Add new API for creating a reduction operation which multiplies the input by a rank-specific scalar before doing an inter-rank summation (see: ncclRedOpCreatePreMulSum).
Improve CollNet (SHARP) performance of ncclAllReduce when captured in a CUDA Graph via user buffer registration.
Add environment variable NCCL_NET_PLUGIN="<suffix>" to allow user to choose among multiple NCCL net plugins by substituting into "libnccl-net-<suffix>.so".
Fix memory leak of NVB connections.
Fix topology detection of IB Virtual Functions (SR-IOV).
This commit is contained in:
Ke Wen 2021-09-08 13:56:25 -07:00
parent 5f2f2f670f
commit e11238b302
41 changed files with 1532 additions and 599 deletions

View File

@ -1,6 +1,6 @@
##### version
NCCL_MAJOR := 2
NCCL_MINOR := 10
NCCL_PATCH := 3
NCCL_MINOR := 11
NCCL_PATCH := 4
NCCL_SUFFIX :=
PKG_REVISION := 1

View File

@ -202,7 +202,7 @@ struct unexConn {
struct remAllocState {
int cudaDev;
int listenFd;
int stop;
volatile int stop;
};
struct extState {
@ -257,7 +257,7 @@ void* ncclRemoteMemAllocationService(void* args) {
for (int s=0; s<MAX_SEGMENTS; s++) segments[s] = NULL;
for (int s=0; s<MAX_SEGMENTS; s++) {
pollfds[s].fd = -1;
pollfds[s].events = POLLHUP;
pollfds[s].events = POLLIN;
}
pollfds[MAX_SEGMENTS].fd = state->listenFd;
pollfds[MAX_SEGMENTS].events = POLLIN;
@ -285,7 +285,7 @@ void* ncclRemoteMemAllocationService(void* args) {
}
}
for (int s=0; s<MAX_SEGMENTS; s++) {
if (pollfds[s].revents & POLLHUP) {
if (pollfds[s].revents & (POLLIN|POLLHUP)) {
if (cudaFree(segments[s]) != cudaSuccess) {
WARN("[Rem Allocator] cudaFree %p failed", segments[s]);
}
@ -429,7 +429,7 @@ ncclResult_t bootstrapSend(void* commState, int peer, int tag, void* data, int s
return ncclSuccess;
}
ncclResult_t bootstrapBarrier(void* commState, int *ranks, int tag, int rank, int nranks) {
ncclResult_t bootstrapBarrier(void* commState, int *ranks, int rank, int nranks, int tag) {
if (nranks == 1) return ncclSuccess;
TRACE(NCCL_INIT, "rank %d nranks %d tag %x - ENTER", rank, nranks, tag);
@ -450,6 +450,22 @@ ncclResult_t bootstrapBarrier(void* commState, int *ranks, int tag, int rank, in
return ncclSuccess;
}
ncclResult_t bootstrapIntraNodeAllGather(void* commState, int *ranks, int rank, int nranks, void* allData, int size) {
if (nranks == 1) return ncclSuccess;
char* data = (char*)allData;
TRACE(NCCL_INIT, "rank %d nranks %d size %d - ENTER", rank, nranks, size);
for (int i=1; i<nranks; i++) {
int src = (rank - i + nranks) % nranks;
int dst = (rank + i) % nranks;
NCCLCHECK(bootstrapSend(commState, ranks[dst], /*tag=*/i, data+rank*size, size));
NCCLCHECK(bootstrapRecv(commState, ranks[src], /*tag=*/i, data+src*size, size));
}
TRACE(NCCL_INIT, "rank %d nranks %d size %d - DONE", rank, nranks, size);
return ncclSuccess;
}
ncclResult_t unexpectedEnqueue(struct extState* state, int peer, int tag, int fd, union socketAddress *addr) {
// New unex
struct unexConn* unex;

View File

@ -10,7 +10,7 @@ include ../../../makefiles/version.mk
BUILDDIR ?= $(abspath ../../../build)
OBJDIR := $(BUILDDIR)/obj/collectives/device
LIBSRCFILES := all_reduce.cu broadcast.cu reduce.cu all_gather.cu reduce_scatter.cu sendrecv.cu
LIBSRCFILES := all_reduce.cu broadcast.cu reduce.cu all_gather.cu reduce_scatter.cu sendrecv.cu onerank_reduce.cu
LIBSRCFILES += functions.cu
@ -36,7 +36,7 @@ $(RULESFILE) :
-include $(RULESFILE)
LIBOBJ := $(GENOBJS) $(OBJDIR)/functions.o
LIBOBJ := $(GENOBJS) $(OBJDIR)/functions.o $(OBJDIR)/onerank_reduce.o
-include $(DEPFILES)
@ -63,6 +63,11 @@ $(OBJDIR)/functions.o : functions.cu $(OBJDIR)/functions.dep
mkdir -p `dirname $@`
$(NVCC) $(NVCUFLAGS) -dc $< -o $@
$(OBJDIR)/onerank_reduce.o : onerank_reduce.cu $(OBJDIR)/onerank_reduce.dep
@printf "Compiling %-35s > %s\n" $< $@
mkdir -p `dirname $@`
$(NVCC) $(NVCUFLAGS) -dc $< -o $@
# ... and create the device-side linked object with all those.
$(DEVOBJ) : $(LIBOBJ)
$(NVCC) $(NVCUFLAGS) -dlink $^ -o $@

View File

@ -10,7 +10,7 @@
namespace {
template<typename T, typename RedOp, typename Proto>
__device__ void runRing(ncclWorkElem *args) {
__device__ __forceinline__ void runRing(ncclWorkElem *args) {
const int tid = threadIdx.x;
const int nthreads = args->nThreads;
const int bid = args->coll.bid;
@ -27,7 +27,7 @@ namespace {
T *inputBuf = (T*)args->sendbuff;
T *outputBuf = (T*)args->recvbuff;
Primitives<T, RedOp, FanSymmetric<1>, 1, Proto>
prims(tid, nthreads, &ring->prev, &ring->next, inputBuf, outputBuf);
prims(tid, nthreads, &ring->prev, &ring->next, inputBuf, outputBuf, args->coll.redOpArg);
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t realChunkSize;
@ -78,7 +78,7 @@ namespace {
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncAllGather, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_SIMPLE> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
using Proto = ProtoSimple<ALLGATHER_CHUNKSTEPS/ALLGATHER_SLICESTEPS, ALLGATHER_SLICESTEPS>;
runRing<T, RedOp, Proto>(args);
}
@ -86,14 +86,14 @@ struct RunWorkElement<ncclFuncAllGather, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_SI
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncAllGather, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_LL> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
runRing<T, RedOp, ProtoLL>(args);
}
};
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncAllGather, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_LL128> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
runRing<T, RedOp, ProtoLL128>(args);
}
};

View File

@ -10,7 +10,7 @@
namespace {
template<typename T, typename RedOp, typename Proto>
__device__ void runRing(ncclWorkElem *args) {
__device__ __forceinline__ void runRing(ncclWorkElem *args) {
const int tid = threadIdx.x;
const int nthreads = args->nThreads;
const int bid = args->coll.bid;
@ -31,7 +31,7 @@ namespace {
}
Primitives<T, RedOp, FanSymmetric<1>, 1, Proto> prims
(tid, nthreads, &ring->prev, &ring->next, args->sendbuff, args->recvbuff);
(tid, nthreads, &ring->prev, &ring->next, args->sendbuff, args->recvbuff, args->coll.redOpArg);
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t realChunkSize;
@ -95,7 +95,7 @@ namespace {
}
template<typename T, typename RedOp, typename Proto>
__device__ void runTreeUpDown(ncclWorkElem *args) {
__device__ __forceinline__ void runTreeUpDown(ncclWorkElem *args) {
const int tid = threadIdx.x;
const int nthreads = args->nThreads;
const int bid = args->coll.bid;
@ -115,7 +115,7 @@ namespace {
{ // Reduce : max number of recv is 3, max number of send is 1 (binary tree + local)
Primitives<T, RedOp, FanAsymmetric<NCCL_MAX_DEV_ARITY, 1>, /*Direct=*/0, Proto> prims
(tid, nthreads, tree->down, &tree->up, args->sendbuff, args->recvbuff);
(tid, nthreads, tree->down, &tree->up, args->sendbuff, args->recvbuff, args->coll.redOpArg);
if (tree->up == -1) {
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t offset = gridOffset + bid*int(chunkSize);
@ -141,7 +141,7 @@ namespace {
{ // Broadcast : max number of recv is 1, max number of send is 3 (binary tree + local)
Primitives<T, RedOp, FanAsymmetric<1, NCCL_MAX_DEV_ARITY>, /*Direct=*/1, Proto> prims
(tid, nthreads, &tree->up, tree->down, args->sendbuff, args->recvbuff);
(tid, nthreads, &tree->up, tree->down, args->sendbuff, args->recvbuff, args->coll.redOpArg);
if (tree->up == -1) {
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t offset = gridOffset + bid*int(chunkSize);
@ -167,7 +167,7 @@ namespace {
}
template<typename T, typename RedOp, typename Proto>
__device__ void runTreeSplit(ncclWorkElem *args) {
__device__ __forceinline__ void runTreeSplit(ncclWorkElem *args) {
const int tid = threadIdx.x;
const int nthreads = args->nThreads;
const int bid = args->coll.bid;
@ -199,7 +199,7 @@ namespace {
if (tree->up == -1) {
// Reduce and broadcast. Max number of recv is 3, max number of send is 3
Primitives<T, RedOp, FanSymmetric<NCCL_MAX_DEV_ARITY>, /*Direct=*/1, Proto>
prims(tid, nthreads, tree->down, tree->down, args->sendbuff, args->recvbuff);
prims(tid, nthreads, tree->down, tree->down, args->sendbuff, args->recvbuff, args->coll.redOpArg);
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t offset = gridOffset + bid*int(chunkSize);
int nelem = min(chunkSize, size-offset);
@ -216,7 +216,7 @@ namespace {
* but the ctor above for tree roots would be DirectRecv=0 DirectSend=1.
*/
Primitives<T, RedOp, FanAsymmetric<NCCL_MAX_DEV_ARITY, 1>, /*Direct=*/1, Proto>
prims(tid, nthreadsSplit, tree->down, &tree->up, args->sendbuff, args->recvbuff, 0*Proto::MaxGroupWidth);
prims(tid, nthreadsSplit, tree->down, &tree->up, args->sendbuff, args->recvbuff, args->coll.redOpArg, 0*Proto::MaxGroupWidth);
if (tree->down[0] == -1) {
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t offset = gridOffset + bid*int(chunkSize);
@ -235,7 +235,7 @@ namespace {
else {
// Broadcast down. Max number of recv is 1, max number of send is 3 (binary tree + local)
Primitives<T, RedOp, FanAsymmetric<1, NCCL_MAX_DEV_ARITY>, /*Direct=*/1, Proto>
prims(tid-nthreadsSplit, nthreads-nthreadsSplit, &tree->up, tree->down, args->sendbuff, args->recvbuff, 1*Proto::MaxGroupWidth);
prims(tid-nthreadsSplit, nthreads-nthreadsSplit, &tree->up, tree->down, args->sendbuff, args->recvbuff, args->coll.redOpArg, 1*Proto::MaxGroupWidth);
if (tree->down[0] == -1) {
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t offset = gridOffset + bid*int(chunkSize);
@ -256,7 +256,7 @@ namespace {
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncAllReduce, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_SIMPLE> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
using Proto = ProtoSimple<ALLREDUCE_CHUNKSTEPS/ALLREDUCE_SLICESTEPS, ALLREDUCE_SLICESTEPS>;
runRing<T, RedOp, Proto>(args);
}
@ -264,7 +264,7 @@ struct RunWorkElement<ncclFuncAllReduce, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_SI
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncAllReduce, T, RedOp, NCCL_ALGO_TREE, NCCL_PROTO_SIMPLE> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
#if CUDART_VERSION >= 11020 && CUDART_VERSION < 11040 && __CUDA_ARCH__ >= 800
runTreeUpDown<T, RedOp, ProtoSimple<1, 1>>(args);
#else
@ -275,7 +275,7 @@ struct RunWorkElement<ncclFuncAllReduce, T, RedOp, NCCL_ALGO_TREE, NCCL_PROTO_SI
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncAllReduce, T, RedOp, NCCL_ALGO_COLLNET, NCCL_PROTO_SIMPLE> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
static constexpr int COLLNET_COPY_THREADS = 96;
const int tid = threadIdx.x;
const int bid = args->coll.bid;
@ -299,27 +299,37 @@ struct RunWorkElement<ncclFuncAllReduce, T, RedOp, NCCL_ALGO_COLLNET, NCCL_PROTO
if (tid >= tidStartScatter && tid < tidStartReduce && hasUp) {
// Scatter
Primitives<T, RedOp, FanAsymmetric<0, NCCL_MAX_DIRECT_ARITY>, /*Direct=*/0, Proto>
prims(tid-tidStartScatter, nThreadsScatter, NULL, tree->up, args->sendbuff, args->recvbuff, 2*Proto::MaxGroupWidth);
int group = (2*Proto::MaxGroupWidth) | (1<<16);
Primitives<T, RedOp, FanAsymmetric<0, NCCL_MAX_DIRECT_ARITY>, /*Direct=*/1, Proto>
prims(tid-tidStartScatter, nThreadsScatter, NULL, tree->up, args->sendbuff, args->recvbuff, args->coll.redOpArg, group, args);
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t offset = gridOffset + bid*tree->nHeads*chunkSize;
int nelem = min(tree->nHeads*chunkSize, size-offset);
prims.scatter(offset, nelem, chunkSize, tree->headRank, tree->shift);
if (args->regUsed) {
prims.directScatter(offset, nelem, chunkSize, tree->headRank, tree->shift);
} else {
prims.scatter(offset, nelem, chunkSize, tree->headRank, tree->shift);
}
}
} else if (tid >= tidStartReduce && tree->out != -1) {
int group = (3*Proto::MaxGroupWidth) | (1<<16);
if (hasDn) {
// Reduce, send to network
Primitives<T, RedOp, FanAsymmetric<NCCL_MAX_DIRECT_ARITY, 1>, /*Direct=*/0, Proto>
prims(tid-tidStartReduce, nThreadsReduce, tree->down, &tree->out, args->sendbuff, args->recvbuff, 3*Proto::MaxGroupWidth);
Primitives<T, RedOp, FanAsymmetric<NCCL_MAX_DIRECT_ARITY, 1>, /*Direct=*/1, Proto>
prims(tid-tidStartReduce, nThreadsReduce, tree->down, &tree->out, args->sendbuff, args->recvbuff, args->coll.redOpArg, group, args);
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t offset = gridOffset + (bid*tree->nHeads+tree->headRank)*chunkSize;
int nelem = min(chunkSize, size-offset);
prims.recvReduceSend(offset, nelem);
if (args->regUsed) {
prims.directRecvReduceSend(offset, offset, nelem);
} else {
prims.recvReduceSend(offset, nelem);
}
}
} else {
// Directly send to network
Primitives<T, RedOp, FanAsymmetric<0, 1>, /*Direct=*/0, Proto>
prims(tid-tidStartReduce, nThreadsReduce, nullptr, &tree->out, args->sendbuff, args->recvbuff, 3*Proto::MaxGroupWidth);
prims(tid-tidStartReduce, nThreadsReduce, nullptr, &tree->out, args->sendbuff, args->recvbuff, args->coll.redOpArg, group);
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t offset = gridOffset + (bid*tree->nHeads+tree->headRank)*chunkSize;
int nelem = min(chunkSize, size-offset);
@ -328,27 +338,29 @@ struct RunWorkElement<ncclFuncAllReduce, T, RedOp, NCCL_ALGO_COLLNET, NCCL_PROTO
}
} else if (tid < tidStartBcast && hasUp) {
// Gather
Primitives<T, RedOp, FanAsymmetric<NCCL_MAX_DIRECT_ARITY, 0>, /*Direct=*/0, Proto>
prims(tid, nThreadsGather, tree->up, NULL, args->sendbuff, args->recvbuff, 0*Proto::MaxGroupWidth);
int group = (0*Proto::MaxGroupWidth) | (0<<16);
Primitives<T, RedOp, FanAsymmetric<NCCL_MAX_DIRECT_ARITY, 0>, /*Direct=*/1, Proto>
prims(tid, nThreadsGather, tree->up, NULL, args->sendbuff, args->recvbuff, args->coll.redOpArg, group, args);
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t offset = gridOffset + bid*tree->nHeads*chunkSize;
int nelem = min(tree->nHeads*chunkSize, size-offset);
prims.gather(offset, nelem, chunkSize, tree->headRank, tree->shift);
prims.directGather(offset, nelem, chunkSize, tree->headRank, tree->shift);
}
} else if (tid >= tidStartBcast && tid < tidStartScatter && tree->out != -1) {
int group = (1*Proto::MaxGroupWidth) | (0<<16);
if (hasDn) {
// Recv from network, broadcast
Primitives<T, RedOp, FanAsymmetric<1, NCCL_MAX_DIRECT_ARITY>, /*Direct=*/0, Proto>
prims(tid-tidStartBcast, nThreadsBcast, &tree->out, tree->down, args->sendbuff, args->recvbuff, 1*Proto::MaxGroupWidth);
Primitives<T, RedOp, FanAsymmetric<1, NCCL_MAX_DIRECT_ARITY>, /*Direct=*/1, Proto>
prims(tid-tidStartBcast, nThreadsBcast, &tree->out, tree->down, args->sendbuff, args->recvbuff, args->coll.redOpArg, group, args);
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t offset = gridOffset + (bid*tree->nHeads+tree->headRank)*chunkSize;
int nelem = min(chunkSize, size-offset);
prims.recvCopySend(offset, nelem, /*postOp=*/true);
prims.recvCopyDirectSend(offset, offset, nelem, /*postOp=*/true);
}
} else {
// Recv from network (no post thread needed)
Primitives<T, RedOp, FanAsymmetric<1, 0>, /*Direct=*/0, Proto>
prims(tid-tidStartBcast, nThreadsBcast, &tree->out, nullptr, args->sendbuff, args->recvbuff, 1*Proto::MaxGroupWidth);
prims(tid-tidStartBcast, nThreadsBcast, &tree->out, nullptr, args->sendbuff, args->recvbuff, args->coll.redOpArg, group);
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t offset = gridOffset + (bid*tree->nHeads+tree->headRank)*chunkSize;
int nelem = min(chunkSize, size-offset);
@ -361,28 +373,28 @@ struct RunWorkElement<ncclFuncAllReduce, T, RedOp, NCCL_ALGO_COLLNET, NCCL_PROTO
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncAllReduce, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_LL> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
runRing<T, RedOp, ProtoLL>(args);
}
};
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncAllReduce, T, RedOp, NCCL_ALGO_TREE, NCCL_PROTO_LL> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
runTreeSplit<T, RedOp, ProtoLL>(args);
}
};
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncAllReduce, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_LL128> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
runRing<T, RedOp, ProtoLL128>(args);
}
};
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncAllReduce, T, RedOp, NCCL_ALGO_TREE, NCCL_PROTO_LL128> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
runTreeSplit<T, RedOp, ProtoLL128>(args);
}
};

