nccl/test/include/test_utilities.h
2017-11-11 19:22:06 -08:00

439 lines
14 KiB
C++

/*************************************************************************
* Copyright (c) 2015-2016, NVIDIA CORPORATION. All rights reserved.
*
* See LICENCE.txt for license information
************************************************************************/
#ifndef SRC_TEST_UTILITIES_H_
#define SRC_TEST_UTILITIES_H_
#include <curand.h>
#include <cerrno>
#include <string>
#define CUDACHECK(cmd) do { \
cudaError_t e = cmd; \
if( e != cudaSuccess ) { \
printf("Cuda failure %s:%d '%s'\n", \
__FILE__,__LINE__,cudaGetErrorString(e)); \
exit(EXIT_FAILURE); \
} \
} while(0)
#define NCCLCHECK(cmd) do { \
ncclResult_t r = cmd; \
if (r!= ncclSuccess) { \
printf("NCCL failure %s:%d '%s'\n", \
__FILE__,__LINE__,ncclGetErrorString(r)); \
exit(EXIT_FAILURE); \
} \
} while(0)
template<typename T>
void Randomize(T* const dest, const int N, const int randomSeed);
template<typename T>
void Accumulate(T* dest, const T* contrib, int N, ncclRedOp_t op);
template<typename T>
double CheckDelta(const T* results, const T* expected, int N);
#define CURAND_CHK(cmd) \
do { \
curandStatus_t error = (cmd); \
if (error != CURAND_STATUS_SUCCESS) { \
printf("CuRAND error %i at %s:%i\n", error, __FILE__ , __LINE__); \
exit(EXIT_FAILURE); \
} \
} while (false)
template<typename T>
void GenerateRandom(curandGenerator_t generator, T * const dest,
const int N);
template<>
void GenerateRandom<char>(curandGenerator_t generator, char * const dest,
const int N) {
CURAND_CHK(curandGenerate(generator, (unsigned int*)dest,
N * sizeof(char) / sizeof(int)));
}
template<>
void GenerateRandom<int>(curandGenerator_t generator, int * const dest,
const int N) {
CURAND_CHK(curandGenerate(generator, (unsigned int*)dest, N));
}
template<>
void GenerateRandom<float>(curandGenerator_t generator, float * const dest,
const int N) {
CURAND_CHK(curandGenerateUniform(generator, dest, N));
}
template<>
void GenerateRandom<double>(curandGenerator_t generator, double * const dest,
const int N) {
CURAND_CHK(curandGenerateUniformDouble(generator, dest, N));
}
template<>
void GenerateRandom<unsigned long long>(curandGenerator_t generator, unsigned long long * const dest,
const int N) {
CURAND_CHK(curandGenerateLongLong(generator, dest, N));
}
template<typename T>
void Randomize(T* const dest, const int N, const int randomSeed) {
curandGenerator_t gen;
CURAND_CHK(curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_MTGP32));
CURAND_CHK(curandSetPseudoRandomGeneratorSeed(gen, randomSeed));
GenerateRandom<T>(gen, dest, N);
CURAND_CHK(curandDestroyGenerator(gen));
CUDACHECK(cudaDeviceSynchronize());
}
template<>
void Randomize(unsigned long long* const dest, const int N, const int randomSeed) {
curandGenerator_t gen;
CURAND_CHK(curandCreateGenerator(&gen, CURAND_RNG_QUASI_SOBOL64));
GenerateRandom<unsigned long long>(gen, dest, N);
CURAND_CHK(curandDestroyGenerator(gen));
CUDACHECK(cudaDeviceSynchronize());
}
template<>
void Randomize(long long* const dest, const int N, const int randomSeed) {
