0b51", size = 44442 }, -] - -[[package]] -name = "nvidia-nccl-cu12" -version = "2.21.5" -source = { registry = "https://pypi.org/simple" } -wheels = [ - { url = "https://files.pythonhosted.org/packages/df/99/12cd266d6233f47d00daf3a72739872bdc10267d0383508b0b9c84a18bb6/nvidia_nccl_cu12-2.21.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:8579076d30a8c24988834445f8d633c697d42397e92ffc3f63fa26766d25e0a0", size = 188654414 }, -] - -[[package]] -name = "nvidia-nvjitlink-cu12" -version = "12.4.127" -source = { registry = "https://pypi.org/simple" } -wheels = [ - { url = "https://files.pythonhosted.org/packages/ff/ff/847841bacfbefc97a00036e0fce5a0f086b640756dc38caea5e1bb002655/nvidia_nvjitlink_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:06b3b9b25bf3f8af351d664978ca26a16d2c5127dbd53c0497e28d1fb9611d57", size = 21066810 }, -] - -[[package]] -name = "nvidia-nvtx-cu12" -version = "12.4.127" -source = { registry = "https://pypi.org/simple" } -wheels = [ - { url = "https://files.pythonhosted.org/packages/87/20/199b8713428322a2f22b722c62b8cc278cc53dffa9705d744484b5035ee9/nvidia_nvtx_cu12-12.4.127-py3-none-manylinux2014_x86_64.whl", hash = "sha256:781e950d9b9f60d8241ccea575b32f5105a5baf4c2351cab5256a24869f12a1a", size = 99144 }, + { url = "https://files.pythonhosted.org/packages/45/40/2e117be60ec50d98fa08c2f8c48e09b3edea93cfcabd5a9ff6925d54b1c2/numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:df55d490dea7934f330006d0f81e8551ba6010a5bf035a249ef61a94f21c500b", size = 20895803 }, + { url = "https://files.pythonhosted.org/packages/46/92/1b8b8dee833f53cef3e0a3f69b2374467789e0bb7399689582314df02651/numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8df823f570d9adf0978347d1f926b2a867d5608f434a7cff7f7908c6570dcf5e", size = 13471835 }, + { url = "https://files.pythonhosted.org/packages/7f/19/e2793bde475f1edaea6945be141aef6c8b4c669b90c90a300a8954d08f0a/numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:9a92ae5c14811e390f3767053ff54eaee3bf84576d99a2456391401323f4ec2c", size = 5038499 }, + { url = "https://files.pythonhosted.org/packages/e3/ff/ddf6dac2ff0dd50a7327bcdba45cb0264d0e96bb44d33324853f781a8f3c/numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:a842d573724391493a97a62ebbb8e731f8a5dcc5d285dfc99141ca15a3302d0c", size = 6633497 }, + { url = "https://files.pythonhosted.org/packages/72/21/67f36eac8e2d2cd652a2e69595a54128297cdcb1ff3931cfc87838874bd4/numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c05e238064fc0610c840d1cf6a13bf63d7e391717d247f1bf0318172e759e692", size = 13621158 }, + { url = "https://files.pythonhosted.org/packages/39/68/e9f1126d757653496dbc096cb429014347a36b228f5a991dae2c6b6cfd40/numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0123ffdaa88fa4ab64835dcbde75dcdf89c453c922f18dced6e27c90d1d0ec5a", size = 19236173 }, + { url = "https://files.pythonhosted.org/packages/d1/e9/1f5333281e4ebf483ba1c888b1d61ba7e78d7e910fdd8e6499667041cc35/numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:96a55f64139912d61de9137f11bf39a55ec8faec288c75a54f93dfd39f7eb40c", size = 19634174 }, + { url = "https://files.pythonhosted.org/packages/71/af/a469674070c8d8408384e3012e064299f7a2de540738a8e414dcfd639996/numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ec9852fb39354b5a45a80bdab5ac02dd02b15f44b3804e9f00c556bf24b4bded", size = 14099701 }, + { url = "https://files.pythonhosted.org/packages/d0/3d/08ea9f239d0e0e939b6ca52ad403c84a2bce1bde301a8eb4888c1c1543f1/numpy-2.0.2-cp312-cp312-win32.whl", hash = "sha256:671bec6496f83202ed2d3c8fdc486a8fc86942f2e69ff0e986140339a63bcbe5", size = 6174313 }, + { url = "https://files.pythonhosted.org/packages/b2/b5/4ac39baebf1fdb2e72585c8352c56d063b6126be9fc95bd2bb5ef5770c20/numpy-2.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:cfd41e13fdc257aa5778496b8caa5e856dc4896d4ccf01841daee1d96465467a", size = 15606179 }, ] [[package]] @@ -805,40 +432,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759", size = 65451 }, ] -[[package]] -name = "pandas" -version = "2.2.3" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "numpy" }, - { name = "python-dateutil" }, - { name = "pytz" }, - { name = "tzdata" }, -] -sdist = { url = "https://files.pythonhosted.org/packages/9c/d6/9f8431bacc2e19dca897724cd097b1bb224a6ad5433784a44b587c7c13af/pandas-2.2.3.tar.gz", hash = "sha256:4f18ba62b61d7e192368b84517265a99b4d7ee8912f8708660fb4a366cc82667", size = 4399213 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/17/a3/fb2734118db0af37ea7433f57f722c0a56687e14b14690edff0cdb4b7e58/pandas-2.2.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b1d432e8d08679a40e2a6d8b2f9770a5c21793a6f9f47fdd52c5ce1948a5a8a9", size = 12529893 }, - { url = "https://files.pythonhosted.org/packages/e1/0c/ad295fd74bfac85358fd579e271cded3ac969de81f62dd0142c426b9da91/pandas-2.2.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a5a1595fe639f5988ba6a8e5bc9649af3baf26df3998a0abe56c02609392e0a4", size = 11363475 }, - { url = "https://files.pythonhosted.org/packages/c6/2a/4bba3f03f7d07207481fed47f5b35f556c7441acddc368ec43d6643c5777/pandas-2.2.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5de54125a92bb4d1c051c0659e6fcb75256bf799a732a87184e5ea503965bce3", size = 15188645 }, - { url = "https://files.pythonhosted.org/packages/38/f8/d8fddee9ed0d0c0f4a2132c1dfcf0e3e53265055da8df952a53e7eaf178c/pandas-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fffb8ae78d8af97f849404f21411c95062db1496aeb3e56f146f0355c9989319", size = 12739445 }, - { url = "https://files.pythonhosted.org/packages/20/e8/45a05d9c39d2cea61ab175dbe6a2de1d05b679e8de2011da4ee190d7e748/pandas-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6dfcb5ee8d4d50c06a51c2fffa6cff6272098ad6540aed1a76d15fb9318194d8", size = 16359235 }, - { url = "https://files.pythonhosted.org/packages/1d/99/617d07a6a5e429ff90c90da64d428516605a1ec7d7bea494235e1c3882de/pandas-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:062309c1b9ea12a50e8ce661145c6aab431b1e99530d3cd60640e255778bd43a", size = 14056756 }, - { url = "https://files.pythonhosted.org/packages/29/d4/1244ab8edf173a10fd601f7e13b9566c1b525c4f365d6bee918e68381889/pandas-2.2.3-cp312-cp312-win_amd64.whl", hash = "sha256:59ef3764d0fe818125a5097d2ae867ca3fa64df032331b7e0917cf5d7bf66b13", size = 11504248 }, - { url = "https://files.pythonhosted.org/packages/64/22/3b8f4e0ed70644e85cfdcd57454686b9057c6c38d2f74fe4b8bc2527214a/pandas-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f00d1345d84d8c86a63e476bb4955e46458b304b9575dcf71102b5c705320015", size = 12477643 }, - { url = "https://files.pythonhosted.org/packages/e4/93/b3f5d1838500e22c8d793625da672f3eec046b1a99257666c94446969282/pandas-2.2.