nccl/src/include/utils.h
Sylvain Jeaugey f9c3dc251e 2.19.1-1
Add local user buffer registration for NVLink SHARP.
Add tuning plugin support.
Increase net API to v7 to allow for device-side packet reordering;
remove support for v4 plugins.
Add support for RoCE ECE.
Add support for C2C links.
Better detect SHM allocation failures to avoid crash with Bus Error.
Fix missing thread unlocks in bootstrap (Fixes #936).
Disable network flush by default on H100.
Move device code from src/collectives/device to src/device.
2023-09-26 05:50:33 -07:00

525 lines
17 KiB
C++

/*************************************************************************
* Copyright (c) 2016-2022, NVIDIA CORPORATION. All rights reserved.
*
* See LICENSE.txt for license information
************************************************************************/
#ifndef NCCL_UTILS_H_
#define NCCL_UTILS_H_
#include "nccl.h"
#include "alloc.h"
#include "checks.h"
#include <stdint.h>
#include <time.h>
#include <sched.h>
#include <algorithm>
#include <new>
int ncclCudaCompCap();
// PCI Bus ID <-> int64 conversion functions
ncclResult_t int64ToBusId(int64_t id, char* busId);
ncclResult_t busIdToInt64(const char* busId, int64_t* id);
ncclResult_t getBusId(int cudaDev, int64_t *busId);
ncclResult_t getHostName(char* hostname, int maxlen, const char delim);
uint64_t getHash(const char* string, int n);
uint64_t getHostHash();
uint64_t getPidHash();
ncclResult_t getRandomData(void* buffer, size_t bytes);
struct netIf {
char prefix[64];
int port;
};
int parseStringList(const char* string, struct netIf* ifList, int maxList);
bool matchIfList(const char* string, int port, struct netIf* ifList, int listSize, bool matchExact);
static long log2i(long n) {
long l = 0;
while (n>>=1) l++;
return l;
}
inline uint64_t clockNano() {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return uint64_t(ts.tv_sec)*1000*1000*1000 + ts.tv_nsec;
}
/* get any bytes of random data from /dev/urandom, return 0 if it succeeds; else
* return -1 */
inline ncclResult_t getRandomData(void* buffer, size_t bytes) {
ncclResult_t ret = ncclSuccess;
if (bytes > 0) {
const size_t one = 1UL;
FILE* fp = fopen("/dev/urandom", "r");
if (buffer == NULL || fp == NULL || fread(buffer, bytes, one, fp) != one) ret = ncclSystemError;
if (fp) fclose(fp);
}
return ret;
}
////////////////////////////////////////////////////////////////////////////////
template<typename Int>
inline void ncclAtomicRefCountIncrement(Int* refs) {
__atomic_fetch_add(refs, 1, __ATOMIC_RELAXED);
}
template<typename Int>
inline Int ncclAtomicRefCountDecrement(Int* refs) {
return __atomic_sub_fetch(refs, 1, __ATOMIC_ACQ_REL);
}
////////////////////////////////////////////////////////////////////////////////
/* ncclMemoryStack: Pools memory for fast LIFO ordered allocation. Note that
* granularity of LIFO is not per object, instead frames containing many objects
* are pushed and popped. Therefor deallocation is extremely cheap since its
* done at the frame granularity.
*
* The initial state of the stack is with one frame, the "nil" frame, which
* cannot be popped. Therefor objects allocated in the nil frame cannot be
* deallocated sooner than stack destruction.
*/
struct ncclMemoryStack;
void ncclMemoryStackConstruct(struct ncclMemoryStack* me);
void ncclMemoryStackDestruct(struct ncclMemoryStack* me);
void ncclMemoryStackPush(struct ncclMemoryStack* me);
void ncclMemoryStackPop(struct ncclMemoryStack* me);
template<typename T>
T* ncclMemoryStackAlloc(struct ncclMemoryStack* me, size_t n=1);
////////////////////////////////////////////////////////////////////////////////
/* ncclMemoryPool: A free-list of same-sized allocations. It is an invalid for
* a pool instance to ever hold objects whose type have differing
* (sizeof(T), alignof(T)) pairs. The underlying memory is supplied by
* a backing `ncclMemoryStack` passed during Alloc(). If memory
* backing any currently held object is deallocated then it is an error to do
* anything other than reconstruct it, after which it is a valid empty pool.