View File

@ -10,7 +10,7 @@
namespace {
template<typename T, typename RedOp, typename Proto>
__device__ void runRing(ncclWorkElem *args) {
__device__ __forceinline__ void runRing(ncclWorkElem *args) {
const int tid = threadIdx.x;
const int nthreads = args->nThreads;
const int bid = args->coll.bid;
@ -27,7 +27,7 @@ namespace {
T *inputBuf = (T*)args->sendbuff;
T *outputBuf = (T*)args->recvbuff;
Primitives<T, RedOp, FanSymmetric<1>, 0, Proto>
prims(tid, nthreads, &ring->prev, &ring->next, inputBuf, outputBuf);
prims(tid, nthreads, &ring->prev, &ring->next, inputBuf, outputBuf, args->coll.redOpArg);
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t realChunkSize;
@ -61,7 +61,7 @@ namespace {
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncBroadcast, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_SIMPLE> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
using Proto = ProtoSimple<BROADCAST_CHUNKSTEPS/BROADCAST_SLICESTEPS, BROADCAST_SLICESTEPS>;
runRing<T, RedOp, Proto>(args);
}
@ -69,14 +69,14 @@ struct RunWorkElement<ncclFuncBroadcast, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_SI
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncBroadcast, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_LL> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
runRing<T, RedOp, ProtoLL>(args);
}
};
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncBroadcast, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_LL128> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
runRing<T, RedOp, ProtoLL128>(args);
}
};

View File

@ -67,9 +67,18 @@ struct RunWorkElement {
}
};
#if CUDART_VERSION >= 11030
__device__ constexpr int ncclWorkElemFactors[NCCL_NUM_ALGORITHMS] =
#else
static __device__ __constant__ int ncclWorkElemFactors[NCCL_NUM_ALGORITHMS] =
#endif
{/*Tree*/1, /*Ring and P2P*/1, /*CollNet*/NCCL_REG_ELEM_FACTOR};
template<ncclFunc_t Fn, typename T, typename RedOp, int Algo, int Proto>
struct RunWork {
__device__ void run(ncclWork *w) {
// This __forceinline__ is necessary. The compiler was inserting a function call
// here from the LL ncclKernel.
__device__ __forceinline__ void run(ncclWork *w) {
int tid = threadIdx.x;
/* Some invariants that must hold:
* 1. All elems[] have same funcIndex.
@ -78,23 +87,21 @@ struct RunWork {
* for all elems[].
*
* If (1) isn't true then we might be in the wrong function since dispatch
* on ncclFuncs[w->elems[0].funcIndex] is how we got here.
* on ncclFuncs[w->funcIndex] is how we got here.
*
* If (2) or (3) aren't true, then threads from different work elements
* could race for barrier resources (barrier numbers 0...15) which is fatal.
*
* Important, to ensure (3), implementations of
* `RunWorkElement<Fn,T,RedOp,Algo,Proto>::run()` may only use values which
* are the same for all elems[] when deciding how to map threads to groups,
* such as the following:
* IMPORTANT!!! To ensure (3), implementations of
* `RunWorkElement<Fn,T,RedOp,Algo,Proto>::run()` may only use the following
* when deciding how to map threads to groups:
* Fn, T, RedOp, Algo, Proto, nThreads
*
* This last one is difficult to enforce and diagnosing it is a headeache.
* Device-side developers, consider yourselves warned.
* This last one is difficult to enforce so I hope everyone reads this.
*/
if (tid < w->elems[0].nThreads) {
#pragma unroll 1
for(int e=0; e < NCCL_MAX_WORK_ELEMENTS && w->elems[e].active != 0; e++)
for(int e=0; e < NCCL_MAX_WORK_ELEMENTS && w->elems[e].active != 0; e+=ncclWorkElemFactors[Algo])
RunWorkElement<Fn, T, RedOp, Algo, Proto>().run(&w->elems[e]);
}
}
@ -108,6 +115,7 @@ struct ncclShmemGroup {
ncclConnInfo *sendConns[NCCL_MAX_DIRECT_ARITY];
void* srcs[NCCL_MAX_DIRECT_ARITY+1];
void* dsts[NCCL_MAX_DIRECT_ARITY+1];
int totalSendSize[NCCL_MAX_SLICE_PER_CHUNK];
};
struct ncclShmemData {
@ -115,6 +123,7 @@ struct ncclShmemData {
uint64_t ll128warp[NCCL_LL128_MAX_NTHREADS/WARP_SIZE][NCCL_LL128_SHMEM_ELEMS_PER_THREAD*WARP_SIZE];
struct ncclShmemGroup groups[NCCL_MAX_GROUPS];
};
uint64_t redOpArgs[NCCL_MAX_DIRECT_ARITY+1];
ncclDevComm comm;
ncclChannel channel;
ncclWork work;
@ -135,7 +144,10 @@ __device__ void ncclKernel(ncclWorkElem first) {
// To optimize for latency, (only) the first operation is passed as argument.
if (bid == 0 && first.active != 0) {
turn = copyToShmem(&ncclShmem.work.elems[0], &first, turn);
if (tid == 0) ncclShmem.work.elems[1].active = 0;
if (1 <= tid && tid < NCCL_MAX_WORK_ELEMENTS && tid % ncclWorkElemFactors[Algo] == 0) {
ncclShmem.work.elems[tid].active = 0;
ncclShmem.work.elems[tid].redOpArgIsPtr = 0;
}
}
__syncthreads(); // publish ncclShmem
@ -161,6 +173,29 @@ __device__ void ncclKernel(ncclWorkElem first) {
if (tid == 0)
channel->index = workFifoIx; // write back to real channel, not shmem shadow
if (tid < NCCL_MAX_WORK_ELEMENTS && tid % ncclWorkElemFactors[Algo] == 0) {
ncclWorkElem *we = &ncclShmem.work.elems[tid];
if (we->redOpArgIsPtr && we->active != 0) {
/* redOpArg is a pointer to the scalar value, so we'll dereference it
* here so that redOpArg holds the bits of the scalar going forward.
* The tricky thing is we don't know its type T since that's encoded in
* the funcIndex. Because it would be difficult to get sizeof(T) from
* funcIndex, we'll cheat and just dereference the largest possible size
* given the alignment of the pointer. We might be reading in more bytes
* than we need but that's harmless.
*/
if (we->coll.redOpArg%2 != 0)
we->coll.redOpArg = *reinterpret_cast<uint8_t*>(we->coll.redOpArg);
else if (we->coll.redOpArg%4 != 0)
we->coll.redOpArg = *reinterpret_cast<uint16_t*>(we->coll.redOpArg);
else if (we->coll.redOpArg%8 != 0)
we->coll.redOpArg = *reinterpret_cast<uint32_t*>(we->coll.redOpArg);
else
we->coll.redOpArg = *reinterpret_cast<uint64_t*>(we->coll.redOpArg);
}
}
__syncthreads();
if (ncclShmem.work.elems[0].funcIndex == FnIndex)
RunWork<Fn, T, RedOp, Algo, Proto>().run(&ncclShmem.work);
else
@ -174,52 +209,52 @@ __device__ void ncclKernel(ncclWorkElem first) {
// Only generate kernels for SUM
#if NCCL_OP == 0
#define IMPL_COLL_KERN(func, algo, proto, redop, type, fIndex) \
__global__ void NCCL_KERN_NAME(func, algo, proto, redop, type)(ncclWorkElem first) { \
ncclKernel<ncclFunc##func, type, Func##redop<type>, NCCL_ALGO_##algo, NCCL_PROTO_##proto, fIndex>(first); \
#define IMPL_COLL_KERN(func, algo, proto, devredop, type, fIndex) \
__global__ void NCCL_KERN_NAME(func, algo, proto, devredop, type)(ncclWorkElem first) { \
ncclKernel<ncclFunc##func, type, Func##devredop<type>, NCCL_ALGO_##algo, NCCL_PROTO_##proto, fIndex>(first); \
}
#else
#define IMPL_COLL_KERN(func, algo, proto, redop, type, fInded)
#define IMPL_COLL_KERN(func, algo, proto, devredop, type, fInded)
#endif
// Examples : AllReduce, RING, LL, Sum, uint8
#define IMPL_COLL_FUNC(func, algo, proto, redop, type) \
__device__ void NCCL_FUNC_NAME(func, algo, proto, redop, type)() { \
RunWork<ncclFunc##func, type, Func##redop<type>, NCCL_ALGO_##algo, NCCL_PROTO_##proto>().run(&ncclShmem.work); \
#define IMPL_COLL_FUNC(func, algo, proto, devredop, type) \
__device__ void NCCL_FUNC_NAME(func, algo, proto, devredop, type)() { \
RunWork<ncclFunc##func, type, Func##devredop<type>, NCCL_ALGO_##algo, NCCL_PROTO_##proto>().run(&ncclShmem.work); \
}
// Only generate inline kernels for LL
#define IMPL_COLL4(func, algo, redop, type, ncclType) \
IMPL_COLL_FUNC(func, algo, LL, redop, type) \
IMPL_COLL_FUNC(func, algo, LL128, redop, type) \
IMPL_COLL_FUNC(func, algo, SIMPLE, redop, type) \
IMPL_COLL_KERN(func, algo, LL, redop, type, FUNC_INDEX(ncclFunc##func, nccl##redop, ncclType, NCCL_ALGO_##algo, NCCL_PROTO_LL)) \
#define IMPL_COLL4(func, algo, devredop, type, ncclType) \
IMPL_COLL_FUNC(func, algo, LL, devredop, type) \
IMPL_COLL_FUNC(func, algo, LL128, devredop, type) \
IMPL_COLL_FUNC(func, algo, SIMPLE, devredop, type) \
IMPL_COLL_KERN(func, algo, LL, devredop, type, FUNC_INDEX(ncclFunc##func, ncclDev##devredop, ncclType, NCCL_ALGO_##algo, NCCL_PROTO_LL)) \
#define IMPL_COLL3(func, redop, type, ncclType) \
IMPL_COLL4(func, TREE, redop, type, ncclType) \
IMPL_COLL4(func, RING, redop, type, ncclType) \
IMPL_COLL4(func, COLLNET, redop, type, ncclType)
#define IMPL_COLL3(func, devredop, type, ncclType) \
IMPL_COLL4(func, TREE, devredop, type, ncclType) \
IMPL_COLL4(func, RING, devredop, type, ncclType) \
IMPL_COLL4(func, COLLNET, devredop, type, ncclType)
#if NCCL_TYPE == 0
#define IMPL_COLL2(func, redop) IMPL_COLL3(func, redop, int8_t, ncclInt8)
#define IMPL_COLL2(func, devredop) IMPL_COLL3(func, devredop, int8_t, ncclInt8)
#elif NCCL_TYPE == 1
#define IMPL_COLL2(func, redop) IMPL_COLL3(func, redop, uint8_t, ncclUint8)
#define IMPL_COLL2(func, devredop) IMPL_COLL3(func, devredop, uint8_t, ncclUint8)
#elif NCCL_TYPE == 2
#define IMPL_COLL2(func, redop) IMPL_COLL3(func, redop, int32_t, ncclInt32)
#define IMPL_COLL2(func, devredop) IMPL_COLL3(func, devredop, int32_t, ncclInt32)
#elif NCCL_TYPE == 3
#define IMPL_COLL2(func, redop) IMPL_COLL3(func, redop, uint32_t, ncclUint32)
#define IMPL_COLL2(func, devredop) IMPL_COLL3(func, devredop, uint32_t, ncclUint32)
#elif NCCL_TYPE == 4
#define IMPL_COLL2(func, redop) IMPL_COLL3(func, redop, int64_t, ncclInt64)
#define IMPL_COLL2(func, devredop) IMPL_COLL3(func, devredop, int64_t, ncclInt64)
#elif NCCL_TYPE == 5
#define IMPL_COLL2(func, redop) IMPL_COLL3(func, redop, uint64_t, ncclUint64)
#define IMPL_COLL2(func, devredop) IMPL_COLL3(func, devredop, uint64_t, ncclUint64)
#elif NCCL_TYPE == 6
#define IMPL_COLL2(func, redop) IMPL_COLL3(func, redop, half, ncclFloat16)
#define IMPL_COLL2(func, devredop) IMPL_COLL3(func, devredop, half, ncclFloat16)
#elif NCCL_TYPE == 7
#define IMPL_COLL2(func, redop) IMPL_COLL3(func, redop, float, ncclFloat32)
#define IMPL_COLL2(func, devredop) IMPL_COLL3(func, devredop, float, ncclFloat32)
#elif NCCL_TYPE == 8
#define IMPL_COLL2(func, redop) IMPL_COLL3(func, redop, double, ncclFloat64)
#define IMPL_COLL2(func, devredop) IMPL_COLL3(func, devredop, double, ncclFloat64)
#elif NCCL_TYPE == 9 && defined(__CUDA_BF16_TYPES_EXIST__)
#define IMPL_COLL2(func, redop) IMPL_COLL3(func, redop, __nv_bfloat16, ncclBfloat16)
#define IMPL_COLL2(func, devredop) IMPL_COLL3(func, devredop, __nv_bfloat16, ncclBfloat16)
#endif
// Reduction define all functions
@ -232,7 +267,13 @@ __device__ void NCCL_FUNC_NAME(func, algo, proto, redop, type)() { \
#elif NCCL_OP == 3
#define IMPL_COLL_R(func) IMPL_COLL2(func, Max);
#elif NCCL_OP == 4
#define IMPL_COLL_R(func) IMPL_COLL2(func, Avg);
#define IMPL_COLL_R(func) IMPL_COLL2(func, PreMulSum);
#elif NCCL_OP == 5
#if NCCL_TYPE < 6
#define IMPL_COLL_R(func) IMPL_COLL2(func, SumPostDiv);
#else
#define IMPL_COLL_R(func) // skip SumPostDiv for floating point
#endif
#endif
#if NCCL_OP == 0 && NCCL_TYPE == 0