curandGenerator_t gen;
CURAND_CHK(curandCreateGenerator(&gen, CURAND_RNG_QUASI_SOBOL64));
GenerateRandom<unsigned long long>(gen, (unsigned long long *)dest, N);
CURAND_CHK(curandDestroyGenerator(gen));
CUDACHECK(cudaDeviceSynchronize());
}
#ifdef CUDA_HAS_HALF
__global__ void halve(const float * src, half* dest, int N) {
for(int tid = threadIdx.x + blockIdx.x*blockDim.x;
tid < N; tid += blockDim.x * gridDim.x)
dest[tid] = __float2half(src[tid]);
}
template<>
void Randomize<half>(half* const dest, const int N, const int randomSeed) {
curandGenerator_t gen;
CURAND_CHK(curandCreateGenerator(&gen, CURAND_RNG_PSEUDO_MTGP32));
CURAND_CHK(curandSetPseudoRandomGeneratorSeed(gen, randomSeed));
float* temp;
CUDACHECK(cudaMalloc(&temp, N*sizeof(float)));
GenerateRandom<float>(gen, temp, N);
halve<<<128, 512>>>(temp, dest, N);
CURAND_CHK(curandDestroyGenerator(gen));
CUDACHECK(cudaFree(temp));
CUDACHECK(cudaDeviceSynchronize());
}
#endif
void makeRandom(void* ptr, int n, ncclDataType_t type, int seed) {
if (type == ncclChar)
Randomize<char>((char*)ptr, n, seed);
else if (type == ncclInt)
Randomize<int>((int*)ptr, n, seed);
#ifdef CUDA_HAS_HALF
else if (type == ncclHalf)
Randomize<half>((half*)ptr, n, seed);
#endif
else if (type == ncclFloat)
Randomize<float>((float*)ptr, n, seed);
else if (type == ncclDouble)
Randomize<double>((double*)ptr, n, seed);
else if (type == ncclInt64)
Randomize<long long>((long long*)ptr, n, seed);
else if (type == ncclUint64)
Randomize<unsigned long long>((unsigned long long*)ptr, n, seed);
return;
}
template<typename T, int OP> __global__ static
void accumKern(T* acum, const T* contrib, int N) {
int tid = threadIdx.x + blockIdx.x*blockDim.x;
int offset = blockDim.x*gridDim.x;
for(int i=tid; i<N; i+=offset) {
T c = contrib[i];
T a = acum[i];
if(OP == ncclSum) {
acum[i] = a+c;
} else if(OP == ncclProd) {
acum[i] = a*c;
} else if(OP == ncclMax) {
acum[i] = (a > c) ? a : c;
} else if(OP == ncclMin) {
acum[i] = (a < c) ? a : c;
}
}
}
#ifdef CUDA_HAS_HALF
template<> __global__
void accumKern<half, ncclSum>(half* acum, const half* contrib, int N) {
int tid = threadIdx.x + blockIdx.x*blockDim.x;
int offset = blockDim.x*gridDim.x;
for(int i=tid; i<N; i+=offset) {
float c = __half2float(contrib[i]);
float a = __half2float(acum[i]);
acum[i] = __float2half( a + c );
}
}
template<> __global__
void accumKern<half, ncclProd>(half* acum, const half* contrib, int N) {
int tid = threadIdx.x + blockIdx.x*blockDim.x;
int offset = blockDim.x*gridDim.x;
for(int i=tid; i<N; i+=offset) {
float c = __half2float(contrib[i]);
float a = __half2float(acum[i]);
acum[i] = __float2half( a * c );
}
}
template<> __global__
void accumKern<half, ncclMax>(half* acum, const half* contrib, int N) {
int tid = threadIdx.x + blockIdx.x*blockDim.x;
int offset = blockDim.x*gridDim.x;
for(int i=tid; i<N; i+=offset) {
float c = __half2float(contrib[i]);
float a = __half2float(acum[i]);
acum[i] = __float2half( (a>c) ? a : c );
}
}
template<> __global__
void accumKern<half, ncclMin>(half* acum, const half* contrib, int N) {