*/
struct ncclMemoryPool;
// Equivalent to zero-initialization
void ncclMemoryPoolConstruct(struct ncclMemoryPool* me);
template<typename T>
T* ncclMemoryPoolAlloc(struct ncclMemoryPool* me, struct ncclMemoryStack* backing);
template<typename T>
void ncclMemoryPoolFree(struct ncclMemoryPool* me, T* obj);
void ncclMemoryPoolTakeAll(struct ncclMemoryPool* me, struct ncclMemoryPool* from);
////////////////////////////////////////////////////////////////////////////////
/* ncclIntruQueue: A singly-linked list queue where the per-object next pointer
* field is given via the `next` template argument.
*
* Example:
* struct Foo {
* struct Foo *next1, *next2; // can be a member of two lists at once
* };
* ncclIntruQueue<Foo, &Foo::next1> list1;
* ncclIntruQueue<Foo, &Foo::next2> list2;
*/
template<typename T, T *T::*next>
struct ncclIntruQueue;
template<typename T, T *T::*next>
void ncclIntruQueueConstruct(ncclIntruQueue<T,next> *me);
template<typename T, T *T::*next>
bool ncclIntruQueueEmpty(ncclIntruQueue<T,next> *me);
template<typename T, T *T::*next>
T* ncclIntruQueueHead(ncclIntruQueue<T,next> *me);
template<typename T, T *T::*next>
void ncclIntruQueueEnqueue(ncclIntruQueue<T,next> *me, T *x);
template<typename T, T *T::*next>
T* ncclIntruQueueDequeue(ncclIntruQueue<T,next> *me);
template<typename T, T *T::*next>
T* ncclIntruQueueTryDequeue(ncclIntruQueue<T,next> *me);
template<typename T, T *T::*next>
void ncclIntruQueueFreeAll(ncclIntruQueue<T,next> *me, ncclMemoryPool *memPool);
////////////////////////////////////////////////////////////////////////////////
/* ncclThreadSignal: Couples a pthread mutex and cond together. The "mutex"
* and "cond" fields are part of the public interface.
*/
struct ncclThreadSignal {
pthread_mutex_t mutex;
pthread_cond_t cond;
};
// returns {PTHREAD_MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER}
constexpr ncclThreadSignal ncclThreadSignalStaticInitializer();
void ncclThreadSignalConstruct(struct ncclThreadSignal* me);
void ncclThreadSignalDestruct(struct ncclThreadSignal* me);
// A convenience instance per-thread.
extern __thread struct ncclThreadSignal ncclThreadSignalLocalInstance;
////////////////////////////////////////////////////////////////////////////////
template<typename T, T *T::*next>
struct ncclIntruQueueMpsc;
template<typename T, T *T::*next>
void ncclIntruQueueMpscConstruct(struct ncclIntruQueueMpsc<T,next>* me);
template<typename T, T *T::*next>
bool ncclIntruQueueMpscEmpty(struct ncclIntruQueueMpsc<T,next>* me);
// Enqueue element. Returns true if queue is not abandoned. Even if queue is
// abandoned the element enqueued, so the caller needs to make arrangements for
// the queue to be tended.
template<typename T, T *T::*next>
bool ncclIntruQueueMpscEnqueue(struct ncclIntruQueueMpsc<T,next>* me, T* x);
// Dequeue all elements at a glance. If there aren't any and `waitSome` is
// true then this call will wait until it can return a non empty list.
template<typename T, T *T::*next>
T* ncclIntruQueueMpscDequeueAll(struct ncclIntruQueueMpsc<T,next>* me, bool waitSome);
// Dequeue all elements and set queue to abandoned state.