View File

@ -26,7 +26,6 @@ typedef uint64_t PackType;
template<typename Fn>
struct FuncTraits /*{
__device__ static Fn make();
__device__ static T preOp(Fn, T);
__device__ static T postOp(Fn, T);
}*/;
@ -487,12 +486,12 @@ inline __device__ void Store128(Pack128* p, Pack128& v) {
asm volatile("st.volatile.global.v2.u64 [%0], {%1,%2};" :: "l"(p), "l"(v.x), "l"(v.y) : "memory");
}
template<class FUNC, typename T, int UNROLL, int MINSRCS, int MAXSRCS, int MINDSTS, int MAXDSTS>
template<class FUNC, typename T, int UNROLL, int MINSRCS, int MAXSRCS, int MINDSTS, int MAXDSTS, int PreOpN, typename Int>
__device__ __forceinline__ void ReduceCopyMulti(const int w, const int nw, const int t,
FUNC fn, bool preOpSrc0, bool postOp, int nsrcs, const T** s, int ndsts, T** d, const int elemOffset, const int Nelem
uint64_t* redOpArgs, bool postOp, int nsrcs, const T** s, int ndsts, T** d, const int elemOffset, const Int Nelem
) {
const int inc = nw * UNROLL * WARP_SIZE;
int offset = w * UNROLL * WARP_SIZE + t;
const Int inc = nw * UNROLL * WARP_SIZE;
Int offset = w * UNROLL * WARP_SIZE + t;
const T* srcs[MAXSRCS];
for (int i=0; i<MAXSRCS; i++) srcs[i] = s[i]+elemOffset+offset;
@ -503,26 +502,36 @@ __device__ __forceinline__ void ReduceCopyMulti(const int w, const int nw, const
T vals[UNROLL];
// Load and reduce
for (int u = 0; u < UNROLL; ++u) vals[u] = vFetch(srcs[0]+u*WARP_SIZE);
if (preOpSrc0) {
if (PreOpN) {
FUNC fn(redOpArgs[0]);
for (int u = 0; u < UNROLL; ++u) vals[u] = FuncTraits<FUNC>().preOp(fn, vals[u]);
}
#pragma unroll
for (int i=1; i<MINSRCS; i++) {
T vals2[UNROLL];
FUNC fn(redOpArgs[i]);
for (int u = 0; u < UNROLL; ++u) vals2[u] = vFetch(srcs[i]+u*WARP_SIZE);
if (i<PreOpN) {
for (int u = 0; u < UNROLL; ++u) vals2[u] = FuncTraits<FUNC>().preOp(fn, vals2[u]);
}
for (int u = 0; u < UNROLL; ++u) vals[u] = fn(vals[u], vals2[u]);
}
#pragma unroll
for (int i=MINSRCS; i<MAXSRCS; i++) {
if (i<nsrcs) {
T vals2[UNROLL];
FUNC fn(redOpArgs[i]);
for (int u = 0; u < UNROLL; ++u) vals2[u] = vFetch(srcs[i]+u*WARP_SIZE);
if (i<PreOpN) {
for (int u = 0; u < UNROLL; ++u) vals2[u] = FuncTraits<FUNC>().preOp(fn, vals2[u]);
}
for (int u = 0; u < UNROLL; ++u) vals[u] = fn(vals[u], vals2[u]);
}
}
if (postOp) {
FUNC fn(redOpArgs[0]);
#pragma unroll
for (int u = 0; u < UNROLL; ++u) vals[u] = FuncTraits<FUNC>().postOp(fn, vals[u]);
}
@ -544,12 +553,12 @@ __device__ __forceinline__ void ReduceCopyMulti(const int w, const int nw, const
}
}
template<class FUNC, typename T, int UNROLL, int MINSRCS, int MAXSRCS, int MINDSTS, int MAXDSTS>
template<class FUNC, typename T, int UNROLL, int MINSRCS, int MAXSRCS, int MINDSTS, int MAXDSTS, int PreOpN, typename Int>
__device__ __forceinline__ void ReduceCopy128bMulti(const int w, const int nw, const int t,
FUNC fn, bool preOpSrc0, bool postOp, int nsrcs, const T** s, int ndsts, T** d, const int elemOffset, const int Npack
uint64_t* redOpArgs, bool postOp, int nsrcs, const T** s, int ndsts, T** d, const int elemOffset, const Int Npack
) {
const int inc = nw * UNROLL * WARP_SIZE;
int offset = w * UNROLL * WARP_SIZE + t;
const Int inc = nw * UNROLL * WARP_SIZE;
Int offset = w * UNROLL * WARP_SIZE + t;
const Pack128* srcs[MAXSRCS];
for (int i=0; i<MAXSRCS; i++) srcs[i] = ((const Pack128*)(s[i]+elemOffset))+offset;
@ -560,26 +569,36 @@ __device__ __forceinline__ void ReduceCopy128bMulti(const int w, const int nw, c
Pack128 vals[UNROLL];
// Load and reduce
for (int u = 0; u < UNROLL; ++u) Fetch128(vals[u], srcs[0]+u*WARP_SIZE);
if (preOpSrc0) {
if (PreOpN) {
FUNC fn(redOpArgs[0]);
for (int u = 0; u < UNROLL; ++u) MULTI128<FUNC, T>().preOp(fn, vals[u]);
}
#pragma unroll
for (int i=1; i<MINSRCS; i++) {
Pack128 vals2[UNROLL];
FUNC fn(redOpArgs[i]);
for (int u = 0; u < UNROLL; ++u) Fetch128(vals2[u], srcs[i]+u*WARP_SIZE);
if (i<PreOpN) {
for (int u = 0; u < UNROLL; ++u) MULTI128<FUNC, T>().preOp(fn, vals2[u]);
}
for (int u = 0; u < UNROLL; ++u) MULTI128<FUNC, T>()(fn, vals[u], vals2[u]);
}
#pragma unroll
for (int i=MINSRCS; i<MAXSRCS; i++) {
if (i<nsrcs) {
Pack128 vals2[UNROLL];
FUNC fn(redOpArgs[i]);
for (int u = 0; u < UNROLL; ++u) Fetch128(vals2[u], srcs[i]+u*WARP_SIZE);
if (i<PreOpN) {
for (int u = 0; u < UNROLL; ++u) MULTI128<FUNC, T>().preOp(fn, vals2[u]);
}
for (int u = 0; u < UNROLL; ++u) MULTI128<FUNC, T>()(fn, vals[u], vals2[u]);
}
}
if (postOp) {
FUNC fn(redOpArgs[0]);
#pragma unroll
for (int u = 0; u < UNROLL; ++u) MULTI128<FUNC, T>().postOp(fn, vals[u]);
}
@ -606,11 +625,11 @@ __device__ int ptrAlign128(T* ptr) { return (uint64_t)ptr % alignof(Pack128); }
#define PACKELEMS (sizeof(Pack128) / sizeof(T))
template<int UNROLL, class FUNC, typename T, int MINSRCS, int MAXSRCS, int MINDSTS, int MAXDSTS>
template<int UNROLL, class FUNC, typename T, int MINSRCS, int MAXSRCS, int MINDSTS, int MAXDSTS, int PreOpN, typename Int>
__device__ __forceinline__ void ReduceOrCopyMulti(
const int tid, const int nthreads, FUNC fn, bool preOpSrc0, bool postOp, int nsrcs, const T** srcs, int ndsts, T** dsts, int N
const int tid, const int nthreads, uint64_t* redOpArgs, bool postOp, int nsrcs, const T** srcs, int ndsts, T** dsts, Int N
) {
int Nrem = N;
Int Nrem = N;
if (Nrem <= 0) return;
int w = tid / WARP_SIZE; // Warp number
@ -626,17 +645,17 @@ __device__ __forceinline__ void ReduceOrCopyMulti(
for (int i=0; i<MINDSTS; i++) align |= ptrAlign128(dsts[i]);
for (int i=MINDSTS; i<MAXDSTS && i<ndsts; i++) align |= ptrAlign128(dsts[i]);
int offset = 0;
Int offset = 0;
if (align == 0) {
// fast path: use 128b loads/stores to do the bulk of the work,
// assuming the pointers we have are all 128-bit aligned.
// main loop
int Npack = (Nrem / (PACKELEMS*UNROLL*WARP_SIZE)) * (UNROLL*WARP_SIZE); // round down
int Nelem = Npack * PACKELEMS;
Int Npack = (Nrem / (PACKELEMS*UNROLL*WARP_SIZE)) * (UNROLL*WARP_SIZE); // round down
Int Nelem = Npack * PACKELEMS;
ReduceCopy128bMulti<FUNC, T, UNROLL, MINSRCS, MAXSRCS, MINDSTS, MAXDSTS>
(w, nw, t, fn, preOpSrc0, postOp, nsrcs, srcs, ndsts, dsts, offset, Npack);
ReduceCopy128bMulti<FUNC, T, UNROLL, MINSRCS, MAXSRCS, MINDSTS, MAXDSTS, PreOpN>
(w, nw, t, redOpArgs, postOp, nsrcs, srcs, ndsts, dsts, offset, Npack);
Nrem -= Nelem;
if (Nrem == 0) return;
@ -646,8 +665,8 @@ __device__ __forceinline__ void ReduceOrCopyMulti(
Npack = Nrem / PACKELEMS;
Nelem = Npack * PACKELEMS;
ReduceCopy128bMulti<FUNC, T, 1, MINSRCS, MAXSRCS, MINDSTS, MAXDSTS>
(w, nw, t, fn, preOpSrc0, postOp, nsrcs, srcs, ndsts, dsts, offset, Npack);
ReduceCopy128bMulti<FUNC, T, 1, MINSRCS, MAXSRCS, MINDSTS, MAXDSTS, PreOpN>
(w, nw, t, redOpArgs, postOp, nsrcs, srcs, ndsts, dsts, offset, Npack);
Nrem -= Nelem;
if (Nrem == 0) return;
@ -655,18 +674,18 @@ __device__ __forceinline__ void ReduceOrCopyMulti(
}
// unrolled, by-type (mostly for unaligned buffers)
int Nelem = (Nrem / (UNROLL*PACKELEMS/2*WARP_SIZE)) * (UNROLL*PACKELEMS/2*WARP_SIZE); // round down
Int Nelem = (Nrem / (UNROLL*PACKELEMS/2*WARP_SIZE)) * (UNROLL*PACKELEMS/2*WARP_SIZE); // round down
ReduceCopyMulti<FUNC, T, UNROLL*PACKELEMS/2, MINSRCS, MAXSRCS, MINDSTS, MAXDSTS>
(w, nw, t, fn, preOpSrc0, postOp, nsrcs, srcs, ndsts, dsts, offset, Nelem);
ReduceCopyMulti<FUNC, T, UNROLL*PACKELEMS/2, MINSRCS, MAXSRCS, MINDSTS, MAXDSTS, PreOpN>
(w, nw, t, redOpArgs, postOp, nsrcs, srcs, ndsts, dsts, offset, Nelem);
Nrem -= Nelem;
if (Nrem == 0) return;
offset += Nelem;
// no unroll, by type. Should finish what's remaining.
ReduceCopyMulti<FUNC, T, 1, MINSRCS, MAXSRCS, MINDSTS, MAXDSTS>
(w, nw, t, fn, preOpSrc0, postOp, nsrcs, srcs, ndsts, dsts, offset, Nrem);
ReduceCopyMulti<FUNC, T, 1, MINSRCS, MAXSRCS, MINDSTS, MAXDSTS, PreOpN>
(w, nw, t, redOpArgs, postOp, nsrcs, srcs, ndsts, dsts, offset, Nrem);
}
#endif // COMMON_KERNEL_H_

View File

@ -10,95 +10,100 @@
__shared__ ncclShmemData ncclShmem;
#define NCCL_FUNC5(func, algo, redop, type) \
NCCL_FUNC_NAME(func, algo, LL, redop, type), \
NCCL_FUNC_NAME(func, algo, LL128, redop, type), \
NCCL_FUNC_NAME(func, algo, SIMPLE, redop, type)
#define NCCL_FUNC5(func, algo, devredop, type, nullify) \
MACRO_IF(nullify, nullptr, NCCL_FUNC_NAME(func, algo, LL, devredop, type)), \
MACRO_IF(nullify, nullptr, NCCL_FUNC_NAME(func, algo, LL128, devredop, type)), \
MACRO_IF(nullify, nullptr, NCCL_FUNC_NAME(func, algo, SIMPLE, devredop, type))
#define NCCL_FUNC4(func, redop, type) \
NCCL_FUNC5(func, TREE, redop, type), \
NCCL_FUNC5(func, RING, redop, type), \
NCCL_FUNC5(func, COLLNET, redop, type)
#define NCCL_FUNC4(func, devredop, type, nullify) \
NCCL_FUNC5(func, TREE, devredop, type, nullify), \
NCCL_FUNC5(func, RING, devredop, type, nullify), \
NCCL_FUNC5(func, COLLNET, devredop, type, nullify)
#if defined(__CUDA_BF16_TYPES_EXIST__)
// Must be consistent with ncclDataType_t
#define NCCL_FUNCS3A(func, redop) \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, uint8_t), \
NCCL_FUNC4(func, redop, int32_t), \
NCCL_FUNC4(func, redop, uint32_t), \
NCCL_FUNC4(func, redop, int64_t), \
NCCL_FUNC4(func, redop, uint64_t), \
NCCL_FUNC4(func, redop, half), \
NCCL_FUNC4(func, redop, float), \
NCCL_FUNC4(func, redop, double), \
NCCL_FUNC4(func, redop, __nv_bfloat16)
#define NCCL_FUNCS3B(func, redop) \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t)
#define NCCL_FUNCS3A(func, devredop, nullForFloat) \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, uint8_t, 0), \
NCCL_FUNC4(func, devredop, int32_t, 0), \
NCCL_FUNC4(func, devredop, uint32_t, 0), \
NCCL_FUNC4(func, devredop, int64_t, 0), \
NCCL_FUNC4(func, devredop, uint64_t, 0), \
NCCL_FUNC4(func, devredop, half, nullForFloat), \
NCCL_FUNC4(func, devredop, float, nullForFloat), \
NCCL_FUNC4(func, devredop, double, nullForFloat), \
NCCL_FUNC4(func, devredop, __nv_bfloat16, nullForFloat)
#define NCCL_FUNCS3B(func, devredop) \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0)
#else
// Must be consistent with ncclDataType_t
#define NCCL_FUNCS3A(func, redop) \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, uint8_t), \
NCCL_FUNC4(func, redop, int32_t), \
NCCL_FUNC4(func, redop, uint32_t), \
NCCL_FUNC4(func, redop, int64_t), \
NCCL_FUNC4(func, redop, uint64_t), \
NCCL_FUNC4(func, redop, half), \
NCCL_FUNC4(func, redop, float), \
NCCL_FUNC4(func, redop, double)
#define NCCL_FUNCS3B(func, redop) \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t), \
NCCL_FUNC4(func, redop, int8_t)
#define NCCL_FUNCS3A(func, devredop, nullForFloat) \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, uint8_t, 0), \
NCCL_FUNC4(func, devredop, int32_t, 0), \
NCCL_FUNC4(func, devredop, uint32_t, 0), \
NCCL_FUNC4(func, devredop, int64_t, 0), \
NCCL_FUNC4(func, devredop, uint64_t, 0), \
NCCL_FUNC4(func, devredop, half, nullForFloat), \
NCCL_FUNC4(func, devredop, float, nullForFloat), \
NCCL_FUNC4(func, devredop, double, nullForFloat)
#define NCCL_FUNCS3B(func, devredop) \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0), \
NCCL_FUNC4(func, devredop, int8_t, 0)
#endif
// Must be consistent with ncclRedOp_t
#define NCCL_FUNCS2A(func) \
NCCL_FUNCS3A(func, Sum ), \
NCCL_FUNCS3A(func, Prod), \
NCCL_FUNCS3A(func, Max ), \
NCCL_FUNCS3A(func, Min ), \
NCCL_FUNCS3A(func, Avg)
NCCL_FUNCS3A(func, Sum, /*nullForFloat=*/0), \
NCCL_FUNCS3A(func, Prod, /*nullForFloat=*/0), \
NCCL_FUNCS3A(func, Max, /*nullForFloat=*/0), \
NCCL_FUNCS3A(func, Min, /*nullForFloat=*/0), \
NCCL_FUNCS3A(func, PreMulSum, /*nullForFloat=*/0), \
NCCL_FUNCS3A(func, SumPostDiv, /*nullForFloat=*/1)
#define NCCL_FUNCS2B(func) \
NCCL_FUNCS3B(func, Sum), \
NCCL_FUNCS3B(func, Sum), \
NCCL_FUNCS3B(func, Sum), \
NCCL_FUNCS3B(func, Sum), \
NCCL_FUNCS3B(func, Sum), \
NCCL_FUNCS3B(func, Sum)
// Must be consistent with ncclFunc_t
#define NCCL_FUNCS() { \
NCCL_FUNC_NAME(SendRecv, RING, SIMPLE, Sum, int8_t),\
NCCL_FUNCS2B(Broadcast), \
NCCL_FUNCS2A(Reduce), \
NCCL_FUNCS2B(AllGather), \
NCCL_FUNCS2A(ReduceScatter), \
NCCL_FUNCS2A(AllReduce) }
// Must be consistent with the ncclFuncSet enum
__device__ ncclKern_t ncclFuncs[1+NCCL_NUM_FUNCTIONS*ncclNumOps*ncclNumTypes*NCCL_NUM_ALGORITHMS*NCCL_NUM_PROTOCOLS] = {
__device__ ncclKern_t ncclFuncs[1+ncclNumTypes+NCCL_NUM_FUNCTIONS*ncclNumDevRedOps*ncclNumTypes*NCCL_NUM_ALGORITHMS*NCCL_NUM_PROTOCOLS] = {
// Don't try to initialize the host shadow copy of this device-side global
// variable. There is no host pointer to a device-side function, which
// confuses clang. This will be fixed in the next clang release.
#if __CUDA_ARCH__
NCCL_FUNC_NAME(SendRecv, RING, SIMPLE, Sum, int8_t),
NCCL_ONERANK_REDUCE_NAME(PreMulSum, int8_t),
NCCL_ONERANK_REDUCE_NAME(PreMulSum, uint8_t),
NCCL_ONERANK_REDUCE_NAME(PreMulSum, int32_t),
NCCL_ONERANK_REDUCE_NAME(PreMulSum, uint32_t),
NCCL_ONERANK_REDUCE_NAME(PreMulSum, int64_t),
NCCL_ONERANK_REDUCE_NAME(PreMulSum, uint64_t),
NCCL_ONERANK_REDUCE_NAME(PreMulSum, half),
NCCL_ONERANK_REDUCE_NAME(PreMulSum, float),
NCCL_ONERANK_REDUCE_NAME(PreMulSum, double),
#if defined(__CUDA_BF16_TYPES_EXIST__)
NCCL_ONERANK_REDUCE_NAME(PreMulSum, __nv_bfloat16),
#endif
NCCL_FUNCS2B(Broadcast),
NCCL_FUNCS2A(Reduce),
NCCL_FUNCS2B(AllGather),