int tid = threadIdx.x + blockIdx.x*blockDim.x;
int offset = blockDim.x*gridDim.x;
for(int i=tid; i<N; i+=offset) {
float c = __half2float(contrib[i]);
float a = __half2float(acum[i]);
acum[i] = __float2half( (a<c) ? a : c );
}
}
#endif
template<typename T>
void accVecType(void* out, void* in, int n, ncclRedOp_t op) {
switch(op) {
case ncclSum: accumKern<T, ncclSum> <<<256,256>>>((T*)out, (T*)in, n); break;
case ncclProd: accumKern<T, ncclProd><<<256,256>>>((T*)out, (T*)in, n); break;
case ncclMax: accumKern<T, ncclMax> <<<256,256>>>((T*)out, (T*)in, n); break;
case ncclMin: accumKern<T, ncclMin> <<<256,256>>>((T*)out, (T*)in, n); break;
default:
printf("Unknown reduction operation.\n");
exit(EXIT_FAILURE);
}
}
template<typename T>
void Accumulate(T* dest, const T* contrib, int N, ncclRedOp_t op) {
T* devdest;
CUDACHECK(cudaHostRegister(dest, N*sizeof(T), 0));
CUDACHECK(cudaHostGetDevicePointer(&devdest, dest, 0));
accVecType<T>((void*)devdest, (void*)contrib, N, op);
CUDACHECK(cudaHostUnregister(dest));
}
void accVec(void* out, void* in, int n, ncclDataType_t type, ncclRedOp_t op) {
switch (type) {
case ncclChar: accVecType<char> (out, in, n, op); break;
case ncclInt: accVecType<int> (out, in, n, op); break;
#ifdef CUDA_HAS_HALF
case ncclHalf: accVecType<half> (out, in, n, op); break;
#endif
case ncclFloat: accVecType<float> (out, in, n, op); break;
case ncclDouble: accVecType<double> (out, in, n, op); break;
case ncclInt64: accVecType<long long> (out, in, n, op); break;
case ncclUint64: accVecType<unsigned long long> (out, in, n, op); break;
default:
printf("Unknown reduction type.\n");
exit(EXIT_FAILURE);
}
}
template<typename T> __device__
double absDiff(T a, T b) {
return fabs((double)(b - a));
}
#ifdef CUDA_HAS_HALF
template<> __device__
double absDiff<half>(half a, half b) {
float x = __half2float(a);
float y = __half2float(b);
return fabs((double)(y-x));
}
#endif
template<typename T, int BSIZE> __global__
void deltaKern(const T* A, const T* B, int N, double* max) {
__shared__ double temp[BSIZE];
int tid = threadIdx.x;
double locmax = 0.0;
for(int i=tid; i<N; i+=blockDim.x) {
double delta = absDiff(A[i], B[i]);
if( delta > locmax )
locmax = delta;
}
temp[tid] = locmax;
for(int stride = BSIZE/2; stride > 1; stride>>=1) {
__syncthreads();
if( tid < stride )
temp[tid] = temp[tid] > temp[tid+stride] ? temp[tid] : temp[tid+stride];
}
__syncthreads();
if( threadIdx.x == 0)
*max = temp[0] > temp[1] ? temp[0] : temp[1];
}
template<typename T>
double CheckDelta(const T* results, const T* expected, int N) {
T* devexp;
double maxerr;
double* devmax;
CUDACHECK(cudaHostRegister((void*)expected, N*sizeof(T), 0));
CUDACHECK(cudaHostGetDevicePointer((void**)&devexp, (void*)expected, 0));
CUDACHECK(cudaHostRegister((void*)&maxerr, sizeof(double), 0));
CUDACHECK(cudaHostGetDevicePointer(&devmax, &maxerr, 0));
deltaKern<T, 512><<<1, 512>>>(results, devexp, N, devmax);
CUDACHECK(cudaHostUnregister(&maxerr));
CUDACHECK(cudaHostUnregister((void*)expected));
return maxerr;
}
void maxDiff(double* max, void* first, void* second, int n, ncclDataType_t type, cudaStream_t s) {