template<typename T, T *T::*next>
T* ncclIntruQueueMpscAbandon(struct ncclIntruQueueMpsc<T,next>* me);
////////////////////////////////////////////////////////////////////////////////
struct ncclMemoryStack {
struct Hunk {
struct Hunk* above; // reverse stack pointer
size_t size; // size of this allocation (including this header struct)
};
struct Unhunk { // proxy header for objects allocated out-of-hunk
struct Unhunk* next;
void* obj;
};
struct Frame {
struct Hunk* hunk; // top of non-empty hunks
uintptr_t bumper, end; // points into top hunk
struct Unhunk* unhunks;
struct Frame* below;
};
static void* allocateSpilled(struct ncclMemoryStack* me, size_t size, size_t align);
static void* allocate(struct ncclMemoryStack* me, size_t size, size_t align);
struct Hunk stub;
struct Frame topFrame;
};
inline void ncclMemoryStackConstruct(struct ncclMemoryStack* me) {
me->stub.above = nullptr;
me->stub.size = 0;
me->topFrame.hunk = &me->stub;
me->topFrame.bumper = 0;
me->topFrame.end = 0;
me->topFrame.unhunks = nullptr;
me->topFrame.below = nullptr;
}
inline void* ncclMemoryStack::allocate(struct ncclMemoryStack* me, size_t size, size_t align) {
uintptr_t o = (me->topFrame.bumper + align-1) & -uintptr_t(align);
void* obj;
if (__builtin_expect(o + size <= me->topFrame.end, true)) {
me->topFrame.bumper = o + size;
obj = reinterpret_cast<void*>(o);
} else {
obj = allocateSpilled(me, size, align);
}
return obj;
}
template<typename T>
inline T* ncclMemoryStackAlloc(struct ncclMemoryStack* me, size_t n) {
void *obj = ncclMemoryStack::allocate(me, n*sizeof(T), alignof(T));
memset(obj, 0, n*sizeof(T));
return (T*)obj;
}
inline void ncclMemoryStackPush(struct ncclMemoryStack* me) {
using Frame = ncclMemoryStack::Frame;
Frame tmp = me->topFrame;
Frame* snapshot = (Frame*)ncclMemoryStack::allocate(me, sizeof(Frame), alignof(Frame));
*snapshot = tmp; // C++ struct assignment
me->topFrame.unhunks = nullptr;
me->topFrame.below = snapshot;
}
inline void ncclMemoryStackPop(struct ncclMemoryStack* me) {
ncclMemoryStack::Unhunk* un = me->topFrame.unhunks;
while (un != nullptr) {
free(un->obj);
un = un->next;
}
me->topFrame = *me->topFrame.below; // C++ struct assignment
}
////////////////////////////////////////////////////////////////////////////////
struct ncclMemoryPool {
struct Cell {
Cell *next;
};
struct Cell* head;
struct Cell* tail; // meaningful only when head != nullptr
};
inline void ncclMemoryPoolConstruct(struct ncclMemoryPool* me) {
me->head = nullptr;
}
template<typename T>
inline T* ncclMemoryPoolAlloc(struct ncclMemoryPool* me, struct ncclMemoryStack* backing) {
using Cell = ncclMemoryPool::Cell;
Cell* cell;
if (__builtin_expect(me->head != nullptr, true)) {
cell = me->head;
me->head = cell->next;
} else {
// Use the internal allocate() since it doesn't memset to 0 yet.