View File

@ -17,7 +17,7 @@ targets="GENOBJS := \\\\\n"
for base in sendrecv all_reduce all_gather broadcast reduce reduce_scatter; do
opn=0
for op in sum prod min max avg; do
for op in sum prod min max premulsum sumpostdiv; do
dtn=0
# Order must match that of the ncclDataType_t enum
for dt in ${datatypes}; do

View File

@ -0,0 +1,60 @@
/*************************************************************************
* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* See LICENSE.txt for license information
************************************************************************/
#include "devcomm.h"
#include "collectives.h"
#include "reduce_kernel.h"
#include "common.h"
namespace {
template<typename T, typename RedOp>
__device__ __forceinline__ void oneRankReduce() {
ncclWork *w = &ncclShmem.work;
int tid = threadIdx.x;
int tn = blockDim.x;
#pragma unroll 1
for(int e=0; e < NCCL_MAX_WORK_ELEMENTS && w->elems[e].active != 0; e++) {
ncclWorkElem *we = &w->elems[e];
intptr_t eltN = we->coll.count;
int bid = we->coll.bid;
int bn = we->coll.nChannels;
T const *src = (T const*)we->sendbuff;
T *dst = (T*)we->recvbuff;
// each block/channel gets a roughly equal segment of 16 byte packs
constexpr int EltPerPack = 16/sizeof(T);
intptr_t packN = (eltN + EltPerPack-1) - (eltN + EltPerPack-1)%EltPerPack;
intptr_t i0 = (bid+0)*(packN/bn) + (bid+0 < packN%bn ? bid+0 : packN%bn);
intptr_t i1 = (bid+1)*(packN/bn) + (bid+1 < packN%bn ? bid+1 : packN%bn);
i0 *= EltPerPack;
i0 = i0 < eltN ? i0 : eltN;
i1 *= EltPerPack;
i1 = i1 < eltN ? i1 : eltN;
src += i0;
dst += i0;
ReduceOrCopyMulti<COLL_UNROLL, RedOp, T, 1, 1, 1, 1, 1>
(tid, tn, &(we->coll.redOpArg), true, 1, &src, 1, &dst, i1-i0);
}
}
}
#define INSTANTIATE(devredop, type) \
__device__ void NCCL_ONERANK_REDUCE_NAME(devredop, type)() { \
oneRankReduce<type, Func##devredop<type>>(); \
}
INSTANTIATE(PreMulSum, int8_t)
INSTANTIATE(PreMulSum, uint8_t)
INSTANTIATE(PreMulSum, int32_t)
INSTANTIATE(PreMulSum, uint32_t)
INSTANTIATE(PreMulSum, int64_t)
INSTANTIATE(PreMulSum, uint64_t)
INSTANTIATE(PreMulSum, half)
#if defined(__CUDA_BF16_TYPES_EXIST__)
INSTANTIATE(PreMulSum, __nv_bfloat16)
#endif
INSTANTIATE(PreMulSum, float)
INSTANTIATE(PreMulSum, double)

View File

@ -218,7 +218,7 @@ class Primitives<T, RedOp, Fan, Direct, ProtoLL>:
}
template <int RECV, int SEND, int SrcBuf, int DstBuf>
__device__ void LLGenericOp(intptr_t srcIx, intptr_t dstIx, int nelem, bool postOp) {
__device__ __forceinline__ void LLGenericOp(intptr_t srcIx, intptr_t dstIx, int nelem, bool postOp) {
constexpr int SRC = SrcBuf != -1 ? 1 : 0;
constexpr int DST = DstBuf != -1 ? 1 : 0;
T *srcElts = SrcBuf == -1 ? nullptr : userBufs[SrcBuf] + srcIx;
@ -316,9 +316,9 @@ class Primitives<T, RedOp, Fan, Direct, ProtoLL>:
public:
__device__ Primitives(
const int tid, const int nthreads, int const *recvPeers, int const *sendPeers,
void const *inputBuf, void *outputBuf, int group=0
void const *inputBuf, void *outputBuf, uint64_t redOpArg, int group=0
):
redOp(FuncTraits<RedOp>().make(ncclShmem.comm.nRanks)),
redOp(redOpArg),
tid(tid), nthreads(nthreads), wid(tid%WARP_SIZE), group(group),
stepLines(ncclShmem.comm.buffSizes[NCCL_PROTO_LL]/NCCL_STEPS/sizeof(ncclLLFifoLine)) {

View File

@ -277,7 +277,7 @@ class Primitives<T, RedOp, Fan, Direct, ProtoLL128>:
static constexpr int DataEltPerSlice = (WireWordPerSlice - WireWordPerSlice/NCCL_LL128_LINEELEMS)*(sizeof(uint64_t)/sizeof(T));
template <int RECV, int SEND, int SrcBuf, int DstBuf>
__device__ void GenericOp(intptr_t srcIx, intptr_t dstIx, int nelem, bool postOp) {
__device__ __forceinline__ void GenericOp(intptr_t srcIx, intptr_t dstIx, int nelem, bool postOp) {
constexpr int SRC = SrcBuf != -1 ? 1 : 0;
constexpr int DST = DstBuf != -1 ? 1 : 0;
static_assert(-1<=SrcBuf && SrcBuf < 2, "Uhoh");
@ -354,9 +354,9 @@ class Primitives<T, RedOp, Fan, Direct, ProtoLL128>:
public:
__device__ Primitives(
const int tid, const int nthreads, int const *recvPeers, int const *sendPeers,
void const *inputBuf, void *outputBuf, int group=0
void const *inputBuf, void *outputBuf, uint64_t redOpArg, int group=0
):
redOp(FuncTraits<RedOp>().make(ncclShmem.comm.nRanks)),
redOp(redOpArg),
tid(tid), nthreads(nthreads), wid(tid%WARP_SIZE), warp(tid/WARP_SIZE),
flagThread((tid%8)==7), group(group),
stepSize(ncclShmem.comm.buffSizes[NCCL_PROTO_LL128]/NCCL_STEPS/sizeof(uint64_t)) {