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3508d914817e153ad359d7e069d752cdd736a247c322d932eb89e6bc84217f28", size = 11281573 }, - { url = "https://files.pythonhosted.org/packages/f5/94/6c79b07f0e5aab1dcfa35a75f4817f5c4f677931d4234afcd75f0e6a66ca/pandas-2.2.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:22a9d949bfc9a502d320aa04e5d02feab689d61da4e7764b62c30b991c42c5f0", size = 15196085 }, - { url = "https://files.pythonhosted.org/packages/e8/31/aa8da88ca0eadbabd0a639788a6da13bb2ff6edbbb9f29aa786450a30a91/pandas-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3a255b2c19987fbbe62a9dfd6cff7ff2aa9ccab3fc75218fd4b7530f01efa24", size = 12711809 }, - { url = "https://files.pythonhosted.org/packages/ee/7c/c6dbdb0cb2a4344cacfb8de1c5808ca885b2e4dcfde8008266608f9372af/pandas-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:800250ecdadb6d9c78eae4990da62743b857b470883fa27f652db8bdde7f6659", size = 16356316 }, - { url = "https://files.pythonhosted.org/packages/57/b7/8b757e7d92023b832869fa8881a992696a0bfe2e26f72c9ae9f255988d42/pandas-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6374c452ff3ec675a8f46fd9ab25c4ad0ba590b71cf0656f8b6daa5202bca3fb", size = 14022055 }, - { url = "https://files.pythonhosted.org/packages/3b/bc/4b18e2b8c002572c5a441a64826252ce5da2aa738855747247a971988043/pandas-2.2.3-cp313-cp313-win_amd64.whl", hash = "sha256:61c5ad4043f791b61dd4752191d9f07f0ae412515d59ba8f005832a532f8736d", size = 11481175 }, - { url = "https://files.pythonhosted.org/packages/76/a3/a5d88146815e972d40d19247b2c162e88213ef51c7c25993942c39dbf41d/pandas-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:3b71f27954685ee685317063bf13c7709a7ba74fc996b84fc6821c59b0f06468", size = 12615650 }, - { url = "https://files.pythonhosted.org/packages/9c/8c/f0fd18f6140ddafc0c24122c8a964e48294acc579d47def376fef12bcb4a/pandas-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:38cf8125c40dae9d5acc10fa66af8ea6fdf760b2714ee482ca691fc66e6fcb18", size = 11290177 }, - { url = "https://files.pythonhosted.org/packages/ed/f9/e995754eab9c0f14c6777401f7eece0943840b7a9fc932221c19d1abee9f/pandas-2.2.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ba96630bc17c875161df3818780af30e43be9b166ce51c9a18c1feae342906c2", size = 14651526 }, - { url = "https://files.pythonhosted.org/packages/25/b0/98d6ae2e1abac4f35230aa756005e8654649d305df9a28b16b9ae4353bff/pandas-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1db71525a1538b30142094edb9adc10be3f3e176748cd7acc2240c2f2e5aa3a4", size = 11871013 }, - { url = "https://files.pythonhosted.org/packages/cc/57/0f72a10f9db6a4628744c8e8f0df4e6e21de01212c7c981d31e50ffc8328/pandas-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:15c0e1e02e93116177d29ff83e8b1619c93ddc9c49083f237d4312337a61165d", size = 15711620 }, - { url = "https://files.pythonhosted.org/packages/ab/5f/b38085618b950b79d2d9164a711c52b10aefc0ae6833b96f626b7021b2ed/pandas-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ad5b65698ab28ed8d7f18790a0dc58005c7629f227be9ecc1072aa74c0c1d43a", size = 13098436 }, -] - [[package]] name = "parso" version = "0.8.4" @@ -919,20 +512,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/e4/ea/d836f008d33151c7a1f62caf3d8dd782e4d15f6a43897f64480c2b8de2ad/prompt_toolkit-3.0.50-py3-none-any.whl", hash = "sha256:9b6427eb19e479d98acff65196a307c555eb567989e6d88ebbb1b509d9779198", size = 387816 }, ] -[[package]] -name = "protobuf" -version = "6.30.2" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/c8/8c/cf2ac658216eebe49eaedf1e06bc06cbf6a143469236294a1171a51357c3/protobuf-6.30.2.tar.gz", hash = "sha256:35c859ae076d8c56054c25b59e5e59638d86545ed6e2b6efac6be0b6ea3ba048", size = 429315 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/be/85/cd53abe6a6cbf2e0029243d6ae5fb4335da2996f6c177bb2ce685068e43d/protobuf-6.30.2-cp310-abi3-win32.whl", hash = "sha256:b12ef7df7b9329886e66404bef5e9ce6a26b54069d7f7436a0853ccdeb91c103", size = 419148 }, - { url = "https://files.pythonhosted.org/packages/97/e9/7b9f1b259d509aef2b833c29a1f3c39185e2bf21c9c1be1cd11c22cb2149/protobuf-6.30.2-cp310-abi3-win_amd64.whl", hash = "sha256:7653c99774f73fe6b9301b87da52af0e69783a2e371e8b599b3e9cb4da4b12b9", size = 431003 }, - { url = "https://files.pythonhosted.org/packages/8e/66/7f3b121f59097c93267e7f497f10e52ced7161b38295137a12a266b6c149/protobuf-6.30.2-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:0eb523c550a66a09a0c20f86dd554afbf4d32b02af34ae53d93268c1f73bc65b", size = 417579 }, - { url = "https://files.pythonhosted.org/packages/d0/89/bbb1bff09600e662ad5b384420ad92de61cab2ed0f12ace1fd081fd4c295/protobuf-6.30.2-cp39-abi3-manylinux2014_aarch64.whl", hash = "sha256:50f32cc9fd9cb09c783ebc275611b4f19dfdfb68d1ee55d2f0c7fa040df96815", size = 317319 }, - { url = "https://files.pythonhosted.org/packages/28/50/1925de813499546bc8ab3ae857e3ec84efe7d2f19b34529d0c7c3d02d11d/protobuf-6.30.2-cp39-abi3-manylinux2014_x86_64.whl", hash = "sha256:4f6c687ae8efae6cf6093389a596548214467778146b7245e886f35e1485315d", size = 316212 }, - { url = "https://files.pythonhosted.org/packages/e5/a1/93c2acf4ade3c5b557d02d500b06798f4ed2c176fa03e3c34973ca92df7f/protobuf-6.30.2-py3-none-any.whl", hash = "sha256:ae86b030e69a98e08c77beab574cbcb9fff6d031d57209f574a5aea1445f4b51", size = 167062 }, -] - [[package]] name = "psutil" version = "7.0.0" @@ -966,34 +545,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0", size = 11842 }, ] -[[package]] -name = "pyarrow" -version = "19.0.1" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/7f/09/a9046344212690f0632b9c709f9bf18506522feb333c894d0de81d62341a/pyarrow-19.0.1.tar.gz", hash = "sha256:3bf266b485df66a400f282ac0b6d1b500b9d2ae73314a153dbe97d6d5cc8a99e", size = 1129437 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/78/b4/94e828704b050e723f67d67c3535cf7076c7432cd4cf046e4bb3b96a9c9d/pyarrow-19.0.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:80b2ad2b193e7d19e81008a96e313fbd53157945c7be9ac65f44f8937a55427b", size = 30670749 }, - { url = "https://files.pythonhosted.org/packages/7e/3b/4692965e04bb1df55e2c314c4296f1eb12b4f3052d4cf43d29e076aedf66/pyarrow-19.0.1-cp312-cp312-macosx_12_0_x86_64.whl", hash = "sha256:ee8dec072569f43835932a3b10c55973593abc00936c202707a4ad06af7cb294", size = 32128007 }, - { url = "https://files.pythonhosted.org/packages/22/f7/2239af706252c6582a5635c35caa17cb4d401cd74a87821ef702e3888957/pyarrow-19.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d5d1ec7ec5324b98887bdc006f4d2ce534e10e60f7ad995e7875ffa0ff9cb14", size = 41144566 }, - { url = "https://files.pythonhosted.org/packages/fb/e3/c9661b2b2849cfefddd9fd65b64e093594b231b472de08ff658f76c732b2/pyarrow-19.