switch (type) {
case ncclChar: deltaKern<char, 512> <<<1,512,0,s>>>((char*)first, (char*)second, n, max); break;
case ncclInt: deltaKern<int, 512> <<<1,512,0,s>>>((int*)first, (int*)second, n, max); break;
#ifdef CUDA_HAS_HALF
case ncclHalf: deltaKern<half, 512> <<<1,512,0,s>>>((half*)first, (half*)second, n, max); break;
#endif
case ncclFloat: deltaKern<float, 512> <<<1,512,0,s>>>((float*)first, (float*)second, n, max); break;
case ncclDouble: deltaKern<double, 512> <<<1,512,0,s>>>((double*)first, (double*)second, n, max); break;
case ncclInt64: deltaKern<long long, 512> <<<1,512,0,s>>>((long long*)first, (long long*)second, n, max); break;
case ncclUint64: deltaKern<unsigned long long, 512><<<1,512,0,s>>>((unsigned long long*)first, (unsigned long long*)second, n, max); break;
default:
printf("Unknown reduction type.\n");
exit(EXIT_FAILURE);
}
}
std::string TypeName(const ncclDataType_t type) {
switch (type) {
case ncclChar: return "char";
case ncclInt: return "int";
#ifdef CUDA_HAS_HALF
case ncclHalf: return "half";
#endif
case ncclFloat: return "float";
case ncclDouble: return "double";
case ncclInt64: return "int64";
case ncclUint64: return "uint64";
default: return "unknown";
}
}
std::string OperationName(const ncclRedOp_t op) {
switch (op) {
case ncclSum: return "sum";
case ncclProd: return "prod";
case ncclMax: return "max";
case ncclMin: return "min";
default: return "unknown";
}
}
ncclDataType_t strToType(const char* s) {
if (strcmp(s, "char") == 0)
return ncclChar;
if (strcmp(s, "int") == 0)
return ncclInt;
#ifdef CUDA_HAS_HALF
if (strcmp(s, "half") == 0)
return ncclHalf;
#endif
if (strcmp(s, "float") == 0)
return ncclFloat;
if (strcmp(s, "double") == 0)
return ncclDouble;
if (strcmp(s, "int64") == 0)
return ncclInt64;
if (strcmp(s, "uint64") == 0)
return ncclUint64;
return nccl_NUM_TYPES;
}
size_t wordSize(ncclDataType_t type) {
switch(type) {
case ncclChar: return sizeof(char);
case ncclInt: return sizeof(int);
#ifdef CUDA_HAS_HALF
case ncclHalf: return sizeof(short);
#endif
case ncclFloat: return sizeof(float);
case ncclDouble: return sizeof(double);
case ncclInt64: return sizeof(long long);
case ncclUint64: return sizeof(unsigned long long);
}
return 0;
}
double deltaMaxValue(ncclDataType_t type, bool is_reduction) {
if (is_reduction) {
switch(type) {
#ifdef CUDA_HAS_HALF
case ncclHalf: return 5e-2;
#endif
case ncclFloat: return 1e-5;
case ncclDouble: return 1e-12;
}
}
return 1e-200;
}
ncclRedOp_t strToOp(const char* s) {
if (strcmp(s, "sum") == 0)
return ncclSum;
if (strcmp(s, "prod") == 0)
return ncclProd;
if (strcmp(s, "max") == 0)
return ncclMax;
if (strcmp(s, "min") == 0)
return ncclMin;
return nccl_NUM_OPS;
}
int strToPosInt(const char* s) {
errno = 0;
long temp = strtol(s, NULL, 10);
if (errno != 0 || temp > INT_MAX || temp < 0)
return 0;
return (int)temp;
}
int strToNonNeg(const char* s) {
errno = 0;
long temp = strtol(s, NULL, 10);
if (errno != 0 || temp > INT_MAX || temp < 0)
return -1;
return (int)temp;
}
#endif // SRC_TEST_UTILITIES_H_