View File

@ -20,14 +20,14 @@ class Primitives<
Aborted = 0x40,
PtrsFifoEnabled = 0x80,
SizesFifoEnabled = 0x100,
DirectEnabled = 0x200,
ThreadsSynced = 0x400;
DirectWrite = 0x200,
DirectRead = 0x400,
ThreadsSynced = 0x800;
const int tid;
int nthreads;
int nworkers;
const int stepSize;
Fan fan;
RedOp const redOp;
int index; // Peer index I'm responsible for
int flags;
int group;
@ -69,16 +69,21 @@ class Primitives<
}
template <int DirectRecv, int DirectSend, int Recv, int Send, int Src, int Dst>
inline __device__ void waitPeer(intptr_t dstIx, intptr_t remoteOutIx, int offset, int nelts) {
if (flags & (Recv*RoleWaitRecv | Send*RoleWaitSend)) {
bool const isSendNotRecv = (Send && Recv) ? (flags & RoleWaitSend) : Send;
__device__ __forceinline__ void waitPeer(intptr_t dstIx, intptr_t remoteIx, int offset, int nelts) {
const bool isSendNotRecv = (Send && Recv) ? (flags & RoleWaitSend) : Send;
const bool noRecvWait = DirectRecv && Src && (flags & DirectRead); // no wait when directly reading from remote input
const bool noSendWait = DirectSend && (flags & (DirectRead|DirectWrite)); // no wait in empty send (e.g. directScatter) or direct remote write
if (((flags & (Recv*RoleWaitRecv)) && !noRecvWait) ||
((flags & (Send*RoleWaitSend)) && !noSendWait)) {
int spins = 0;
while (connStepCache + (isSendNotRecv ? NCCL_STEPS : 0) < step + StepPerSlice) {
connStepCache = *connStepPtr;
if (checkAbort(spins)) break;
//if (spins == 0) printf("r=%d b=%d t=%d SPUN OUT got=%d want=%d\n", ncclShmem.comm.rank, blockIdx.x, threadIdx.x, int(connStepCache + (isSendNotRecv ? NCCL_STEPS : 0)), int(step+StepPerSlice));
}
}
if (flags & (Recv*RoleWaitRecv | Send*RoleWaitSend)) {
if (isSendNotRecv && (flags & SizesFifoEnabled))
connSizesFifoPtr[step%NCCL_STEPS] = nelts*sizeof(T);
@ -86,10 +91,26 @@ class Primitives<
: (ncclShmem.groups[group].srcs + Src);
if (flags & PtrsFifoEnabled)
loadPtr(connPtrsFifoPtr + step%NCCL_STEPS, ptrs[index]);
else if ((isSendNotRecv ? DirectSend : DirectRecv) && (flags & DirectEnabled))
ptrs[index] = directBuff + (isSendNotRecv ? remoteOutIx : dstIx) + offset;
else
else if (isSendNotRecv && DirectSend) {
if (flags & DirectWrite) {
ptrs[index] = directBuff + remoteIx + offset;
} else if (flags & DirectRead) { // empty send
ptrs[index] = nullptr;
} else {
ptrs[index] = connEltsFifo + (step%NCCL_STEPS)*stepSize;
}
} else if (!isSendNotRecv && DirectRecv) {
if (flags & DirectRead) {
ptrs[index] = directBuff + remoteIx + offset;
} else if (flags & DirectWrite) {
ptrs[index] = directBuff + dstIx + offset; // send to next from my output buffer
} else {
ptrs[index] = connEltsFifo + (step%NCCL_STEPS)*stepSize;
}
}
else {
ptrs[index] = connEltsFifo + (step%NCCL_STEPS)*stepSize;
}
step += StepPerSlice;
}
}
@ -103,8 +124,8 @@ class Primitives<
}
template <int DirectRecv1, int DirectSend1, int Recv, int Send, int SrcBuf, int DstBuf>
inline __device__ void genericOp(
intptr_t srcIx, intptr_t dstIx, intptr_t remoteOutIx, int nelem, bool postOp
__device__ __forceinline__ void genericOp(
intptr_t srcIx, intptr_t dstIx, intptr_t remoteIx, int nelem, bool postOp
) {
constexpr int DirectRecv = 1 && Direct && DirectRecv1;
constexpr int DirectSend = 1 && Direct && DirectSend1;
@ -153,21 +174,30 @@ class Primitives<
ncclShmem.groups[group].srcs[0] = userBuff + srcIx + offset;
if (Dst && (flags & (DstBuf==Input ? RoleInput : RoleOutput)))
ncclShmem.groups[group].dsts[0] = userBuff + dstIx + offset;
waitPeer<DirectRecv, DirectSend, Recv, Send, Src, Dst>(dstIx, remoteOutIx, offset, sliceSize);
waitPeer<DirectRecv, DirectSend, Recv, Send, Src, Dst>(dstIx, remoteIx, offset, sliceSize);
subBarrier();
if (DirectRecv && ncclShmem.groups[group].srcs[0] == ncclShmem.groups[group].dsts[0]) {
// We can only have one direct receive. Since srcs[0] == dstPtr+offset, skip one copy
if (Send) {
// (1-Send) is only there to avoid compilation errors in case MaxSend=0 (and Send=0).
ReduceOrCopyMulti<Unroll, RedOp, T, 1, 1, 1, (1-Send)+MaxSend>
(tid, nworkers, redOp, false, false,
ReduceOrCopyMulti<Unroll, RedOp, T, 1, 1, 1, (1-Send)+MaxSend, 0>
(tid, nworkers, nullptr, false,
1, (T const**)ncclShmem.groups[group].srcs,
fan.nsend(), (T**)ncclShmem.groups[group].dsts+1,
sliceSize);
}
} else if (DirectSend && !DirectRecv && SrcBuf != Input && ncclShmem.groups[group].dsts[Dst] == nullptr) {
// For broadcast in CollNet to do empty send
ReduceOrCopyMulti<Unroll, RedOp, T, 1, 1, 1, 1, 0>
(tid, nworkers, ncclShmem.redOpArgs, postOp,
Recv, (T const**)ncclShmem.groups[group].srcs,
Dst, (T**)ncclShmem.groups[group].dsts,
sliceSize);
} else {
ReduceOrCopyMulti<Unroll, RedOp, T, Recv+Src, Recv*MaxRecv+Src, Send+Dst, Send*MaxSend+Dst>
(tid, nworkers, redOp, SrcBuf==Input, postOp,
constexpr int PreOpN = SrcBuf != Input ? 0 :
DirectRecv*MaxRecv == NCCL_MAX_DIRECT_ARITY ? (1+NCCL_MAX_DIRECT_ARITY) : 1;
ReduceOrCopyMulti<Unroll, RedOp, T, Recv+Src, Recv*MaxRecv+Src, Send+Dst, Send*MaxSend+Dst, PreOpN>
(tid, nworkers, ncclShmem.redOpArgs, postOp,
Recv*fan.nrecv()+Src, (T const**)ncclShmem.groups[group].srcs,
Send*fan.nsend()+Dst, (T**)ncclShmem.groups[group].dsts,
sliceSize);
@ -201,10 +231,12 @@ class Primitives<
}
}
// Scatter and gather do not support Direct
template <int Recv, int Send>
inline __device__ void
// Scatter/Gather generic op
template <int DirectRecv1, int DirectSend1, int Recv, int Send>
__device__ __forceinline__ void
ScatterGatherOp(intptr_t inpIx, intptr_t outIx, int totalElem, int peerElem, int skip, int shift, bool postOp) {
constexpr int DirectRecv = 1 && Direct && DirectRecv1;
constexpr int DirectSend = 1 && Direct && DirectSend1;
int offset = 0; // slice offset
int sliceSize = stepSize*StepPerSlice;
int dataSize = max(DIVUP(peerElem, 16*SlicePerChunk)*16, sliceSize/32); // per-peer slice size
@ -213,12 +245,14 @@ class Primitives<
for (int slice=0; slice<SlicePerChunk; ++slice) {
int realSize = max(0, min(dataSize, peerElem-offset));
if (tid < nworkers) {
if (Send && (flags & RoleInput)) ncclShmem.groups[group].srcs[0] = userBuff + inpIx + offset;
if (Recv && (flags & RoleOutput)) ncclShmem.groups[group].dsts[0] = userBuff + outIx + offset;
// realSize is not accurate here; but intra-node does not rely on sizes FIFO
waitPeer<0, 0, Recv, Send, 0, 0>(0, 0, 0, realSize);
subBarrier();
if (Send) {
// Scatter pre-scales data of input buffer only in non-Direct case
constexpr int PreOpN = DirectSend ? 0 : 1;
if (flags & RoleInput) ncclShmem.groups[group].srcs[0] = userBuff + inpIx + offset;
if (tid == 0) ncclShmem.groups[group].totalSendSize[slice] = 0; // Skip the threadfence
// realSize is not accurate here; but intra-node does not rely on sizes FIFO
waitPeer<0, DirectSend, 0, 1, 1, 0>(0, inpIx, offset, realSize);
subBarrier();
#pragma unroll
for (int j=0; j<fan.nsend(); j++) {
int i = (j+shift)%fan.nsend();
@ -226,34 +260,45 @@ class Primitives<
if (skip >= 0 && i >= skip) peerOffset += peerElem;
const T* src0 = (T*)ncclShmem.groups[group].srcs[0] + peerOffset;
int realPeerSize = min(realSize, totalElem-peerOffset);
if (realPeerSize > 0) ReduceOrCopyMulti<Unroll, RedOp, T, 1, 1, 1, 1>(tid, nworkers, redOp, true, false, 1, &src0, 1, (T**)ncclShmem.groups[group].dsts+i, realPeerSize);
if (realPeerSize > 0 && ncclShmem.groups[group].dsts[i] != nullptr) {
ReduceOrCopyMulti<Unroll, RedOp, T, 1, 1, 1, 1, PreOpN>(tid, nworkers, ncclShmem.redOpArgs, false, 1, &src0, 1, (T**)ncclShmem.groups[group].dsts+i, realPeerSize);
if (tid == 0) ncclShmem.groups[group].totalSendSize[slice] += realPeerSize;
}
}
} else if (Recv) {
#pragma unroll
for (int j=0; j<fan.nrecv(); j++) {
int i = (j+shift)%fan.nrecv();
int peerOffset = i*peerElem;
if (skip >= 0 && i >= skip) peerOffset += peerElem;
T* dst0 = (T*)ncclShmem.groups[group].dsts[0] + peerOffset;
int realPeerSize = min(realSize, totalElem-peerOffset);
if (realPeerSize > 0) ReduceOrCopyMulti<Unroll, RedOp, T, 1, 1, 1, 1>(tid, nworkers, redOp, false, postOp, 1, (T const**)ncclShmem.groups[group].srcs+i, 1, &dst0, realPeerSize);
if (flags & RoleOutput) ncclShmem.groups[group].dsts[0] = userBuff + outIx + offset;
int peerOffset = index*peerElem;
if (skip >= 0 && index >= skip) peerOffset += peerElem;
// Adjust remote index with peer offset in case we are directly pulling from peer's output buffer
waitPeer<DirectRecv, 0, 1, 0, 0, 1>(outIx, outIx+peerOffset, offset, realSize);
subBarrier();
if (DirectRecv && ncclShmem.groups[group].srcs[0] == ncclShmem.groups[group].dsts[0]) {
// Since waitPeer sets srcs[0] to output buffer + offset, we are doing a direct-write based recv
// Do nothing
} else {
#pragma unroll
for (int j=0; j<fan.nrecv(); j++) {
int i = (j+shift)%fan.nrecv();
peerOffset = i*peerElem;
if (skip >= 0 && i >= skip) peerOffset += peerElem;
T* dst0 = (T*)ncclShmem.groups[group].dsts[0] + peerOffset;
int realPeerSize = min(realSize, totalElem-peerOffset);
if (realPeerSize > 0) ReduceOrCopyMulti<Unroll, RedOp, T, 1, 1, 1, 1, 0>(tid, nworkers, ncclShmem.redOpArgs, postOp, 1, (const T**)ncclShmem.groups[group].srcs+i, 1, &dst0, realPeerSize);
}
}
}
}
barrier();
if (Send && (flags & RolePostSend) && realSize > 0 && index == 0) __threadfence_system();
if (Send && (flags & RolePostSend) && ncclShmem.groups[group].totalSendSize[slice] > 0 && index == 0)
__threadfence_system();
__syncwarp();
postPeer<Recv, Send>();
offset += realSize;
}
}
__device__ __forceinline__ void loadRecvConn(ncclPeer *peer) {
__device__ __forceinline__ void loadRecvConn(ncclPeer *peer, int connIndex, struct ncclWorkElem* e) {
if (flags & (RoleWaitRecv|RolePostRecv)) {
// For other colls: group <= 2, hence always use conn 0
// For P2P: Direct is set to 1, hence always use conn 0
// Ideally we should be accepting connIndex from the constructor!
const int connIndex = Direct ? 0 : group/4;
auto *conn = &peer->recv[connIndex].conn;
step = conn->step;
step = roundUp(step, SlicePerChunk*StepPerSlice);
@ -266,7 +311,25 @@ class Primitives<
connStepPtr = conn->tail;
connStepCache = *connStepPtr;
flags |= (conn->ptrsFifo != nullptr) ? PtrsFifoEnabled : 0;
flags |= (Direct && (conn->direct & NCCL_DIRECT_GPU)) ? DirectEnabled : 0;
if (Direct) {
// User buffers have been registered
if ((conn->direct & (NCCL_IPC_READ|NCCL_IPC_WRITE)) && e != nullptr && e->regUsed) {
if (connIndex == 1) {
flags |= DirectRead; // scatter-reduce use direct pull
} else {
flags |= (e->direct & NCCL_DIRECT_WRITE) ? DirectWrite :
(e->direct & NCCL_DIRECT_READ) ? DirectRead : 0;
}
} else if (conn->direct & (NCCL_DIRECT_WRITE|NCCL_DIRECT_READ)) {
if (connIndex == 1) {
flags |= DirectRead; // scatter-reduce use direct pull
} else {
// direct read not allowed in non-register case
// otherwise, in one-to-multi send, we could mix empty send and intermediate send
flags |= (conn->direct & NCCL_DIRECT_WRITE) ? DirectWrite : 0;
}
}
}
if (flags & PtrsFifoEnabled)
connPtrsFifoPtr = conn->ptrsFifo;
else
@ -275,12 +338,8 @@ class Primitives<
}
}
__device__ __forceinline__ void loadSendConn(ncclPeer *peer) {
__device__ __forceinline__ void loadSendConn(ncclPeer *peer, int connIndex, struct ncclWorkElem* e) {
if (flags & (RoleWaitSend|RolePostSend)) {
// For other colls: group <= 2, hence always use conn 0
// For P2P: Direct is set to 1, hence always use conn 0
// Ideally we should be accepting connIndex from the constructor!
const int connIndex = Direct ? 0 : group/4;
auto *conn = &peer->send[connIndex].conn;
step = conn->step;
step = roundUp(step, SlicePerChunk*StepPerSlice);
@ -300,9 +359,25 @@ class Primitives<
if (conn->sizesFifo != nullptr) {
flags |= SizesFifoEnabled;
connSizesFifoPtr = conn->sizesFifo;
} else if (Direct) {
// User buffers have been registered
if ((conn->direct & (NCCL_IPC_READ|NCCL_IPC_WRITE)) && e != nullptr && e->regUsed) {
if (connIndex == 1) {
flags |= DirectRead; // scatter-reduce use direct pull
} else {
flags |= (e->direct & NCCL_DIRECT_WRITE) ? DirectWrite :
(e->direct & NCCL_DIRECT_READ) ? DirectRead : 0;
}
} else if (conn->direct & (NCCL_DIRECT_WRITE|NCCL_DIRECT_READ)) {
if (connIndex == 1) {
flags |= DirectRead; // scatter-reduce use direct pull
} else {
// direct read not allowed in non-register case
// otherwise, in one-to-multi send, we could mix empty send and intermediate send
flags |= (conn->direct & NCCL_DIRECT_WRITE) ? DirectWrite : 0;
}
}
}
else if (Direct && (conn->direct & NCCL_DIRECT_GPU))
flags |= DirectEnabled;
}
}
}
@ -310,16 +385,16 @@ class Primitives<
public:
__device__ Primitives(
int tid, int nthreads, int const *recvPeers, int const *sendPeers,
void const *inputBuf, void *outputBuf, int group=0
void const *inputBuf, void *outputBuf, uint64_t redOpArg, uint32_t group=0, struct ncclWorkElem* e = nullptr
):
tid(tid),
stepSize(ncclShmem.comm.buffSizes[NCCL_PROTO_SIMPLE]/NCCL_STEPS/sizeof(T)),
redOp(FuncTraits<RedOp>::make(ncclShmem.comm.nRanks)) {
stepSize(ncclShmem.comm.buffSizes[NCCL_PROTO_SIMPLE]/NCCL_STEPS/sizeof(T)) {
// For send operations, we need an extra warp to overlap the threadfence and the copy
this->nthreads = nthreads;
this->nworkers = nthreads - (MaxSend > 0 && nthreads-WARP_SIZE >= 64 ? WARP_SIZE : 0);
this->group = group;
this->group = group & (uint16_t)0xFFFF;
int connIndex = group >> 16;
int nrecv=0, nsend=0;
while (nrecv < MaxRecv && recvPeers[nrecv] != -1) nrecv++;
@ -349,10 +424,10 @@ class Primitives<
if (flags & (RoleWaitRecv|RolePostRecv)) peer = recvPeers[index];
if (flags & (RoleWaitSend|RolePostSend)) peer = sendPeers[index];
loadRecvConn(&ncclShmem.channel.devPeers[peer]);
loadSendConn(&ncclShmem.channel.devPeers[peer]);
loadRecvConn(&ncclShmem.channel.devPeers[peer], connIndex, e);
loadSendConn(&ncclShmem.channel.devPeers[peer], connIndex, e);
setDataPtrs(inputBuf, outputBuf);
setDataPtrs(inputBuf, outputBuf, redOpArg, (struct ncclWorkRegElem*)e);
}
__device__ ~Primitives() {
@ -369,10 +444,19 @@ class Primitives<
barrier();
}
__device__ void setDataPtrs(void const *inputBuf, void *outputBuf) {
if (flags & RoleInput) userBuff = (T*)inputBuf;
__device__ void setDataPtrs(void const *inputBuf, void *outputBuf, uint64_t redOpArg, struct ncclWorkRegElem* e) {
if (flags & RoleInput) {
userBuff = (T*)inputBuf;
ncclShmem.redOpArgs[0] = redOpArg; // scaler for local input
}
if (flags & RoleOutput) userBuff = (T*)outputBuf;
if (Direct && flags == (flags|RoleWaitRecv|DirectEnabled)) {
bool recvProvider = flags == (flags|RoleWaitRecv|DirectWrite);
bool sendAcceptor = flags == (flags|RoleWaitSend|DirectWrite);
bool sendProvider = flags == (flags|RoleWaitSend|DirectRead); // sender provides direct buffer (to be fetched)
bool recvAcceptor = flags == (flags|RoleWaitRecv|DirectRead); // receiver accepts direct buffer
int regUsed = e != nullptr ? e->elem.regUsed : 0;
if (Direct && recvProvider) {
int spins = 0;
void *volatile *slot = ncclShmem.groups[group].recvConns[index]->ptrExchange;
// Wait for consumer to consume previous value before trampling it.
@ -381,9 +465,9 @@ class Primitives<
// Encode pointer by XOR'ing against some address they definitely wouldn't send
// since we want to allow them sending us nullptr while not colliding with
// the empty slot value.
*slot = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(outputBuf) ^ reinterpret_cast<uintptr_t>(slot));
*slot = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(directBuff) ^ reinterpret_cast<uintptr_t>(slot));
}
if (Direct && flags == (flags|RoleWaitSend|DirectEnabled)) {
if (Direct && sendAcceptor) {
int spins = 0;
void *volatile *slot = ncclShmem.groups[group].sendConns[index]->ptrExchange;
void *ptr;
@ -391,7 +475,51 @@ class Primitives<
ptr = *slot;
if (ptr != nullptr || checkAbort(spins)) break;
}
directBuff = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(ptr) ^ reinterpret_cast<uintptr_t>(slot));
directBuff = regUsed ? (T*)(e->dnOutputs[index]) :
reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(ptr) ^ reinterpret_cast<uintptr_t>(slot));
*slot = nullptr;
}
if (Direct && sendProvider) {
int spins = 0;
void *volatile *slot = ncclShmem.groups[group].sendConns[index]->ptrExchange;
volatile uint64_t* argSlot0 = ncclShmem.groups[group].sendConns[index]->redOpArgExchange;
volatile uint64_t* argSlot1 = ncclShmem.groups[group].sendConns[index]->redOpArgExchange+1;
// Wait for consumer to consume previous value before trampling it.
while ((*slot != nullptr || *argSlot0 != 0 || *argSlot1 !=0) && !checkAbort(spins));
// If there is no recv, then we are directly pulling from input buffer (e.g. directScatter)
// Otherwise, we are pulling from output buffer (e.g. recvCopyDirectSend)
directBuff = MaxRecv == 0 ? (T*)inputBuf : (T*)outputBuf;
// Exchange pre-scalers for use in direct pull
*argSlot0 = (uint64_t(1)<<32) | (uint32_t)redOpArg;
*argSlot1 = (uint64_t(1)<<32) | (uint32_t)(redOpArg>>32);
// Encode pointer by XOR'ing against some address they definitely wouldn't send
// since we want to allow them sending us nullptr while not colliding with
// the empty slot value.
*slot = reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(directBuff) ^ reinterpret_cast<uintptr_t>(slot));
}
if (Direct && recvAcceptor) {
int spins = 0;
void *volatile *slot = ncclShmem.groups[group].recvConns[index]->ptrExchange;
volatile uint64_t* argSlot0 = ncclShmem.groups[group].recvConns[index]->redOpArgExchange;
volatile uint64_t* argSlot1 = ncclShmem.groups[group].recvConns[index]->redOpArgExchange+1;
void *ptr;
while (true) {
ptr = *slot;
if (ptr != nullptr || checkAbort(spins)) break;
}
directBuff = regUsed ? (T*)(MaxSend == 0 ? e->upOutputs[index] : e->dnInputs[index]) :
reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(ptr) ^ reinterpret_cast<uintptr_t>(slot));
if (MaxSend != 0) { // reduce group rather than gather group
// Store scalers for remote inputs
uint64_t arg0, arg1;
while (true) {
arg0 = *argSlot0;
arg1 = *argSlot1;
if ((arg0 != 0 && arg1 != 0) || checkAbort(spins)) break;
}
ncclShmem.redOpArgs[1+index] = ((arg1 & 0xffffffff)<<32) | (arg0 & 0xffffffff);
}
*argSlot0 = 0; *argSlot1 = 0;
*slot = nullptr;
}
}
@ -434,6 +562,9 @@ class Primitives<
__device__ __forceinline__ void directRecvCopySend(intptr_t outIx, intptr_t remoteOutIx, int eltN) {
genericOp<1, 1, 1, 1, -1, Output>(-1, outIx, remoteOutIx, eltN, false);
}
__device__ __forceinline__ void recvCopyDirectSend(intptr_t outIx, intptr_t remoteOutIx, int eltN, bool postOp=false) {
genericOp<0, 1, 1, 1, -1, Output>(-1, outIx, remoteOutIx, eltN, postOp);
}
__device__ __forceinline__ void recvReduceCopy(intptr_t inpIx, intptr_t outIx, int eltN, bool postOp=false) {
genericOp<0, 0, 1, 0, Input, Output>(inpIx, outIx, -1, eltN, postOp);
@ -442,6 +573,9 @@ class Primitives<
__device__ __forceinline__ void recvReduceSend(intptr_t inpIx, int eltN, bool postOp=false) {
genericOp<0, 0, 1, 1, Input, -1>(inpIx, -1, -1, eltN, postOp);
}
__device__ __forceinline__ void directRecvReduceSend(intptr_t inpIx, intptr_t remoteInpIx, int eltN, bool postOp=false) {
genericOp<1, 0, 1, 1, Input, -1>(inpIx, -1, remoteInpIx, eltN, postOp);
}
__device__ __forceinline__ void recvReduceCopySend(intptr_t inpIx, intptr_t outIx, int eltN, bool postOp=false) {
genericOp<0, 0, 1, 1, Input, Output>(inpIx, outIx, -1, eltN, postOp);
@ -453,11 +587,19 @@ class Primitives<
__device__ __forceinline__ void
scatter(intptr_t inpIx, int totalElem, int peerElem, int skip, int shift) {
ScatterGatherOp<0, 1>(inpIx, -1, totalElem, peerElem, skip, shift, /*postOp=*/false);
ScatterGatherOp<0, 0, 0, 1>(inpIx, -1, totalElem, peerElem, skip, shift, /*postOp=*/false);
}
__device__ __forceinline__ void
directScatter(intptr_t inpIx, int totalElem, int peerElem, int skip, int shift) {
ScatterGatherOp<0, 1, 0, 1>(inpIx, -1, totalElem, peerElem, skip, shift, /*postOp=*/false);
}
__device__ __forceinline__ void
gather(intptr_t outIx, int totalElem, int peerElem, int skip, int shift, bool postOp=false) {
ScatterGatherOp<1, 0>(-1, outIx, totalElem, peerElem, skip, shift, postOp);
ScatterGatherOp<0, 0, 1, 0>(-1, outIx, totalElem, peerElem, skip, shift, postOp);
}
__device__ __forceinline__ void
directGather(intptr_t outIx, int totalElem, int peerElem, int skip, int shift) {
ScatterGatherOp<1, 0, 1, 0>(-1, outIx, totalElem, peerElem, skip, shift, /*postOp=*/false);
}
};