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f3ad4c0eb4e2a9aeb990af6c09e6fa0b195c8c0e7b272ecc8d4d2b6574809d34", size = 42202991 }, - { url = "https://files.pythonhosted.org/packages/fe/4f/a2c0ed309167ef436674782dfee4a124570ba64299c551e38d3fdaf0a17b/pyarrow-19.0.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:d383591f3dcbe545f6cc62daaef9c7cdfe0dff0fb9e1c8121101cabe9098cfa6", size = 40507986 }, - { url = "https://files.pythonhosted.org/packages/27/2e/29bb28a7102a6f71026a9d70d1d61df926887e36ec797f2e6acfd2dd3867/pyarrow-19.0.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:b4c4156a625f1e35d6c0b2132635a237708944eb41df5fbe7d50f20d20c17832", size = 42087026 }, - { url = "https://files.pythonhosted.org/packages/16/33/2a67c0f783251106aeeee516f4806161e7b481f7d744d0d643d2f30230a5/pyarrow-19.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:5bd1618ae5e5476b7654c7b55a6364ae87686d4724538c24185bbb2952679960", size = 25250108 }, - { url = "https://files.pythonhosted.org/packages/2b/8d/275c58d4b00781bd36579501a259eacc5c6dfb369be4ddeb672ceb551d2d/pyarrow-19.0.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:e45274b20e524ae5c39d7fc1ca2aa923aab494776d2d4b316b49ec7572ca324c", size = 30653552 }, - { url = "https://files.pythonhosted.org/packages/a0/9e/e6aca5cc4ef0c7aec5f8db93feb0bde08dbad8c56b9014216205d271101b/pyarrow-19.0.1-cp313-cp313-macosx_12_0_x86_64.whl", hash = "sha256:d9dedeaf19097a143ed6da37f04f4051aba353c95ef507764d344229b2b740ae", size = 32103413 }, - { url = "https://files.pythonhosted.org/packages/6a/fa/a7033f66e5d4f1308c7eb0dfcd2ccd70f881724eb6fd1776657fdf65458f/pyarrow-19.0.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ebfb5171bb5f4a52319344ebbbecc731af3f021e49318c74f33d520d31ae0c4", size = 41134869 }, - { url = "https://files.pythonhosted.org/packages/2d/92/34d2569be8e7abdc9d145c98dc410db0071ac579b92ebc30da35f500d630/pyarrow-19.0.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2a21d39fbdb948857f67eacb5bbaaf36802de044ec36fbef7a1c8f0dd3a4ab2", size = 42192626 }, - { url = "https://files.pythonhosted.org/packages/0a/1f/80c617b1084fc833804dc3309aa9d8daacd46f9ec8d736df733f15aebe2c/pyarrow-19.0.1-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:99bc1bec6d234359743b01e70d4310d0ab240c3d6b0da7e2a93663b0158616f6", size = 40496708 }, - { url = "https://files.pythonhosted.org/packages/e6/90/83698fcecf939a611c8d9a78e38e7fed7792dcc4317e29e72cf8135526fb/pyarrow-19.0.1-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:1b93ef2c93e77c442c979b0d596af45e4665d8b96da598db145b0fec014b9136", size = 42075728 }, - { url = "https://files.pythonhosted.org/packages/40/49/2325f5c9e7a1c125c01ba0c509d400b152c972a47958768e4e35e04d13d8/pyarrow-19.0.1-cp313-cp313-win_amd64.whl", hash = "sha256:d9d46e06846a41ba906ab25302cf0fd522f81aa2a85a71021826f34639ad31ef", size = 25242568 }, - { url = "https://files.pythonhosted.org/packages/3f/72/135088d995a759d4d916ec4824cb19e066585b4909ebad4ab196177aa825/pyarrow-19.0.1-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:c0fe3dbbf054a00d1f162fda94ce236a899ca01123a798c561ba307ca38af5f0", size = 30702371 }, - { url = "https://files.pythonhosted.org/packages/2e/01/00beeebd33d6bac701f20816a29d2018eba463616bbc07397fdf99ac4ce3/pyarrow-19.0.1-cp313-cp313t-macosx_12_0_x86_64.whl", hash = "sha256:96606c3ba57944d128e8a8399da4812f56c7f61de8c647e3470b417f795d0ef9", size = 32116046 }, - { url = "https://files.pythonhosted.org/packages/1f/c9/23b1ea718dfe967cbd986d16cf2a31fe59d015874258baae16d7ea0ccabc/pyarrow-19.0.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f04d49a6b64cf24719c080b3c2029a3a5b16417fd5fd7c4041f94233af732f3", size = 41091183 }, - { url = "https://files.pythonhosted.org/packages/3a/d4/b4a3aa781a2c715520aa8ab4fe2e7fa49d33a1d4e71c8fc6ab7b5de7a3f8/pyarrow-19.0.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5a9137cf7e1640dce4c190551ee69d478f7121b5c6f323553b319cac936395f6", size = 42171896 }, - { url = "https://files.pythonhosted.org/packages/23/1b/716d4cd5a3cbc387c6e6745d2704c4b46654ba2668260d25c402626c5ddb/pyarrow-19.0.1-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:7c1bca1897c28013db5e4c83944a2ab53231f541b9e0c3f4791206d0c0de389a", size = 40464851 }, - { url = "https://files.pythonhosted.org/packages/ed/bd/54907846383dcc7ee28772d7e646f6c34276a17da740002a5cefe90f04f7/pyarrow-19.0.1-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:58d9397b2e273ef76264b45531e9d552d8ec8a6688b7390b5be44c02a37aade8", size = 42085744 }, -] - [[package]] name = "pycparser" version = "2.22" @@ -1012,18 +563,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/8a/0b/9fcc47d19c48b59121088dd6da2488a49d5f72dacf8262e2790a1d2c7d15/pygments-2.19.1-py3-none-any.whl", hash = "sha256:9ea1544ad55cecf4b8242fab6dd35a93bbce657034b0611ee383099054ab6d8c", size = 1225293 }, ] -[[package]] -name = "pynvml" -version = "12.0.0" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "nvidia-ml-py" }, -] -sdist = { url = "https://files.pythonhosted.org/packages/26/6f/6b5880ed0239e85b9a39aed103b65b2ef81425beef9f45e5c035bf008330/pynvml-12.0.0.tar.gz", hash = "sha256:299ce2451a6a17e6822d6faee750103e25b415f06f59abb8db65d30f794166f5", size = 33636 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/ed/df/f7cf07a65a96dd11d71f346f9c2863accdd4784da83af7181b067d556cbc/pynvml-12.0.0-py3-none-any.whl", hash = "sha256:fdff84b62a27dbe98e08e1a647eb77342bef1aebe0878bcd15e99a83fcbecb9e", size = 26560 }, -] - [[package]] name = "pyparsing" version = "3.2.1" @@ -1045,15 +584,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892 }, ] -[[package]] -name = "pytz" -version = "2025.2" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/f8/bf/abbd3cdfb8fbc7fb3d4d38d320f2441b1e7cbe29be4f23797b4a2b5d8aac/pytz-2025.2.tar.gz", hash = "sha256:360b9e3dbb49a209c21ad61809c7fb453643e048b38924c765813546746e81c3", size = 320884 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl", hash = "sha256:5ddf76296dd8c44c26eb8f4b6f35488f3ccbf6fbbd7adee0b7262d43f0ec2f00", size = 509225 }, -] - [[package]] name = "pywin32" version = "308" @@ -1067,32 +597,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/26/df/2b63e3e4f2df0224f8aaf6d131f54fe4e8c96400eb9df563e2aae2e1a1f9/pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd", size = 7974986 }, ] -[[package]] -name = "pyyaml" -version = "6.0.2" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/54/ed/79a089b6be93607fa5cdaedf301d7dfb23af5f25c398d5ead2525b063e17/pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e", size = 130631 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/86/0c/c581167fc46d6d6d7ddcfb8c843a4de25bdd27e4466938109ca68492292c/PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab", size = 183873 }, - { url = "https://files.pythonhosted.org/packages/a8/0c/38374f5bb272c051e2a69281d71cba6fdb983413e6758b84482905e29a5d/PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725", size = 173302 }, - { url = "https://files.pythonhosted.org/packages/c3/93/9916574aa8c00aa06bbac729972eb1071d002b8e158bd0e83a3b9a20a1f7/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5", size = 739154 }, - { url = "https://files.pythonhosted.org/packages/95/0f/b8938f1cbd09739c6da569d172531567dbcc9789e0029aa070856f123984/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425", size = 766223 }, - { url = "https://files.pythonhosted.org/packages/b9/2b/614b4752f2e127db5cc206abc23a8c19678e92b23c3db30fc86ab731d3bd/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476", size = 767542 }, - { url = "https://files.pythonhosted.org/packages/d4/00/dd137d5bcc7efea1836d6264f049359861cf548469d18da90cd8216cf05f/PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48", size = 731164 }, - { url = "https://files.pythonhosted.org/packages/c9/1f/4f998c900485e5c0ef43838363ba4a9723ac0ad73a9dc42068b12aaba4e4/PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b", size = 756611 }, - { url = "https://files.pythonhosted.org/packages/df/d1/f5a275fdb252768b7a11ec63585bc38d0e87c9e05668a139fea92b80634c/PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4", size = 140591 }, - { url = "https://files.pythonhosted.org/packages/0c/e8/4f648c598b17c3d06e8753d7d13d57542b30d56e6c2dedf9c331ae56312e/PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8", size = 156338 }, - { url = "https://files.pythonhosted.org/packages/ef/e3/3af305b830494fa85d95f6d95ef7fa73f2ee1cc8ef5b495c7c3269fb835f/PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba", size = 181309 }, - { url = "https://files.pythonhosted.org/packages/45/9f/3b1c20a0b7a3200524eb0076cc027a970d320bd3a6592873c85c92a08731/PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1", size = 171679 }, - { url = "https://files.pythonhosted.org/packages/7c/9a/337322f27005c33bcb656c655fa78325b730324c78620e8328ae28b64d0c/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133", size = 733428 }, - { url = "https://files.pythonhosted.org/packages/a3/69/864fbe19e6c18ea3cc196cbe5d392175b4cf3d5d0ac1403ec3f2d237ebb5/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484", size = 763361 }, - { url = "https://files.pythonhosted.org/packages/04/24/b7721e4845c2f162d26f50521b825fb061bc0a5afcf9a386840f23ea19fa/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5", size = 759523 }, - { url = "https://files.pythonhosted.org/packages/2b/b2/e3234f59ba06559c6ff63c4e10baea10e5e7df868092bf9ab40e5b9c56b6/PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc", size = 726660 }, - { url = "https://files.pythonhosted.org/packages/fe/0f/25911a9f080464c59fab9027482f822b86bf0608957a5fcc6eaac85aa515/PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652", size = 751597 }, - { url = "https://files.pythonhosted.org/packages/14/0d/e2c3b43bbce3cf6bd97c840b46088a3031085179e596d4929729d8d68270/PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183", size = 140527 }, - { url = "https://files.pythonhosted.org/packages/fa/de/02b54f42487e3d3c6efb3f89428677074ca7bf43aae402517bc7cca949f3/PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563", size = 156446 }, -] - [[package]] name = "pyzmq" version = "26.2.1" @@ -1137,81 +641,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/17/fc/b79f0b72891cbb9917698add0fede71dfb64e83fa3481a02ed0e78c34be7/pyzmq-26.2.1-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:17f88622b848805d3f6427ce1ad5a2aa3cf61f12a97e684dab2979802024d460", size = 1399943 }, ] -[[package]] -name = "regex" -version = "2024.11.6" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/8e/5f/bd69653fbfb76cf8604468d3b4ec4c403197144c7bfe0e6a5fc9e02a07cb/regex-2024.11.6.tar.gz", hash = "sha256:7ab159b063c52a0333c884e4679f8d7a85112ee3078fe3d9004b2dd875585519", size = 399494 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/ba/30/9a87ce8336b172cc232a0db89a3af97929d06c11ceaa19d97d84fa90a8f8/regex-2024.11.6-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:52fb28f528778f184f870b7cf8f225f5eef0a8f6e3778529bdd40c7b3920796a", size = 483781 }, - { url = "https://files.pythonhosted.org/packages/01/e8/00008ad4ff4be8b1844786ba6636035f7ef926db5686e4c0f98093612add/regex-2024.11.6-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:fdd6028445d2460f33136c55eeb1f601ab06d74cb3347132e1c24250187500d9", size = 288455 }, - { url = "https://files.pythonhosted.org/packages/60/85/cebcc0aff603ea0a201667b203f13ba75d9fc8668fab917ac5b2de3967bc/regex-2024.11.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:805e6b60c54bf766b251e94526ebad60b7de0c70f70a4e6210ee2891acb70bf2", size = 284759 }, - { url = "https://files.pythonhosted.org/packages/94/2b/701a4b0585cb05472a4da28ee28fdfe155f3638f5e1ec92306d924e5faf0/regex-2024.11.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b85c2530be953a890eaffde05485238f07029600e8f098cdf1848d414a8b45e4", size = 794976 }, - { url = "https://files.pythonhosted.org/packages/4b/bf/fa87e563bf5fee75db8915f7352e1887b1249126a1be4813837f5dbec965/regex-2024.11.6-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bb26437975da7dc36b7efad18aa9dd4ea569d2357ae6b783bf1118dabd9ea577", size = 833077 }, - { url = "https://files.pythonhosted.org/packages/a1/56/7295e6bad94b047f4d0834e4779491b81216583c00c288252ef625c01d23/regex-2024.11.6-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:abfa5080c374a76a251ba60683242bc17eeb2c9818d0d30117b4486be10c59d3", size = 823160 }, - { url = "https://files.pythonhosted.org/packages/fb/13/e3b075031a738c9598c51cfbc4c7879e26729c53aa9cca59211c44235314/regex-2024.11.