size_t cellSize = std::max(sizeof(Cell), sizeof(T));
size_t cellAlign = std::max(alignof(Cell), alignof(T));
cell = (Cell*)ncclMemoryStack::allocate(backing, cellSize, cellAlign);
}
memset(cell, 0, sizeof(T));
return reinterpret_cast<T*>(cell);
}
template<typename T>
inline void ncclMemoryPoolFree(struct ncclMemoryPool* me, T* obj) {
using Cell = ncclMemoryPool::Cell;
Cell* cell = reinterpret_cast<Cell*>(obj);
cell->next = me->head;
if (me->head == nullptr) me->tail = cell;
me->head = cell;
}
inline void ncclMemoryPoolTakeAll(struct ncclMemoryPool* me, struct ncclMemoryPool* from) {
if (from->head != nullptr) {
from->tail->next = me->head;
if (me->head == nullptr) me->tail = from->tail;
me->head = from->head;
from->head = nullptr;
}
}
////////////////////////////////////////////////////////////////////////////////
template<typename T, T *T::*next>
struct ncclIntruQueue {
T *head, *tail;
};
template<typename T, T *T::*next>
inline void ncclIntruQueueConstruct(ncclIntruQueue<T,next> *me) {
me->head = nullptr;
me->tail = nullptr;
}
template<typename T, T *T::*next>
inline bool ncclIntruQueueEmpty(ncclIntruQueue<T,next> *me) {
return me->head == nullptr;
}
template<typename T, T *T::*next>
inline T* ncclIntruQueueHead(ncclIntruQueue<T,next> *me) {
return me->head;
}
template<typename T, T *T::*next>
inline T* ncclIntruQueueTail(ncclIntruQueue<T,next> *me) {
return me->tail;
}
template<typename T, T *T::*next>
inline void ncclIntruQueueEnqueue(ncclIntruQueue<T,next> *me, T *x) {
x->*next = nullptr;
(me->head ? me->tail->*next : me->head) = x;
me->tail = x;
}
template<typename T, T *T::*next>
inline T* ncclIntruQueueDequeue(ncclIntruQueue<T,next> *me) {
T *ans = me->head;
me->head = ans->*next;
if (me->head == nullptr) me->tail = nullptr;
return ans;
}
template<typename T, T *T::*next>
inline bool ncclIntruQueueDelete(ncclIntruQueue<T,next> *me, T *x) {
T *prev = nullptr;
T *cur = me->head;
bool found = false;
while (cur) {
if (cur == x) {
found = true;
break;
}
prev = cur;
cur = cur->*next;
}
if (found) {
if (prev == nullptr)
me->head = cur->*next;
else
prev->*next = cur->*next;
if (cur == me->tail)
me->tail = prev;
}
return found;
}
template<typename T, T *T::*next>
inline T* ncclIntruQueueTryDequeue(ncclIntruQueue<T,next> *me) {
T *ans = me->head;
if (ans != nullptr) {
me->head = ans->*next;
if (me->head == nullptr) me->tail = nullptr;
}
return ans;
}
template<typename T, T *T::*next>
void ncclIntruQueueFreeAll(ncclIntruQueue<T,next> *me, ncclMemoryPool *pool) {
T *head = me->head;
me->head = nullptr;
me->tail = nullptr;
while (head != nullptr) {
T *tmp = head->*next;
ncclMemoryPoolFree(pool, tmp);
head = tmp;
}
}
////////////////////////////////////////////////////////////////////////////////
constexpr ncclThreadSignal ncclThreadSignalStaticInitializer() {
return {PTHREAD_MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER};
}
inline void ncclThreadSignalConstruct(struct ncclThreadSignal* me) {
pthread_mutex_init(&me->mutex, nullptr);
pthread_cond_init(&me->cond, nullptr);
}
inline void ncclThreadSignalDestruct(struct ncclThreadSignal* me) {
pthread_mutex_destroy(&me->mutex);
pthread_cond_destroy(&me->cond);
}
////////////////////////////////////////////////////////////////////////////////
template<typename T, T *T::*next>
struct ncclIntruQueueMpsc {
T* head;
uintptr_t tail;
struct ncclThreadSignal* waiting;
};
template<typename T, T *T::*next>
void ncclIntruQueueMpscConstruct(struct ncclIntruQueueMpsc<T,next>* me) {
me->head = nullptr;
me->tail = 0x0;
me->waiting = nullptr;
}
template<typename T, T *T::*next>
bool ncclIntruQueueMpscEmpty(struct ncclIntruQueueMpsc<T,next>* me) {
return __atomic_load_n(&me->tail, __ATOMIC_RELAXED) <= 0x2;
}
template<typename T, T *T::*next>
bool ncclIntruQueueMpscEnqueue(ncclIntruQueueMpsc<T,next>* me, T* x) {
__atomic_store_n(&(x->*next), nullptr, __ATOMIC_RELAXED);
uintptr_t utail = __atomic_exchange_n(&me->tail, reinterpret_cast<uintptr_t>(x), __ATOMIC_ACQ_REL);
T* prev = reinterpret_cast<T*>(utail);
T** prevNext = utail <= 0x2 ? &me->head : &(prev->*next);
__atomic_store_n(prevNext, x, __ATOMIC_RELAXED);
if (utail == 0x1) { // waiting
__atomic_thread_fence(__ATOMIC_ACQUIRE); // to see me->waiting
// This lock/unlock is essential to ensure we don't race ahead of the consumer
// and signal the cond before they begin waiting on it.