View File

@ -10,7 +10,7 @@
namespace {
template<typename T, typename RedOp, typename Proto>
__device__ void runRing(ncclWorkElem *args) {
__device__ __forceinline__ void runRing(ncclWorkElem *args) {
const int tid = threadIdx.x;
const int nthreads = args->nThreads;
const int bid = args->coll.bid;
@ -26,7 +26,7 @@ namespace {
const int root = args->coll.root;
Primitives<T, RedOp, FanSymmetric<1>, 0, Proto>
prims(tid, nthreads, &ring->prev, &ring->next, args->sendbuff, args->recvbuff);
prims(tid, nthreads, &ring->prev, &ring->next, args->sendbuff, args->recvbuff, args->coll.redOpArg);
auto calcChunkSize = [&]__device__(ssize_t gridOffset)->int {
int realChunkSize;
@ -70,7 +70,7 @@ namespace {
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncReduce, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_SIMPLE> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
using Proto = ProtoSimple<REDUCE_CHUNKSTEPS/REDUCE_SLICESTEPS, REDUCE_SLICESTEPS>;
runRing<T, RedOp, Proto>(args);
}
@ -78,14 +78,14 @@ struct RunWorkElement<ncclFuncReduce, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_SIMPL
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncReduce, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_LL> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
runRing<T, RedOp, ProtoLL>(args);
}
};
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncReduce, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_LL128> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
runRing<T, RedOp, ProtoLL128>(args);
}
};

View File

@ -14,6 +14,7 @@
template<typename T>
struct FuncNull {
__device__ FuncNull(uint64_t opArg=0) {}
__device__ T operator()(const T x, const T y) const {
return 0;
}
@ -21,6 +22,7 @@ struct FuncNull {
template<typename T>
struct FuncSum {
__device__ FuncSum(uint64_t opArg=0) {}
__device__ T operator()(const T x, const T y) const {
return x + y;
}
@ -28,6 +30,7 @@ struct FuncSum {
template<typename T>
struct FuncProd {
__device__ FuncProd(uint64_t opArg=0) {}
__device__ T operator()(const T x, const T y) const {
return x * y;
}
@ -35,6 +38,7 @@ struct FuncProd {
template<typename T>
struct FuncMax {
__device__ FuncMax(uint64_t opArg=0) {}
__device__ T operator()(const T x, const T y) const {
return (x < y) ? y : x;
}
@ -42,6 +46,7 @@ struct FuncMax {
template<typename T>
struct FuncMin {
__device__ FuncMin(uint64_t opArg=0) {}
__device__ T operator()(const T x, const T y) const {
return (x < y) ? x : y;
}
@ -52,7 +57,6 @@ struct FuncTraits { // generic implementation for FuncSum,Prod,Min,Max
static constexpr bool IsPreOpIdentity = true;
static constexpr bool IsPostOpIdentity = true;
__device__ static Fn make(int rankN) { return Fn(); }
template<typename T>
__device__ static T preOp(Fn, T x) { return x; }
template<typename T>
@ -74,6 +78,7 @@ static __device__ uint32_t addChar4(const uint32_t x, const uint32_t y) {
template<>
struct FuncSum<int8_t> {
__device__ FuncSum(uint64_t opArg=0) {}
__device__ uint32_t operator()(const uint32_t x, const uint32_t y) const {
#if (__CUDA_ARCH__ >= 300) && (__CUDA_ARCH__ < 500)
int32_t rv, z=0;
@ -89,6 +94,7 @@ struct FuncSum<int8_t> {
};
template<>
struct FuncSum<uint8_t> {
__device__ FuncSum(uint64_t opArg=0) {}
__device__ uint32_t operator()(const uint32_t x, const uint32_t y) const {
#if (__CUDA_ARCH__ >= 300) && (__CUDA_ARCH__ < 500)
int32_t rv, z=0;
@ -118,6 +124,7 @@ static __device__ uint32_t mulChar4(const uint32_t x, const uint32_t y) {
template<>
struct FuncProd<int8_t> {
__device__ FuncProd(uint64_t opArg=0) {}
__device__ uint32_t operator()(const uint32_t x, const uint32_t y) const {
return mulChar4(x, y);
}
@ -127,6 +134,7 @@ struct FuncProd<int8_t> {
};
template<>
struct FuncProd<uint8_t> {
__device__ FuncProd(uint64_t opArg=0) {}
__device__ uint32_t operator()(const uint32_t x, const uint32_t y) const {
return mulChar4(x, y);
}
@ -137,6 +145,7 @@ struct FuncProd<uint8_t> {
template<>
struct FuncMax<int8_t> {
__device__ FuncMax(uint64_t opArg=0) {}
union converter { uint32_t storage; char4 a; };
__device__ uint32_t operator()(const uint32_t x, const uint32_t y) const {
#if (__CUDA_ARCH__ >= 300) && (__CUDA_ARCH__ < 500)
@ -160,6 +169,7 @@ struct FuncMax<int8_t> {
};
template<>
struct FuncMax<uint8_t> {
__device__ FuncMax(uint64_t opArg=0) {}
union converter { uint32_t storage; uchar4 a; };
__device__ uint32_t operator()(const uint32_t x, const uint32_t y) const {
#if (__CUDA_ARCH__ >= 300) && (__CUDA_ARCH__ < 500)
@ -184,6 +194,7 @@ struct FuncMax<uint8_t> {
template<>
struct FuncMin<int8_t> {
__device__ FuncMin(uint64_t opArg=0) {}
union converter { uint32_t storage; char4 a; };
__device__ uint32_t operator()(const uint32_t x, const uint32_t y) const {
#if (__CUDA_ARCH__ >= 300) && (__CUDA_ARCH__ < 500)
@ -207,6 +218,7 @@ struct FuncMin<int8_t> {
};
template<>
struct FuncMin<uint8_t> {
__device__ FuncMin(uint64_t opArg=0) {}
union converter { uint32_t storage; uchar4 a; };
__device__ uint32_t operator()(const uint32_t x, const uint32_t y) const {
#if (__CUDA_ARCH__ >= 300) && (__CUDA_ARCH__ < 500)
@ -231,6 +243,7 @@ struct FuncMin<uint8_t> {
template<>
struct FuncSum<half> {
__device__ FuncSum(uint64_t opArg=0) {}
__device__ half2 operator()(const half2 x, const half2 y) const {
#if __CUDA_ARCH__ >= 530 && __CUDA_ARCH__ != 610
return __hadd2(x, y);
@ -255,6 +268,7 @@ struct FuncSum<half> {
#if defined(__CUDA_BF16_TYPES_EXIST__)
template<>
struct FuncSum<__nv_bfloat16> {
__device__ FuncSum(uint64_t opArg=0) {}
__device__ __nv_bfloat162 operator()(const __nv_bfloat162 x, const __nv_bfloat162 y) const {
#if __CUDA_ARCH__ >= 800
return __hadd2(x, y);
@ -279,6 +293,7 @@ struct FuncSum<__nv_bfloat16> {
template<>
struct FuncProd<half> {
__device__ FuncProd(uint64_t opArg=0) {}
__device__ half2 operator()(const half2 x, const half2 y) const {
#if __CUDA_ARCH__ >= 530 && __CUDA_ARCH__ != 610
return __hmul2(x, y);
@ -303,6 +318,7 @@ struct FuncProd<half> {
#if defined(__CUDA_BF16_TYPES_EXIST__)
template<>
struct FuncProd<__nv_bfloat16> {
__device__ FuncProd(uint64_t opArg=0) {}
__device__ __nv_bfloat162 operator()(const __nv_bfloat162 x, const __nv_bfloat162 y) const {
#if __CUDA_ARCH__ >= 800
return __hmul2(x, y);
@ -327,6 +343,7 @@ struct FuncProd<__nv_bfloat16> {
template<>
struct FuncMax<half> {
__device__ FuncMax(uint64_t opArg=0) {}
__device__ half2 operator()(const half2 x, const half2 y) const {
float2 fx, fy, fr;
fx = __half22float2(x);
@ -347,6 +364,7 @@ struct FuncMax<half> {
#if defined(__CUDA_BF16_TYPES_EXIST__)
template<>
struct FuncMax<__nv_bfloat16> {
__device__ FuncMax(uint64_t opArg=0) {}
__device__ __nv_bfloat162 operator()(const __nv_bfloat162 x, const __nv_bfloat162 y) const {
#if __CUDA_ARCH__ >= 800
return __hmax2(x, y);
@ -374,6 +392,7 @@ struct FuncMax<__nv_bfloat16> {
template<>
struct FuncMin<half> {
__device__ FuncMin(uint64_t opArg=0) {}
__device__ half2 operator()(const half2 x, const half2 y) const {
float2 fx, fy, fr;
fx = __half22float2(x);
@ -394,6 +413,7 @@ struct FuncMin<half> {
#if defined(__CUDA_BF16_TYPES_EXIST__)
template<>
struct FuncMin<__nv_bfloat16> {
__device__ FuncMin(uint64_t opArg=0) {}
__device__ __nv_bfloat162 operator()(const __nv_bfloat162 x, const __nv_bfloat162 y) const {
#if __CUDA_ARCH__ >= 800
return __hmin2(x, y);
@ -421,12 +441,14 @@ struct FuncMin<__nv_bfloat16> {
template<>
struct FuncMax<float> {
__device__ FuncMax(uint64_t opArg=0) {}
__device__ float operator()(float x, float y) const {
return fmaxf(x, y);
}
};
template<>
struct FuncMin<float> {
__device__ FuncMin(uint64_t opArg=0) {}
__device__ float operator()(float x, float y) const {
return fminf(x, y);
}
@ -434,71 +456,98 @@ struct FuncMin<float> {
template<>
struct FuncMax<double> {
__device__ FuncMax(uint64_t opArg=0) {}
__device__ double operator()(double x, double y) const {
return fmax(x, y);
}
};
template<>
struct FuncMin<double> {
__device__ FuncMin(uint64_t opArg=0) {}
__device__ double operator()(double x, double y) const {
return fmin(x, y);
}
};
template<typename T>
struct FuncAvg: FuncSum<T> {
static_assert(!std::is_floating_point<T>::value, "Uhoh");
struct IsFloatingPoint: std::false_type {};
template<>
struct IsFloatingPoint<half>: std::true_type {};
#if defined(__CUDA_BF16_TYPES_EXIST__)
template<>
struct IsFloatingPoint<__nv_bfloat16>: std::true_type {};
#endif
template<>
struct IsFloatingPoint<float>: std::true_type {};
template<>
struct IsFloatingPoint<double>: std::true_type {};
template<typename T, bool IsFloating=IsFloatingPoint<T>::value>
struct FuncSumPostDiv;
template<typename T>
struct FuncSumPostDiv<T, /*IsFloating=*/false>: FuncSum<T> {
static constexpr bool IsPreOpIdentity = true;
static constexpr bool IsPostOpIdentity = false;
int n;
__device__ FuncSumPostDiv(uint64_t opArg): n(opArg) {}
// inherits FuncSum::operator()
__device__ T preOp(T x) const { return x; }
__device__ T postOp(T x) const { return T(x/n); }
};
template<typename ...Arg>
__device__ FuncAvg(int n): n(n) {}
template<typename T>
struct FuncSumPostDiv<T, /*IsFloating=*/true> {
static_assert(sizeof(T)!=sizeof(T), "FuncSumPostDiv is only for implementing ncclAvg on integral types.");
};
__device__ T preOp(T x) const {
return x;
}
__device__ T postOp(T x) const {
return T(x/n);
}
template<typename T>
struct FuncPreMulSum: FuncSum<T> { // integral T since all floats are specialized below
static constexpr bool IsPreOpIdentity = false;
static constexpr bool IsPostOpIdentity = true;
T scale;
__device__ FuncPreMulSum(uint64_t opArg) { scale = *(T*)&opArg; }
// inherits FuncSum::operator()
__device__ T preOp(T x) const { return x*scale; }
__device__ T postOp(T x) const { return x; }
};
template<>
struct FuncAvg<double>: FuncSum<double> {
struct FuncPreMulSum<double>: FuncSum<double> {
static constexpr bool IsPreOpIdentity = false;
static constexpr bool IsPostOpIdentity = true;
double rcp;
__device__ FuncAvg(int n) {
rcp = __drcp_rn(double(n));
double scale;
__device__ FuncPreMulSum(uint64_t opArg) {
scale = *(double*)&opArg;
}
// inherits FuncSum::operator()
__device__ double preOp(double x) const {
return IsPreOpIdentity ? x : x*rcp;
return IsPreOpIdentity ? x : x*scale;
}
__device__ double postOp(double x) const {
return IsPostOpIdentity ? x : x*rcp;
return IsPostOpIdentity ? x : x*scale;
}
};
template<>
struct FuncAvg<float>: FuncSum<float> {
struct FuncPreMulSum<float>: FuncSum<float> {
static constexpr bool IsPreOpIdentity = false;
static constexpr bool IsPostOpIdentity = true;
float rcp;
__device__ FuncAvg(int n) {
rcp = __frcp_rn(float(n));
float scale;
__device__ FuncPreMulSum(uint64_t opArg) {
scale = *(float*)&opArg;
}
// inherits FuncSum::operator()
__device__ float preOp(float x) const {
return IsPreOpIdentity ? x : x*rcp;
return IsPreOpIdentity ? x : x*scale;
}
__device__ float postOp(float x) const {
return IsPostOpIdentity ? x : x*rcp;
return IsPostOpIdentity ? x : x*scale;
}
};
template<>
struct FuncAvg<half>: FuncSum<half> {
struct FuncPreMulSum<half>: FuncSum<half> {
// Change these to switch between all prescale, all postscale, or both by sqrt(N).
// Obviously, the only invalid combination is both true. An improvement would be
// make this parameterized as a build time setting and passed here through
@ -508,11 +557,8 @@ struct FuncAvg<half>: FuncSum<half> {
#if __CUDA_ARCH__ >= 530 && __CUDA_ARCH__ != 610
half2 scale;
__device__ FuncAvg(int n) {
if (!IsPreOpIdentity && !IsPostOpIdentity)
scale.x = __float2half(__frsqrt_rn(float(n)));
else
scale.x = __float2half(__frcp_rn(float(n)));
__device__ FuncPreMulSum(uint64_t opArg) {
scale.x = *(half*)&opArg;
scale.y = scale.x;
}
// inherits FuncSum::operator()
@ -530,11 +576,8 @@ struct FuncAvg<half>: FuncSum<half> {
}
#else
float scale;
__device__ FuncAvg(int n) {
if (!IsPreOpIdentity && !IsPostOpIdentity)
scale = __frsqrt_rn(float(n));
else
scale = __frcp_rn(float(n));
__device__ FuncPreMulSum(uint64_t opArg) {
scale = __half2float(*(half*)&opArg);
}
// inherits FuncSum::operator()
__device__ half preOp(half x) const {
@ -568,7 +611,7 @@ struct FuncAvg<half>: FuncSum<half> {
#if defined(__CUDA_BF16_TYPES_EXIST__)
template<>
struct FuncAvg<__nv_bfloat16>: FuncSum<__nv_bfloat16> {
struct FuncPreMulSum<__nv_bfloat16>: FuncSum<__nv_bfloat16> {
// Change these to switch between all prescale, all postscale, or both by sqrt(N).
// Obviously, the only invalid combination is both true. An improvement would be
// make this parameterized as a build time setting and passed here through
@ -578,11 +621,8 @@ struct FuncAvg<__nv_bfloat16>: FuncSum<__nv_bfloat16> {
#if __CUDA_ARCH__ >= 800
__nv_bfloat162 scale;
__device__ FuncAvg(int n) {
if (!IsPreOpIdentity && !IsPostOpIdentity)
scale.x = __float2bfloat16(__frsqrt_rn(float(n)));
else
scale.x = __float2bfloat16(__frcp_rn(float(n)));
__device__ FuncPreMulSum(uint64_t opArg) {
scale.x = *(__nv_bfloat16*)&opArg;
scale.y = scale.x;
}
// inherits FuncSum::operator()
@ -600,11 +640,8 @@ struct FuncAvg<__nv_bfloat16>: FuncSum<__nv_bfloat16> {
}
#else
float scale;
__device__ FuncAvg(int n) {
if (!IsPreOpIdentity && !IsPostOpIdentity)
scale = __frsqrt_rn(float(n));
else
scale = __frcp_rn(float(n));
__device__ FuncPreMulSum(uint64_t opArg) {
scale = *(__nv_bfloat16*)&opArg;
}
// inherits FuncSum::operator()
__device__ __nv_bfloat16 preOp(__nv_bfloat16 x) const {
@ -638,21 +675,31 @@ struct FuncAvg<__nv_bfloat16>: FuncSum<__nv_bfloat16> {
#endif
template<typename T>
struct FuncTraits<FuncAvg<T>> {
static constexpr bool IsPreOpIdentity = FuncAvg<T>::IsPreOpIdentity;
static constexpr bool IsPostOpIdentity = FuncAvg<T>::IsPostOpIdentity;
struct FuncTraits<FuncPreMulSum<T>> {
static constexpr bool IsPreOpIdentity = FuncPreMulSum<T>::IsPreOpIdentity;
static constexpr bool IsPostOpIdentity = FuncPreMulSum<T>::IsPostOpIdentity;
__device__ static FuncAvg<T> make(int rankN) {
return FuncAvg<T>(rankN);
}
template<typename U>
__device__ static U preOp(FuncAvg<T> fn, U x) {
__device__ static U preOp(FuncPreMulSum<T> fn, U x) {
return fn.preOp(x);
}
template<typename U>
__device__ static U postOp(FuncAvg<T> fn, U x) {
__device__ static U postOp(FuncPreMulSum<T> fn, U x) {
return fn.postOp(x);
}
};
template<typename T>
struct FuncTraits<FuncSumPostDiv<T>> {
static constexpr bool IsPreOpIdentity = FuncSumPostDiv<T>::IsPreOpIdentity;
static constexpr bool IsPostOpIdentity = FuncSumPostDiv<T>::IsPostOpIdentity;
template<typename U>
__device__ static U preOp(FuncSumPostDiv<T> fn, U x) {
return fn.preOp(x);
}
template<typename U>
__device__ static U postOp(FuncSumPostDiv<T> fn, U x) {
return fn.postOp(x);
}
};
#endif // REDUCE_KERNEL_H_