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b7fa6606c2881c1db9479b0eaa11ed5dfa11c8d60a474ff0e095099f39d98e", size = 796896 }, - { url = "https://files.pythonhosted.org/packages/24/56/0b3f1b66d592be6efec23a795b37732682520b47c53da5a32c33ed7d84e3/regex-2024.11.6-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0c32f75920cf99fe6b6c539c399a4a128452eaf1af27f39bce8909c9a3fd8cbe", size = 783997 }, - { url = "https://files.pythonhosted.org/packages/f9/a1/eb378dada8b91c0e4c5f08ffb56f25fcae47bf52ad18f9b2f33b83e6d498/regex-2024.11.6-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:982e6d21414e78e1f51cf595d7f321dcd14de1f2881c5dc6a6e23bbbbd68435e", size = 781725 }, - { url = "https://files.pythonhosted.org/packages/83/f2/033e7dec0cfd6dda93390089864732a3409246ffe8b042e9554afa9bff4e/regex-2024.11.6-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:a7c2155f790e2fb448faed6dd241386719802296ec588a8b9051c1f5c481bc29", size = 789481 }, - { url = "https://files.pythonhosted.org/packages/83/23/15d4552ea28990a74e7696780c438aadd73a20318c47e527b47a4a5a596d/regex-2024.11.6-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:149f5008d286636e48cd0b1dd65018548944e495b0265b45e1bffecce1ef7f39", size = 852896 }, - { url = "https://files.pythonhosted.org/packages/e3/39/ed4416bc90deedbfdada2568b2cb0bc1fdb98efe11f5378d9892b2a88f8f/regex-2024.11.6-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:e5364a4502efca094731680e80009632ad6624084aff9a23ce8c8c6820de3e51", size = 860138 }, - { url = "https://files.pythonhosted.org/packages/93/2d/dd56bb76bd8e95bbce684326302f287455b56242a4f9c61f1bc76e28360e/regex-2024.11.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0a86e7eeca091c09e021db8eb72d54751e527fa47b8d5787caf96d9831bd02ad", size = 787692 }, - { url = "https://files.pythonhosted.org/packages/0b/55/31877a249ab7a5156758246b9c59539abbeba22461b7d8adc9e8475ff73e/regex-2024.11.6-cp312-cp312-win32.whl", hash = "sha256:32f9a4c643baad4efa81d549c2aadefaeba12249b2adc5af541759237eee1c54", size = 262135 }, - { url = "https://files.pythonhosted.org/packages/38/ec/ad2d7de49a600cdb8dd78434a1aeffe28b9d6fc42eb36afab4a27ad23384/regex-2024.11.6-cp312-cp312-win_amd64.whl", hash = "sha256:a93c194e2df18f7d264092dc8539b8ffb86b45b899ab976aa15d48214138e81b", size = 273567 }, - { url = "https://files.pythonhosted.org/packages/90/73/bcb0e36614601016552fa9344544a3a2ae1809dc1401b100eab02e772e1f/regex-2024.11.6-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a6ba92c0bcdf96cbf43a12c717eae4bc98325ca3730f6b130ffa2e3c3c723d84", size = 483525 }, - { url = "https://files.pythonhosted.org/packages/0f/3f/f1a082a46b31e25291d830b369b6b0c5576a6f7fb89d3053a354c24b8a83/regex-2024.11.6-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:525eab0b789891ac3be914d36893bdf972d483fe66551f79d3e27146191a37d4", size = 288324 }, - { url = "https://files.pythonhosted.org/packages/09/c9/4e68181a4a652fb3ef5099e077faf4fd2a694ea6e0f806a7737aff9e758a/regex-2024.11.6-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:086a27a0b4ca227941700e0b31425e7a28ef1ae8e5e05a33826e17e47fbfdba0", size = 284617 }, - { url = "https://files.pythonhosted.org/packages/fc/fd/37868b75eaf63843165f1d2122ca6cb94bfc0271e4428cf58c0616786dce/regex-2024.11.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bde01f35767c4a7899b7eb6e823b125a64de314a8ee9791367c9a34d56af18d0", size = 795023 }, - { url = "https://files.pythonhosted.org/packages/c4/7c/d4cd9c528502a3dedb5c13c146e7a7a539a3853dc20209c8e75d9ba9d1b2/regex-2024.11.6-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b583904576650166b3d920d2bcce13971f6f9e9a396c673187f49811b2769dc7", size = 833072 }, - { url = "https://files.pythonhosted.org/packages/4f/db/46f563a08f969159c5a0f0e722260568425363bea43bb7ae370becb66a67/regex-2024.11.6-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c4de13f06a0d54fa0d5ab1b7138bfa0d883220965a29616e3ea61b35d5f5fc7", size = 823130 }, - { url = "https://files.pythonhosted.org/packages/db/60/1eeca2074f5b87df394fccaa432ae3fc06c9c9bfa97c5051aed70e6e00c2/regex-2024.11.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3cde6e9f2580eb1665965ce9bf17ff4952f34f5b126beb509fee8f4e994f143c", size = 796857 }, - { url = "https://files.pythonhosted.org/packages/10/db/ac718a08fcee981554d2f7bb8402f1faa7e868c1345c16ab1ebec54b0d7b/regex-2024.11.6-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0d7f453dca13f40a02b79636a339c5b62b670141e63efd511d3f8f73fba162b3", size = 784006 }, - { url = "https://files.pythonhosted.org/packages/c2/41/7da3fe70216cea93144bf12da2b87367590bcf07db97604edeea55dac9ad/regex-2024.11.6-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:59dfe1ed21aea057a65c6b586afd2a945de04fc7db3de0a6e3ed5397ad491b07", size = 781650 }, - { url = "https://files.pythonhosted.org/packages/a7/d5/880921ee4eec393a4752e6ab9f0fe28009435417c3102fc413f3fe81c4e5/regex-2024.11.6-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:b97c1e0bd37c5cd7902e65f410779d39eeda155800b65fc4d04cc432efa9bc6e", size = 789545 }, - { url = "https://files.pythonhosted.org/packages/dc/96/53770115e507081122beca8899ab7f5ae28ae790bfcc82b5e38976df6a77/regex-2024.11.6-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:f9d1e379028e0fc2ae3654bac3cbbef81bf3fd571272a42d56c24007979bafb6", size = 853045 }, - { url = "https://files.pythonhosted.org/packages/31/d3/1372add5251cc2d44b451bd94f43b2ec78e15a6e82bff6a290ef9fd8f00a/regex-2024.11.6-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:13291b39131e2d002a7940fb176e120bec5145f3aeb7621be6534e46251912c4", size = 860182 }, - { url = "https://files.pythonhosted.org/packages/ed/e3/c446a64984ea9f69982ba1a69d4658d5014bc7a0ea468a07e1a1265db6e2/regex-2024.11.6-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4f51f88c126370dcec4908576c5a627220da6c09d0bff31cfa89f2523843316d", size = 787733 }, - { url = "https://files.pythonhosted.org/packages/2b/f1/e40c8373e3480e4f29f2692bd21b3e05f296d3afebc7e5dcf21b9756ca1c/regex-2024.11.6-cp313-cp313-win32.whl", hash = "sha256:63b13cfd72e9601125027202cad74995ab26921d8cd935c25f09c630436348ff", size = 262122 }, - { url = "https://files.pythonhosted.org/packages/45/94/bc295babb3062a731f52621cdc992d123111282e291abaf23faa413443ea/regex-2024.11.6-cp313-cp313-win_amd64.whl", hash = "sha256:2b3361af3198667e99927da8b84c1b010752fa4b1115ee30beaa332cabc3ef1a", size = 273545 }, -] - -[[package]] -name = "requests" -version = "2.32.3" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "certifi" }, - { name = "charset-normalizer" }, - { name = "idna" }, - { name = "urllib3" }, -] -sdist = { url = "https://files.pythonhosted.org/packages/63/70/2bf7780ad2d390a8d301ad0b550f1581eadbd9a20f896afe06353c2a2913/requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760", size = 131218 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6", size = 64928 }, -] - -[[package]] -name = "safetensors" -version = "0.5.3" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/71/7e/2d5d6ee7b40c0682315367ec7475693d110f512922d582fef1bd4a63adc3/safetensors-0.5.3.tar.gz", hash = "sha256:b6b0d6ecacec39a4fdd99cc19f4576f5219ce858e6fd8dbe7609df0b8dc56965", size = 67210 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/18/ae/88f6c49dbd0cc4da0e08610019a3c78a7d390879a919411a410a1876d03a/safetensors-0.5.3-cp38-abi3-macosx_10_12_x86_64.whl", hash = "sha256:bd20eb133db8ed15b40110b7c00c6df51655a2998132193de2f75f72d99c7073", size = 436917 }, - { url = "https://files.pythonhosted.org/packages/b8/3b/11f1b4a2f5d2ab7da34ecc062b0bc301f2be024d110a6466726bec8c055c/safetensors-0.5.3-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:21d01c14ff6c415c485616b8b0bf961c46b3b343ca59110d38d744e577f9cce7", size = 418419 }, - { url = "https://files.pythonhosted.org/packages/5d/9a/add3e6fef267658075c5a41573c26d42d80c935cdc992384dfae435feaef/safetensors-0.5.3-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:11bce6164887cd491ca75c2326a113ba934be596e22b28b1742ce27b1d076467", size = 459493 }, - { url = "https://files.pythonhosted.org/packages/df/5c/bf2cae92222513cc23b3ff85c4a1bb2811a2c3583ac0f8e8d502751de934/safetensors-0.5.3-cp38-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4a243be3590bc3301c821da7a18d87224ef35cbd3e5f5727e4e0728b8172411e", size = 472400 }, - { url = "https://files.pythonhosted.org/packages/58/11/7456afb740bd45782d0f4c8e8e1bb9e572f1bf82899fb6ace58af47b4282/safetensors-0.5.3-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8bd84b12b1670a6f8e50f01e28156422a2bc07fb16fc4e98bded13039d688a0d", size = 522891 }, - { url = "https://files.pythonhosted.org/packages/57/3d/fe73a9d2ace487e7285f6e157afee2383bd1ddb911b7cb44a55cf812eae3/safetensors-0.5.3-cp38-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:391ac8cab7c829452175f871fcaf414aa1e292b5448bd02620f675a7f3e7abb9", size = 537694 }, - { url = "https://files.pythonhosted.org/packages/a6/f8/dae3421624fcc87a89d42e1898a798bc7ff72c61f38973a65d60df8f124c/safetensors-0.5.3-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cead1fa41fc54b1e61089fa57452e8834f798cb1dc7a09ba3524f1eb08e0317a", size = 471642 }, - { url = "https://files.pythonhosted.org/packages/ce/20/1fbe16f9b815f6c5a672f5b760951e20e17e43f67f231428f871909a37f6/safetensors-0.5.3-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1077f3e94182d72618357b04b5ced540ceb71c8a813d3319f1aba448e68a770d", size = 502241 }, - { url = "https://files.pythonhosted.org/packages/5f/18/8e108846b506487aa4629fe4116b27db65c3dde922de2c8e0cc1133f3f29/safetensors-0.5.3-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:799021e78287bac619c7b3f3606730a22da4cda27759ddf55d37c8db7511c74b", size = 638001 }, - { url = "https://files.pythonhosted.org/packages/82/5a/c116111d8291af6c8c8a8b40628fe833b9db97d8141c2a82359d14d9e078/safetensors-0.5.3-cp38-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:df26da01aaac504334644e1b7642fa000bfec820e7cef83aeac4e355e03195ff", size = 734013 }, - { url = "https://files.pythonhosted.org/packages/7d/ff/41fcc4d3b7de837963622e8610d998710705bbde9a8a17221d85e5d0baad/safetensors-0.5.3-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:32c3ef2d7af8b9f52ff685ed0bc43913cdcde135089ae322ee576de93eae5135", size = 670687 }, - { url = "https://files.pythonhosted.org/packages/40/ad/2b113098e69c985a3d8fbda4b902778eae4a35b7d5188859b4a63d30c161/safetensors-0.5.3-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:37f1521be045e56fc2b54c606d4455573e717b2d887c579ee1dbba5f868ece04", size = 643147 }, - { url = "https://files.pythonhosted.org/packages/0a/0c/95aeb51d4246bd9a3242d3d8349c1112b4ee7611a4b40f0c5c93b05f001d/safetensors-0.5.3-cp38-abi3-win32.whl", hash = "sha256:cfc0ec0846dcf6763b0ed3d1846ff36008c6e7290683b61616c4b040f6a54ace", size = 296677 }, - { url = "https://files.pythonhosted.org/packages/69/e2/b011c38e5394c4c18fb5500778a55ec43ad6106126e74723ffaee246f56e/safetensors-0.5.3-cp38-abi3-win_amd64.whl", hash = "sha256:836cbbc320b47e80acd40e44c8682db0e8ad7123209f69b093def21ec7cafd11", size = 308878 }, -] - [[package]] name = "scikit-learn" version = "1.6.1" @@ -1278,15 +707,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/0a/c8/b3f566db71461cabd4b2d5b39bcc24a7e1c119535c8361f81426be39bb47/scipy-1.15.2-cp313-cp313t-win_amd64.whl", hash = "sha256:fe8a9eb875d430d81755472c5ba75e84acc980e4a8f6204d402849234d3017db", size = 40477705 }, ] -[[package]] -name = "setuptools" -version = "78.1.0" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/a9/5a/0db4da3bc908df06e5efae42b44e75c81dd52716e10192ff36d0c1c8e379/setuptools-78.1.0.tar.gz", hash = "sha256:18fd474d4a82a5f83dac888df697af65afa82dec7323d09c3e37d1f14288da54", size = 1367827 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/54/21/f43f0a1fa8b06b32812e0975981f4677d28e0f3271601dc88ac5a5b83220/setuptools-78.1.0-py3-none-any.whl", hash = "sha256:3e386e96793c8702ae83d17b853fb93d3e09ef82ec62722e61da5cd22376dcd8", size = 1256108 }, -] - [[package]] name = "six" version = "1.17.0" @@ -1310,48 +730,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695", size = 24521 }, ] -[[package]] -name = "sympy" -version = "1.13.1" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "mpmath" }, -] -sdist = { url = "https://files.pythonhosted.org/packages/ca/99/5a5b6f19ff9f083671ddf7b9632028436167cd3d33e11015754e41b249a4/sympy-1.13.1.tar.gz", hash = "sha256:9cebf7e04ff162015ce31c9c6c9144daa34a93bd082f54fd8f12deca4f47515f", size = 7533040 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/b2/fe/81695a1aa331a842b582453b605175f419fe8540355886031328089d840a/sympy-1.13.1-py3-none-any.whl", hash = "sha256:db36cdc64bf61b9b24578b6f7bab1ecdd2452cf008f34faa33776680c26d66f8", size = 6189177 }, -] - -[[package]] -name = "tensorboard" -version = "2.19.0" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "absl-py" }, - { name = "grpcio" }, - { name = "markdown" }, - { name = "numpy" }, - { name = "packaging" }, - { name = "protobuf" }, - { name = "setuptools" }, - { name = "six" }, - { name = "tensorboard-data-server" }, - { name = "werkzeug" }, -] -wheels = [ - { url = "https://files.pythonhosted.org/packages/5d/12/4f70e8e2ba0dbe72ea978429d8530b0333f0ed2140cc571a48802878ef99/tensorboard-2.19.0-py3-none-any.whl", hash = "sha256:5e71b98663a641a7ce8a6e70b0be8e1a4c0c45d48760b076383ac4755c35b9a0", size = 5503412 }, -] - -[[package]] -name = "tensorboard-data-server" -version = "0.7.2" -source = { registry = "https://pypi.org/simple" } -wheels = [ - { url = "https://files.pythonhosted.org/packages/7a/13/e503968fefabd4c6b2650af21e110aa8466fe21432cd7c43a84577a89438/tensorboard_data_server-0.7.2-py3-none-any.whl", hash = "sha256:7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb", size = 2356 }, - { url = "https://files.pythonhosted.org/packages/b7/85/dabeaf902892922777492e1d253bb7e1264cadce3cea932f7ff599e53fea/tensorboard_data_server-0.7.2-py3-none-macosx_10_9_x86_64.whl", hash = "sha256:9fe5d24221b29625dbc7328b0436ca7fc1c23de4acf4d272f1180856e32f9f60", size = 4823598 }, - { url = "https://files.pythonhosted.org/packages/73/c6/825dab04195756cf8ff2e12698f22513b3db2f64925bdd41671bfb33aaa5/tensorboard_data_server-0.7.2-py3-none-manylinux_2_31_x86_64.whl", hash = "sha256:ef687163c24185ae9754ed5650eb5bc4d84ff257aabdc33f0cc6f74d8ba54530", size = 6590363 }, -] - [[package]] name = "threadpoolctl" version = "3.5.0" @@ -1361,69 +739,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/4b/2c/ffbf7a134b9ab11a67b0cf0726453cedd9c5043a4fe7a35d1cefa9a1bcfb/threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467", size = 18414 }, ] -[[package]] -name = "tokenizers" -version = "0.21.1" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "huggingface-hub" }, -] -sdist = { url = "https://files.pythonhosted.org/packages/92/76/5ac0c97f1117b91b7eb7323dcd61af80d72f790b4df71249a7850c195f30/tokenizers-0.21.1.tar.gz", hash = "sha256:a1bb04dc5b448985f86ecd4b05407f5a8d97cb2c0532199b2a302a604a0165ab", size = 343256 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/a5/1f/328aee25f9115bf04262e8b4e5a2050b7b7cf44b59c74e982db7270c7f30/tokenizers-0.21.1-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:e78e413e9e668ad790a29456e677d9d3aa50a9ad311a40905d6861ba7692cf41", size = 2780767 }, - { url = "https://files.pythonhosted.org/packages/ae/1a/4526797f3719b0287853f12c5ad563a9be09d446c44ac784cdd7c50f76ab/tokenizers-0.21.1-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:cd51cd0a91ecc801633829fcd1fda9cf8682ed3477c6243b9a095539de4aecf3", size = 2650555 }, - { url = "https://files.pythonhosted.org/packages/4d/7a/a209b29f971a9fdc1da86f917fe4524564924db50d13f0724feed37b2a4d/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28da6b72d4fb14ee200a1bd386ff74ade8992d7f725f2bde2c495a9a98cf4d9f", size = 2937541 }, - { url = "https://files.pythonhosted.org/packages/3c/1e/b788b50ffc6191e0b1fc2b0d49df8cff16fe415302e5ceb89f619d12c5bc/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:34d8cfde551c9916cb92014e040806122295a6800914bab5865deb85623931cf", size = 2819058 }, - { url = "https://files.pythonhosted.org/packages/36/aa/3626dfa09a0ecc5b57a8c58eeaeb7dd7ca9a37ad9dd681edab5acd55764c/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aaa852d23e125b73d283c98f007e06d4595732104b65402f46e8ef24b588d9f8", size = 3133278 }, - { url = "https://files.pythonhosted.org/packages/a4/4d/8fbc203838b3d26269f944a89459d94c858f5b3f9a9b6ee9728cdcf69161/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a21a15d5c8e603331b8a59548bbe113564136dc0f5ad8306dd5033459a226da0", size = 3144253 }, - { url = "https://files.pythonhosted.org/packages/d8/1b/2bd062adeb7c7511b847b32e356024980c0ffcf35f28947792c2d8ad2288/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2fdbd4c067c60a0ac7eca14b6bd18a5bebace54eb757c706b47ea93204f7a37c", size = 3398225 }, - { url = "https://files.pythonhosted.org/packages/8a/63/38be071b0c8e06840bc6046991636bcb30c27f6bb1e670f4f4bc87cf49cc/tokenizers-0.21.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2dd9a0061e403546f7377df940e866c3e678d7d4e9643d0461ea442b4f89e61a", size = 3038874 }, - { url = "https://files.pythonhosted.org/packages/ec/83/afa94193c09246417c23a3c75a8a0a96bf44ab5630a3015538d0c316dd4b/tokenizers-0.21.1-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:db9484aeb2e200c43b915a1a0150ea885e35f357a5a8fabf7373af333dcc8dbf", size = 9014448 }, - { url = "https://files.pythonhosted.org/packages/ae/b3/0e1a37d4f84c0f014d43701c11eb8072704f6efe8d8fc2dcdb79c47d76de/tokenizers-0.21.1-cp39-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:ed248ab5279e601a30a4d67bdb897ecbe955a50f1e7bb62bd99f07dd11c2f5b6", size = 8937877 }, - { url = "https://files.pythonhosted.org/packages/ac/33/ff08f50e6d615eb180a4a328c65907feb6ded0b8f990ec923969759dc379/tokenizers-0.21.1-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:9ac78b12e541d4ce67b4dfd970e44c060a2147b9b2a21f509566d556a509c67d", size = 9186645 }, - { url = "https://files.pythonhosted.org/packages/5f/aa/8ae85f69a9f6012c6f8011c6f4aa1c96154c816e9eea2e1b758601157833/tokenizers-0.21.1-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:e5a69c1a4496b81a5ee5d2c1f3f7fbdf95e90a0196101b0ee89ed9956b8a168f", size = 9384380 }, - { url = "https://files.pythonhosted.org/packages/e8/5b/a5d98c89f747455e8b7a9504910c865d5e51da55e825a7ae641fb5ff0a58/tokenizers-0.21.1-cp39-abi3-win32.whl", hash = "sha256:1039a3a5734944e09de1d48761ade94e00d0fa760c0e0551151d4dd851ba63e3", size = 2239506 }, - { url = "https://files.pythonhosted.org/packages/e6/b6/072a8e053ae600dcc2ac0da81a23548e3b523301a442a6ca900e92ac35be/tokenizers-0.21.1-cp39-abi3-win_amd64.whl", hash = "sha256:0f0dcbcc9f6e13e675a66d7a5f2f225a736745ce484c1a4e07476a89ccdad382", size = 2435481 }, -] - -[[package]] -name = "torch" -version = "2.6.0" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "filelock" }, - { name = "fsspec" }, - { name = "jinja2" }, - { name = "networkx" }, - { name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, - { name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, - { name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, - { name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, - { name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, - { name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, - { name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, - { name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, - { name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, - { name = "nvidia-cusparselt-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, - { name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, - { name = "nvidia-nvjitlink-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, - { name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, - { name = "setuptools" }, - { name = "sympy" }, - { name = "triton", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, - { name = "typing-extensions" }, -] -wheels = [ - { url = "https://files.pythonhosted.org/packages/e5/35/0c52d708144c2deb595cd22819a609f78fdd699b95ff6f0ebcd456e3c7c1/torch-2.6.0-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:2bb8987f3bb1ef2675897034402373ddfc8f5ef0e156e2d8cfc47cacafdda4a9", size = 766624563 }, - { url = "https://files.pythonhosted.org/packages/01/d6/455ab3fbb2c61c71c8842753b566012e1ed111e7a4c82e0e1c20d0c76b62/torch-2.6.