struct ncclThreadSignal* waiting = me->waiting;
pthread_mutex_lock(&waiting->mutex);
pthread_mutex_unlock(&waiting->mutex);
pthread_cond_broadcast(&waiting->cond);
}
return utail != 0x2; // not abandoned
}
template<typename T, T *T::*next>
T* ncclIntruQueueMpscDequeueAll(ncclIntruQueueMpsc<T,next>* me, bool waitSome) {
T* head = __atomic_load_n(&me->head, __ATOMIC_RELAXED);
if (head == nullptr) {
if (!waitSome) return nullptr;
uint64_t t0 = clockNano();
bool sleeping = false;
do {
if (clockNano()-t0 >= 10*1000) { // spin for first 10us
struct ncclThreadSignal* waitSignal = &ncclThreadSignalLocalInstance;
pthread_mutex_lock(&waitSignal->mutex);
uintptr_t expected = sleeping ? 0x1 : 0x0;
uintptr_t desired = 0x1;
me->waiting = waitSignal; // release done by successful compare exchange
if (__atomic_compare_exchange_n(&me->tail, &expected, desired, /*weak=*/true, __ATOMIC_RELEASE, __ATOMIC_RELAXED)) {
sleeping = true;
pthread_cond_wait(&waitSignal->cond, &waitSignal->mutex);
}
pthread_mutex_unlock(&waitSignal->mutex);
}
head = __atomic_load_n(&me->head, __ATOMIC_RELAXED);
} while (head == nullptr);
}
__atomic_store_n(&me->head, nullptr, __ATOMIC_RELAXED);
uintptr_t utail = __atomic_exchange_n(&me->tail, 0x0, __ATOMIC_ACQ_REL);
T* tail = utail <= 0x2 ? nullptr : reinterpret_cast<T*>(utail);
T *x = head;
while (x != tail) {
T *x1;
int spins = 0;
while (true) {
x1 = __atomic_load_n(&(x->*next), __ATOMIC_RELAXED);
if (x1 != nullptr) break;
if (++spins == 1024) { spins = 1024-1; sched_yield(); }
}
x = x1;
}
return head;
}
template<typename T, T *T::*next>
T* ncclIntruQueueMpscAbandon(ncclIntruQueueMpsc<T,next>* me) {
uintptr_t expected = 0x0;
if (__atomic_compare_exchange_n(&me->tail, &expected, /*desired=*/0x2, /*weak=*/true, __ATOMIC_RELAXED, __ATOMIC_RELAXED)) {
return nullptr;
} else {
int spins = 0;
T* head;
while (true) {
head = __atomic_load_n(&me->head, __ATOMIC_RELAXED);
if (head != nullptr) break;
if (++spins == 1024) { spins = 1024-1; sched_yield(); }
}
__atomic_store_n(&me->head, nullptr, __ATOMIC_RELAXED);
uintptr_t utail = __atomic_exchange_n(&me->tail, 0x2, __ATOMIC_ACQ_REL);
T* tail = utail <= 0x2 ? nullptr : reinterpret_cast<T*>(utail);
T *x = head;
while (x != tail) {
T *x1;
spins = 0;
while (true) {
x1 = __atomic_load_n(&(x->*next), __ATOMIC_RELAXED);
if (x1 != nullptr) break;
if (++spins == 1024) { spins = 1024-1; sched_yield(); }
}
x = x1;
}
return head;
}
}
#endif