View File

@ -10,7 +10,7 @@
namespace {
template<typename T, typename RedOp, typename Proto>
__device__ void runRing(ncclWorkElem *args) {
__device__ __forceinline__ void runRing(ncclWorkElem *args) {
const int tid = threadIdx.x;
const int nthreads = args->nThreads;
const int bid = args->coll.bid;
@ -25,7 +25,7 @@ namespace {
const ssize_t size = args->coll.count;
Primitives<T, RedOp, FanSymmetric<1>, 0, Proto>
prims(tid, nthreads, &ring->prev, &ring->next, args->sendbuff, args->recvbuff);
prims(tid, nthreads, &ring->prev, &ring->next, args->sendbuff, args->recvbuff, args->coll.redOpArg);
for (ssize_t gridOffset = 0; gridOffset < size; gridOffset += loopSize) {
ssize_t realChunkSize;
@ -68,7 +68,7 @@ namespace {
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncReduceScatter, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_SIMPLE> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
using Proto = ProtoSimple<REDUCESCATTER_CHUNKSTEPS/REDUCESCATTER_SLICESTEPS, REDUCESCATTER_SLICESTEPS>;
runRing<T, RedOp, Proto>(args);
}
@ -76,14 +76,14 @@ struct RunWorkElement<ncclFuncReduceScatter, T, RedOp, NCCL_ALGO_RING, NCCL_PROT
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncReduceScatter, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_LL> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
runRing<T, RedOp, ProtoLL>(args);
}
};
template<typename T, typename RedOp>
struct RunWorkElement<ncclFuncReduceScatter, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_LL128> {
__device__ void run(ncclWorkElem *args) {
__device__ __forceinline__ void run(ncclWorkElem *args) {
runRing<T, RedOp, ProtoLL128>(args);
}
};

View File

@ -10,7 +10,7 @@
template<typename T, typename RedOp>
struct RunWork<ncclFuncSendRecv, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_SIMPLE> {
__device__ void run(ncclWork *work) {
__device__ __forceinline__ void run(ncclWork *work) {
int tid = threadIdx.x;
int group = 0;
const int rank = ncclShmem.comm.rank;
@ -38,16 +38,7 @@ struct RunWork<ncclFuncSendRecv, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_SIMPLE> {
if (delta == 0) {
if (sendbuff != recvbuff) {
// local copy : ReduceOrCopyMulti takes an int as number of elements,
// so we split it in blocks of 1G elements.
int blockSize = 1<<30;
for (size_t offset=0; offset<sendCount; offset += blockSize) {
size_t remaining = sendCount - offset;
if (remaining < blockSize) blockSize = remaining;
ReduceOrCopyMulti<COLL_UNROLL, RedOp, T, 1, 1, 1, 1>(tid, nThreadsSegment, RedOp(), false, false, 1, &sendbuff, 1, &recvbuff, blockSize);
sendbuff += blockSize;
recvbuff += blockSize;
}
ReduceOrCopyMulti<COLL_UNROLL, RedOp, T, 1, 1, 1, 1, 0>(tid, nThreadsSegment, nullptr, false, 1, &sendbuff, 1, &recvbuff, sendCount);
}
}
else {
@ -57,7 +48,7 @@ struct RunWork<ncclFuncSendRecv, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_SIMPLE> {
int const nt = nThreadsSplit;
int const chunkSize = args->p2p.recvChunkSize/sizeof(T);
Primitives<T, RedOp, FanAsymmetric<1, 0>, 1, Proto> prims
(tid-t0, nt, &peer, nullptr, nullptr, recvbuff, groupRecv);
(tid-t0, nt, &peer, nullptr, nullptr, recvbuff, /*redOpArg(ignored)=*/0, groupRecv);
ssize_t offset = 0;
do {
int nelem = roundUp(chunkSize, nt*(sizeof(uint64_t)/sizeof(T)));
@ -73,7 +64,7 @@ struct RunWork<ncclFuncSendRecv, T, RedOp, NCCL_ALGO_RING, NCCL_PROTO_SIMPLE> {
int const nt = nThreadsSegment - nThreadsSplit;
int const chunkSize = args->p2p.sendChunkSize/sizeof(T);
Primitives<T, RedOp, FanAsymmetric<0, 1>, 1, Proto> prims
(tid-t0, nt, nullptr, &peer, sendbuff, nullptr, groupSend);
(tid-t0, nt, nullptr, &peer, sendbuff, nullptr, /*redOpArg(ignored)=*/0, groupSend);
ssize_t offset = 0;
do {
int nelem = roundUp(chunkSize, nt*(sizeof(uint64_t)/sizeof(T)));

View File

@ -138,7 +138,7 @@ void ncclDebugLog(ncclDebugLogLevel level, unsigned long flags, const char *file
int cudaDev;
cudaGetDevice(&cudaDev);
int pid = getpid();
int tid = gettid();
int tid = syscall(SYS_gettid);
char buffer[1024];
size_t len = 0;