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:b789069020c5588c70d5c2158ac0aa23fd24a028f34a8b4fcb8fcb4d7efcf5fb", size = 95607867 }, - { url = "https://files.pythonhosted.org/packages/18/cf/ae99bd066571656185be0d88ee70abc58467b76f2f7c8bfeb48735a71fe6/torch-2.6.0-cp312-cp312-win_amd64.whl", hash = "sha256:7e1448426d0ba3620408218b50aa6ada88aeae34f7a239ba5431f6c8774b1239", size = 204120469 }, - { url = "https://files.pythonhosted.org/packages/81/b4/605ae4173aa37fb5aa14605d100ff31f4f5d49f617928c9f486bb3aaec08/torch-2.6.0-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:9a610afe216a85a8b9bc9f8365ed561535c93e804c2a317ef7fabcc5deda0989", size = 66532538 }, - { url = "https://files.pythonhosted.org/packages/24/85/ead1349fc30fe5a32cadd947c91bda4a62fbfd7f8c34ee61f6398d38fb48/torch-2.6.0-cp313-cp313-manylinux1_x86_64.whl", hash = "sha256:4874a73507a300a5d089ceaff616a569e7bb7c613c56f37f63ec3ffac65259cf", size = 766626191 }, - { url = "https://files.pythonhosted.org/packages/dd/b0/26f06f9428b250d856f6d512413e9e800b78625f63801cbba13957432036/torch-2.6.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:a0d5e1b9874c1a6c25556840ab8920569a7a4137afa8a63a32cee0bc7d89bd4b", size = 95611439 }, - { url = "https://files.pythonhosted.org/packages/c2/9c/fc5224e9770c83faed3a087112d73147cd7c7bfb7557dcf9ad87e1dda163/torch-2.6.0-cp313-cp313-win_amd64.whl", hash = "sha256:510c73251bee9ba02ae1cb6c9d4ee0907b3ce6020e62784e2d7598e0cfa4d6cc", size = 204126475 }, - { url = "https://files.pythonhosted.org/packages/88/8b/d60c0491ab63634763be1537ad488694d316ddc4a20eaadd639cedc53971/torch-2.6.0-cp313-none-macosx_11_0_arm64.whl", hash = "sha256:ff96f4038f8af9f7ec4231710ed4549da1bdebad95923953a25045dcf6fd87e2", size = 66536783 }, -] - [[package]] name = "tornado" version = "6.4.2" @@ -1442,18 +757,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/61/cc/58b1adeb1bb46228442081e746fcdbc4540905c87e8add7c277540934edb/tornado-6.4.2-cp38-abi3-win_amd64.whl", hash = "sha256:908b71bf3ff37d81073356a5fadcc660eb10c1476ee6e2725588626ce7e5ca38", size = 438907 }, ] -[[package]] -name = "tqdm" -version = "4.67.1" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "colorama", marker = "sys_platform == 'win32'" }, -] -sdist = { url = "https://files.pythonhosted.org/packages/a8/4b/29b4ef32e036bb34e4ab51796dd745cdba7ed47ad142a9f4a1eb8e0c744d/tqdm-4.67.1.tar.gz", hash = "sha256:f8aef9c52c08c13a65f30ea34f4e5aac3fd1a34959879d7e59e63027286627f2", size = 169737 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl", hash = "sha256:26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2", size = 78540 }, -] - [[package]] name = "traitlets" version = "5.14.3" @@ -1463,63 +766,6 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f", size = 85359 }, ] -[[package]] -name = "transformers" -version = "4.50.3" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "filelock" }, - { name = "huggingface-hub" }, - { name = "numpy" }, - { name = "packaging" }, - { name = "pyyaml" }, - { name = "regex" }, - { name = "requests" }, - { name = "safetensors" }, - { name = "tokenizers" }, - { name = "tqdm" }, -] -sdist = { url = "https://files.pythonhosted.org/packages/c0/29/37877123d6633a188997d75dc17d6f526745d63361794348ce748db23d49/transformers-4.50.3.tar.gz", hash = "sha256:1d795d24925e615a8e63687d077e4f7348c2702eb87032286eaa76d83cdc684f", size = 8774363 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/aa/22/733a6fc4a6445d835242f64c490fdd30f4a08d58f2b788613de3f9170692/transformers-4.50.3-py3-none-any.whl", hash = "sha256:6111610a43dec24ef32c3df0632c6b25b07d9711c01d9e1077bdd2ff6b14a38c", size = 10180411 }, -] - -[[package]] -name = "triton" -version = "3.2.0" -source = { registry = "https://pypi.org/simple" } -wheels = [ - { url = "https://files.pythonhosted.org/packages/06/00/59500052cb1cf8cf5316be93598946bc451f14072c6ff256904428eaf03c/triton-3.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8d9b215efc1c26fa7eefb9a157915c92d52e000d2bf83e5f69704047e63f125c", size = 253159365 }, - { url = "https://files.pythonhosted.org/packages/c7/30/37a3384d1e2e9320331baca41e835e90a3767303642c7a80d4510152cbcf/triton-3.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e5dfa23ba84541d7c0a531dfce76d8bcd19159d50a4a8b14ad01e91734a5c1b0", size = 253154278 }, -] - -[[package]] -name = "typing-extensions" -version = "4.13.0" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/0e/3e/b00a62db91a83fff600de219b6ea9908e6918664899a2d85db222f4fbf19/typing_extensions-4.13.0.tar.gz", hash = "sha256:0a4ac55a5820789d87e297727d229866c9650f6521b64206413c4fbada24d95b", size = 106520 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/e0/86/39b65d676ec5732de17b7e3c476e45bb80ec64eb50737a8dce1a4178aba1/typing_extensions-4.13.0-py3-none-any.whl", hash = "sha256:c8dd92cc0d6425a97c18fbb9d1954e5ff92c1ca881a309c45f06ebc0b79058e5", size = 45683 }, -] - -[[package]] -name = "tzdata" -version = "2025.2" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/95/32/1a225d6164441be760d75c2c42e2780dc0873fe382da3e98a2e1e48361e5/tzdata-2025.2.tar.gz", hash = "sha256:b60a638fcc0daffadf82fe0f57e53d06bdec2f36c4df66280ae79bce6bd6f2b9", size = 196380 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl", hash = "sha256:1a403fada01ff9221ca8044d701868fa132215d84beb92242d9acd2147f667a8", size = 347839 }, -] - -[[package]] -name = "urllib3" -version = "2.3.0" -source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/aa/63/e53da845320b757bf29ef6a9062f5c669fe997973f966045cb019c3f4b66/urllib3-2.3.0.tar.gz", hash = "sha256:f8c5449b3cf0861679ce7e0503c7b44b5ec981bec0d1d3795a07f1ba96f0204d", size = 307268 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/c8/19/4ec628951a74043532ca2cf5d97b7b14863931476d117c471e8e2b1eb39f/urllib3-2.3.0-py3-none-any.whl", hash = "sha256:1cee9ad369867bfdbbb48b7dd50374c0967a0bb7710050facf0dd6911440e3df", size = 128369 }, -] - [[package]] name = "wcwidth" version = "0.2.13" @@ -1528,15 +774,3 @@ sdist = { url = "https://files.pythonhosted.org/packages/6c/63/53559446a878410fc wheels = [ { url = "https://files.pythonhosted.org/packages/fd/84/fd2ba7aafacbad3c4201d395674fc6348826569da3c0937e75505ead3528/wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859", size = 34166 }, ] - -[[package]] -name = "werkzeug" -version = "3.1.3" -source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "markupsafe" }, -] -sdist = { url = "https://files.pythonhosted.org/packages/9f/69/83029f1f6300c5fb2471d621ab06f6ec6b3324685a2ce0f9777fd4a8b71e/werkzeug-3.1.3.tar.gz", hash = "sha256:60723ce945c19328679790e3282cc758aa4a6040e4bb330f53d30fa546d44746", size = 806925 } -wheels = [ - { url = "https://files.pythonhosted.org/packages/52/24/ab44c871b0f07f491e5d2ad12c9bd7358e527510618cb1b803a88e986db1/werkzeug-3.1.3-py3-none-any.whl", hash = "sha256:54b78bf3716d19a65be4fceccc0d1d7b89e608834989dfae50ea87564639213e", size = 224498 }, -]