View File

@ -8,83 +8,99 @@
#include "argcheck.h"
#include "coll_net.h"
#include "gdrwrap.h"
#include "bootstrap.h"
// Only generate inline kernels for LL
#define NCCL_FUNC5(func, algo, redop, dtype) \
(void*)NCCL_KERN_NAME(func, algo, LL, redop, dtype), \
(void*)NCCL_KERN_NAME(func, algo, LL, redop, dtype), \
(void*)NCCL_KERN_NAME(func, algo, LL, redop, dtype)
#define NCCL_FUNC5(func, algo, devredop, dtype) \
(void*)NCCL_KERN_NAME(func, algo, LL, devredop, dtype), \
(void*)NCCL_KERN_NAME(func, algo, LL, devredop, dtype), \
(void*)NCCL_KERN_NAME(func, algo, LL, devredop, dtype)
#define NCCL_FUNC4(func, redop, type) \
(void*)NCCL_FUNC5(func, TREE, redop, type), \
(void*)NCCL_FUNC5(func, RING, redop, type), \
(void*)NCCL_FUNC5(func, COLLNET, redop, type)
#define NCCL_FUNC4(func, devredop, type) \
(void*)NCCL_FUNC5(func, TREE, devredop, type), \
(void*)NCCL_FUNC5(func, RING, devredop, type), \
(void*)NCCL_FUNC5(func, COLLNET, devredop, type)
#if defined(__CUDA_BF16_TYPES_EXIST__)
// Must be consistent with ncclDataType_t
#define NCCL_FUNCS3A(func, redop) \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, uint8_t), \
(void*)NCCL_FUNC4(func, redop, int32_t), \
(void*)NCCL_FUNC4(func, redop, uint32_t), \
(void*)NCCL_FUNC4(func, redop, int64_t), \
(void*)NCCL_FUNC4(func, redop, uint64_t), \
(void*)NCCL_FUNC4(func, redop, half), \
(void*)NCCL_FUNC4(func, redop, float), \
(void*)NCCL_FUNC4(func, redop, double), \
(void*)NCCL_FUNC4(func, redop, __nv_bfloat16)
#define NCCL_FUNCS3B(func, redop) \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t)
#define NCCL_FUNCS3A(func, devredop) \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, uint8_t), \
(void*)NCCL_FUNC4(func, devredop, int32_t), \
(void*)NCCL_FUNC4(func, devredop, uint32_t), \
(void*)NCCL_FUNC4(func, devredop, int64_t), \
(void*)NCCL_FUNC4(func, devredop, uint64_t), \
(void*)NCCL_FUNC4(func, devredop, half), \
(void*)NCCL_FUNC4(func, devredop, float), \
(void*)NCCL_FUNC4(func, devredop, double), \
(void*)NCCL_FUNC4(func, devredop, __nv_bfloat16)
#define NCCL_FUNCS3B(func, devredop) \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t)
#else
// Must be consistent with ncclDataType_t
#define NCCL_FUNCS3A(func, redop) \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, uint8_t), \
(void*)NCCL_FUNC4(func, redop, int32_t), \
(void*)NCCL_FUNC4(func, redop, uint32_t), \
(void*)NCCL_FUNC4(func, redop, int64_t), \
(void*)NCCL_FUNC4(func, redop, uint64_t), \
(void*)NCCL_FUNC4(func, redop, half), \
(void*)NCCL_FUNC4(func, redop, float), \
(void*)NCCL_FUNC4(func, redop, double)
#define NCCL_FUNCS3B(func, redop) \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t), \
(void*)NCCL_FUNC4(func, redop, int8_t)
#define NCCL_FUNCS3A(func, devredop) \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, uint8_t), \
(void*)NCCL_FUNC4(func, devredop, int32_t), \
(void*)NCCL_FUNC4(func, devredop, uint32_t), \
(void*)NCCL_FUNC4(func, devredop, int64_t), \
(void*)NCCL_FUNC4(func, devredop, uint64_t), \
(void*)NCCL_FUNC4(func, devredop, half), \
(void*)NCCL_FUNC4(func, devredop, float), \
(void*)NCCL_FUNC4(func, devredop, double)
#define NCCL_FUNCS3B(func, devredop) \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t), \
(void*)NCCL_FUNC4(func, devredop, int8_t)
#endif
// Must be consistent with ncclRedOp_t -- but we only generate kernel for sums.
// Must be consistent with ncclDevRedOp_t -- but we only generate kernel for sums.
#define NCCL_FUNCS2A(func) \
NCCL_FUNCS3A(func, Sum), \
NCCL_FUNCS3A(func, Sum), \
NCCL_FUNCS3A(func, Sum), \
NCCL_FUNCS3A(func, Sum), \
NCCL_FUNCS3A(func, Sum)
NCCL_FUNCS3A(func, Sum), /*Sum*/ \
NCCL_FUNCS3A(func, Sum), /*Prod*/ \
NCCL_FUNCS3A(func, Sum), /*Max*/ \
NCCL_FUNCS3A(func, Sum), /*Min*/ \
NCCL_FUNCS3A(func, Sum), /*PreMulSum*/ \
NCCL_FUNCS3A(func, Sum) /*SumPostDiv*/
#define NCCL_FUNCS2B(func) \
NCCL_FUNCS3B(func, Sum), \
NCCL_FUNCS3B(func, Sum), \
NCCL_FUNCS3B(func, Sum), \
NCCL_FUNCS3B(func, Sum), \
NCCL_FUNCS3B(func, Sum)
NCCL_FUNCS3B(func, Sum), /*Sum*/ \
NCCL_FUNCS3B(func, Sum), /*Prod*/ \
NCCL_FUNCS3B(func, Sum), /*Max*/ \
NCCL_FUNCS3B(func, Sum), /*Min*/ \
NCCL_FUNCS3B(func, Sum), /*PreMulSum*/ \
NCCL_FUNCS3B(func, Sum) /*SumPostDiv*/
// Must be consistent with the ncclFuncSet enum
static void* const ncclKerns[1+NCCL_NUM_FUNCTIONS*ncclNumOps*ncclNumTypes*NCCL_NUM_ALGORITHMS*NCCL_NUM_PROTOCOLS] = {
static void* const ncclKerns[1+ncclNumTypes+NCCL_NUM_FUNCTIONS*ncclNumDevRedOps*ncclNumTypes*NCCL_NUM_ALGORITHMS*NCCL_NUM_PROTOCOLS] = {
(void*)NCCL_KERN_NAME(SendRecv, RING, SIMPLE, Sum, int8_t),
// We don't bake special kernels for the one-rank reductions
/*int8*/(void*)NCCL_KERN_NAME(SendRecv, RING, SIMPLE, Sum, int8_t),
/*uint8*/(void*)NCCL_KERN_NAME(SendRecv, RING, SIMPLE, Sum, int8_t),
/*int32*/(void*)NCCL_KERN_NAME(SendRecv, RING, SIMPLE, Sum, int8_t),
/*uint32*/(void*)NCCL_KERN_NAME(SendRecv, RING, SIMPLE, Sum, int8_t),
/*int64*/(void*)NCCL_KERN_NAME(SendRecv, RING, SIMPLE, Sum, int8_t),
/*uint64*/(void*)NCCL_KERN_NAME(SendRecv, RING, SIMPLE, Sum, int8_t),
/*half*/(void*)NCCL_KERN_NAME(SendRecv, RING, SIMPLE, Sum, int8_t),
/*float*/(void*)NCCL_KERN_NAME(SendRecv, RING, SIMPLE, Sum, int8_t),
/*double*/(void*)NCCL_KERN_NAME(SendRecv, RING, SIMPLE, Sum, int8_t),
#if defined(__CUDA_BF16_TYPES_EXIST__)
/*bfloat16*/(void*)NCCL_KERN_NAME(SendRecv, RING, SIMPLE, Sum, int8_t),
#endif
NCCL_FUNCS2B(Broadcast),
NCCL_FUNCS2A(Reduce),
NCCL_FUNCS2B(AllGather),
@ -145,7 +161,6 @@ static ncclResult_t getNextOp(struct ncclChannel* channel, struct ncclWork** wor
// Initialize with work elem if provided
if (base) memcpy(e, base, sizeof(struct ncclWorkElem));
e->active = 1;
e->index = opIndex;
channel->workFifoTail++;
channel->workCount++;
if (work) *work = w;
@ -183,10 +198,11 @@ static ncclResult_t setupLaunch(struct ncclQueueInfo* eqInfo, int usingCudaGraph
if (c == 0) {
// As we inline the first coll directly, we can free it immediately.
// Except P2P or aggregation cases
// Except P2P or aggregation or registration cases
struct ncclWork* work = channel->workFifo+((channel->workFifoTail-channel->workCount)%NCCL_MAX_OPS);
struct ncclWorkElem* elem = work->elems;
if (elem->funcIndex != FUNC_INDEX_P2P && eqInfo->elemList->count() == 1) elem->active = 0;
if (elem->funcIndex != FUNC_INDEX_P2P && eqInfo->elemList->count() == 1 && elem->regUsed == 0)
elem->active = 0;
}
if (channel->gdrMemDesc) {
@ -370,7 +386,7 @@ ncclResult_t ncclLaunchReset(ncclComm_t comm) {
static inline ncclResult_t getCollNetSupport(struct ncclInfo* info, int* collNetTypeSupport) {
if (info->comm->collNetSupport > 0) {
ncclRedOp_t netOp = info->op == ncclAvg ? ncclSum : info->op;
ncclRedOp_t netOp = info->op == ncclAvg || info->op >= ncclNumOps ? ncclSum : info->op;
NCCLCHECK(collNetReduceSupport(info->datatype, netOp, collNetTypeSupport));
} else {
*collNetTypeSupport = 0;
@ -380,30 +396,35 @@ static inline ncclResult_t getCollNetSupport(struct ncclInfo* info, int* collNet
static ncclResult_t getAlgoInfo(struct ncclInfo* info, int collNetTypeSupport, int numPipeOps) {
struct ncclComm* comm = info->comm;
float minTime = 3600000000.0; // Hopefully no operation will take an hour to complete.
// Find algorithm / protocol.
info->algorithm = -1;
info->protocol = -1;
if (comm->nRanks == 1) return ncclSuccess;
int nAlgos = NCCL_NUM_ALGORITHMS;
for (int a=0; a<nAlgos; a++) {
if (a == NCCL_ALGO_COLLNET && collNetTypeSupport != 1) continue;
for (int p=0; p<NCCL_NUM_PROTOCOLS; p++) {
float time;
NCCLCHECK(ncclTopoGetAlgoTime(info, a, p, numPipeOps, &time));
if (time >= 0 && time < minTime) {
info->algorithm = a;
info->protocol = p;
minTime = time;
if (comm->nRanks == 1) {
info->algorithm = NCCL_ALGO_RING;
info->protocol = NCCL_PROTO_SIMPLE;
}
else {
float minTime = 3600000000.0; // Hopefully no operation will take an hour to complete.
// Find algorithm / protocol.
info->algorithm = -1;
info->protocol = -1;
int nAlgos = NCCL_NUM_ALGORITHMS;
for (int a=0; a<nAlgos; a++) {
if (a == NCCL_ALGO_COLLNET && collNetTypeSupport != 1) continue;
for (int p=0; p<NCCL_NUM_PROTOCOLS; p++) {
float time;
NCCLCHECK(ncclTopoGetAlgoTime(info, a, p, numPipeOps, &time));
if (time >= 0 && time < minTime) {
info->algorithm = a;
info->protocol = p;
minTime = time;
}
}
}
if (info->algorithm == -1 || info->protocol == -1) {
WARN("Error : no algorithm/protocol available");
return ncclInternalError;
}
//if (comm->rank == 0) INFO(NCCL_TUNING, "%ld Bytes -> Algo %d proto %d time %f", info->nBytes, info->algorithm, info->protocol, minTime);
TRACE(NCCL_COLL, "%ld Bytes -> Algo %d proto %d time %f", info->nBytes, info->algorithm, info->protocol, minTime);
}
if (info->algorithm == -1 || info->protocol == -1) {
WARN("Error : no algorithm/protocol available");
return ncclInternalError;
}
//if (comm->rank == 0) INFO(NCCL_TUNING, "%ld Bytes -> Algo %d proto %d time %f", info->nBytes, info->algorithm, info->protocol, minTime);
TRACE(NCCL_COLL, "%ld Bytes -> Algo %d proto %d time %f", info->nBytes, info->algorithm, info->protocol, minTime);
int nc = (info->nChannels > 0) ? info->nChannels : comm->nChannels;
int nt = comm->maxThreads[info->algorithm][info->protocol];
@ -494,8 +515,16 @@ comp_next:
work->coll.count = info->count;
work->coll.nChannels = info->nChannels;
work->nThreads = info->nThreads;
work->coll.redOpArg = info->opFull.scalarArg;
work->redOpArgIsPtr = info->opFull.scalarArgIsPtr;
work->funcIndex = FUNC_INDEX(info->coll, info->op, info->datatype, info->algorithm, info->protocol);
if (info->comm->nRanks == 1) {
// one-rank reduce index
work->funcIndex = 1 + int(info->datatype);
return ncclSuccess;
}
work->funcIndex = FUNC_INDEX(info->coll, info->opFull.op, info->datatype, info->algorithm, info->protocol);
int stepSize = info->comm->buffSizes[info->protocol]/NCCL_STEPS;
int chunkSteps = (info->protocol == NCCL_PROTO_SIMPLE && info->algorithm == NCCL_ALGO_RING) ? info->chunkSteps : 1;
@ -519,6 +548,8 @@ comp_next:
while (info->nBytes / (info->nChannels*info->comm->channels[0].collTree.nHeads*chunkSize) < info->comm->channels[0].collTree.depth*8 && chunkSize > 32768) chunkSize /= 2;
// Use lastChunkSize as chunkSize
work->coll.lastChunkSize = chunkSize / ncclTypeSize(info->datatype);
// Set direct direction for broadcast-gather (read or write)
work->direct = (info->nBytes / info->nChannels <= 1024*1024) ? NCCL_DIRECT_WRITE : NCCL_DIRECT_READ;
} else if (info->protocol == NCCL_PROTO_LL) {
const ssize_t sliceSize = stepSize*sizeof(uint64_t)/sizeof(union ncclLLFifoLine);
const ssize_t loopSize = info->nChannels*info->nchunksPerLoop*(ssize_t)sliceSize;
@ -548,7 +579,7 @@ comp_next:
proxyArgs->protocol = info->protocol;
proxyArgs->dtype = info->datatype;
proxyArgs->redOp = info->algorithm != NCCL_ALGO_COLLNET ? ncclNumOps : // Only set redOp when using CollNet
info->op == ncclAvg ? ncclSum : // Network sees avg as sum
info->opFull.op==ncclDevPreMulSum || info->opFull.op==ncclDevSumPostDiv ? ncclSum : // Network sees avg as sum
info->op;
proxyArgs->pattern = info->pattern;
proxyArgs->root = info->root;
@ -574,12 +605,61 @@ static ncclResult_t checkSetStream(struct ncclInfo* info) {
return ncclSuccess;
}
struct ncclBuffRegHandle {
cudaIpcMemHandle_t sendBuffIpc;
cudaIpcMemHandle_t recvBuffIpc;
ssize_t sendBuffOffset;
ssize_t recvBuffOffset;
};
// Register input and output buffers
// Exchange with ranks on the same host
static ncclResult_t ncclRegBuffAndExchange(struct ncclInfo* info, struct ncclBuffRegInfo* regInfo) {
ncclComm_t comm = info->comm;
if (comm->localRanks == 1) return ncclSuccess;
if (comm->pfnCuMemGetAddressRange == NULL) return ncclSuccess; // CUDA toolkit or driver version too old
struct ncclBuffRegHandle regHandles[NCCL_MAX_INTRA_RANKS];
// Get IPC handles
// Note: the handle only corresponds to the base address of the allocation
CUDACHECK(cudaIpcGetMemHandle(&regHandles[comm->intraNodeRank].sendBuffIpc, (void*)info->sendbuff));
CUDACHECK(cudaIpcGetMemHandle(&regHandles[comm->intraNodeRank].recvBuffIpc, (void*)info->recvbuff));
// Get offset of user buffer within allocation
void* baseAddr;
size_t size;
CUDACHECK(comm->pfnCuMemGetAddressRange(&baseAddr, &size, (void*)info->sendbuff));
regHandles[comm->intraNodeRank].sendBuffOffset = (char*)info->sendbuff - (char*)baseAddr;
CUDACHECK(comm->pfnCuMemGetAddressRange(&baseAddr, &size, (void*)info->recvbuff));
regHandles[comm->intraNodeRank].recvBuffOffset = (char*)info->recvbuff - (char*)baseAddr;
TRACE(NCCL_COLL, "Base %p size %lu offset %ld", baseAddr, size, regHandles[comm->intraNodeRank].recvBuffOffset);
// Exchange handles within node
NCCLCHECK(bootstrapIntraNodeAllGather(comm->bootstrap, comm->intraNodeGlobalRanks, comm->intraNodeRank, comm->localRanks, regHandles, sizeof(struct ncclBuffRegHandle)));
// Open handles at local process
for (int i=0; i<comm->localRanks; i++) {
if (i == comm->intraNodeRank) {
regInfo->sendbuffsBase[i] = regInfo->recvbuffsBase[i] = NULL;
continue;
}
CUDACHECK(cudaIpcOpenMemHandle(regInfo->sendbuffsBase+i, regHandles[i].sendBuffIpc, cudaIpcMemLazyEnablePeerAccess));
CUDACHECK(cudaIpcOpenMemHandle(regInfo->recvbuffsBase+i, regHandles[i].recvBuffIpc, cudaIpcMemLazyEnablePeerAccess));
// Get real address of buffer
regInfo->sendbuffs[i] = (char*)regInfo->sendbuffsBase[i] + regHandles[i].sendBuffOffset;
regInfo->recvbuffs[i] = (char*)regInfo->recvbuffsBase[i] + regHandles[i].recvBuffOffset;
}
regInfo->nBuffs = comm->localRanks;
TRACE(NCCL_COLL, "Rank %d exchanged %d buffers", comm->rank, regInfo->nBuffs);
return ncclSuccess;
}
// Compute enqueue element, save it in list
// Compute CUDA launch parameters
// Capture time code in view of CUDA graph
static ncclResult_t ncclSetupCollKernel(struct ncclInfo* info) {
ncclComm_t comm = info->comm;
if (comm->nRanks == 1) {
if (comm->nRanks == 1 &&
// User-defined reduction ops may need alter the data even for unitary reductions
info->op < ncclNumOps) {
if (info->sendbuff != info->recvbuff)
CUDACHECK(cudaMemcpyAsync(info->recvbuff, info->sendbuff, info->nBytes, cudaMemcpyDeviceToDevice, info->stream));
return ncclSuccess;
@ -607,6 +687,19 @@ static ncclResult_t ncclSetupCollKernel(struct ncclInfo* info) {
comm->args.active = 2; // I am so far the last element; may be changed later in aggregation mode
}
// Register and exchange input and output buffers
if (comm->usingCudaGraph && // only in CUDA graph mode
comm->graphRegister == 1 && // when registration is enabled
info->algorithm == NCCL_ALGO_COLLNET && // limited to CollNet for now
comm->intraHighestTransportType == TRANSPORT_P2P && // only when all ranks can p2p each other
comm->intraRanks == 1) { // only in multi-process mode
NCCLCHECK(ncclRegBuffAndExchange(info, &eqElem->buffRegInfo));
// Disable inline argument because we need kernel to copy the entire ncclWork from workFifo
// because the registered addresses are in ncclWork
if (eqElem->buffRegInfo.nBuffs > 0) comm->args.active = 0;
comm->enqueueInfo->nRegBuffs += eqElem->buffRegInfo.nBuffs;
}
return ncclSuccess;
}
@ -623,41 +716,15 @@ static inline int findShortestChannel(ncclComm_t comm) {
return minC;
}
static inline ncclResult_t getNextChannel(ncclComm_t comm, int* nextChannel) {
if (comm->asyncAllocMode == ncclComm::SHORTEST_QUEUE) {
*nextChannel = findShortestChannel(comm);
static inline int getNextChannel(ncclComm_t comm, int aggMode) {
int nextChannel = 0;
if (aggMode && comm->asyncAllocMode == ncclComm::SHORTEST_QUEUE) {
nextChannel = findShortestChannel(comm);
} else {
*nextChannel = comm->lastChannel % comm->nChannels;
nextChannel = comm->lastChannel % comm->nChannels;
comm->lastChannel++;
}
return ncclSuccess;
}
// Dynamic enqueue code
static ncclResult_t ncclEnqueueCollKernel(ncclComm_t comm, struct ncclQueueElem* eqElem) {
struct ncclWorkElem* work = &eqElem->work;
struct ncclProxyArgs* proxyArgs = &eqElem->proxyArgs;
int nChannels = work->coll.nChannels;
for (int bid=0; bid<nChannels; bid++) {
int channelId = comm->lastChannel % comm->nChannels;
struct ncclChannel* channel = comm->channels+channelId;
// Proxy
proxyArgs->subs[0].channel = channel;
proxyArgs->opCount = comm->collOpCount;
proxyArgs->commOpCount = comm->opCount;
if (proxyArgs->subs[0].nsteps) NCCLCHECK(ncclProxySaveColl(proxyArgs, comm->nRanks));
comm->lastChannel++;
work->coll.bid = bid % nChannels;
NCCLCHECK(getNextOp(channel, NULL, work));
//INFO(NCCL_COLL, "Host enqueue: bid %d channel %d index %ld nThreads %d funcIndex %d count %ld nChannels %d",
// work->coll.bid, channelId, channel->workFifoTail, work->nThreads, work->funcIndex, work->coll.count, work->coll.nChannels);
}
comm->collOpCount++;
return ncclSuccess;
return nextChannel;
}
ncclResult_t ncclSetupAsyncKernels(ncclComm_t comm) {
@ -689,7 +756,7 @@ ncclResult_t ncclSetupAsyncKernels(ncclComm_t comm) {
channelUsed += info->nChannels;
// We can use fast path if all collectives are the same
homogeneous &= info->coll == comm->asyncOps[0].coll &&
info->op == comm->asyncOps[0].op &&
info->opFull.op == comm->asyncOps[0].opFull.op &&
info->datatype == comm->asyncOps[0].datatype;
if (allCollNetSupport > 0) NCCLCHECK(getCollNetSupport(info, &allCollNetSupport));
}
@ -766,13 +833,22 @@ static ncclResult_t ncclSaveP2p(struct ncclInfo* info) {
return ncclSuccess;
}
enum { COLL_SEGMENT=0, P2P_SEGMENT=1 };
enum { RingTree_Segment=0, P2P_Segment=1, CollNet_Segment=2 };
static int getSegment(int type, int delta, struct ncclWork* work) {
if (type == P2P_SEGMENT) { // P2P
// Current ncclWork is full
if (work->elems[NCCL_MAX_WORK_ELEMENTS-1].active != 0) return -1;
if (type == P2P_Segment) { // P2P
// Do not mix P2P and collective ops
if (work->elems[0].funcIndex != FUNC_INDEX_P2P) return -1;
for (int s=0; s<NCCL_MAX_WORK_ELEMENTS && work->elems[s].p2p.delta != delta; s++) {
if (work->elems[s].active == 0) return s;
}
} else { // aggregation
} else if (type == CollNet_Segment) { // CollNet
for (int s=0; s<NCCL_MAX_WORK_ELEMENTS; s+=NCCL_REG_ELEM_FACTOR) {
if (work->elems[s].active == 0) return s;
}
} else { // Ring or Tree
for (int s=0; s<NCCL_MAX_WORK_ELEMENTS; s++) {
if (work->elems[s].active == 0) return s;
}
@ -794,13 +870,14 @@ static ncclResult_t computeP2pWorkElem(struct ncclInfo* info /* input */, struct
return ncclSuccess;
}
static ncclResult_t enqueueSegOp(int type, struct ncclWorkElem* elem /* input */, struct ncclWork* work, int s) {
static ncclResult_t enqueueSegOp(int type, struct ncclWorkElem* elem /* input */, struct ncclWork* work, int s,
struct ncclBuffRegInfo* regInfo, struct ncclChannel* channel, struct ncclComm* comm) {
// Copy element into corresponding segment of ncclWork
memcpy(work->elems+s, elem, sizeof(struct ncclWorkElem));
work->elems[s].active = 1;
// Determine nThreads at dynamic time
if (type == P2P_SEGMENT) {
if (type == P2P_Segment) {
const int nsegments = s+1;
int nThreads = 512;
while (nsegments*nThreads > 512) nThreads /= 2;
@ -808,6 +885,33 @@ static ncclResult_t enqueueSegOp(int type, struct ncclWorkElem* elem /* input */
for (int i=0; i<nsegments; i++) work->elems[i].p2p.nThreads = nThreads;
}
// Copy registered buffer addresses into ncclWork
if (regInfo->nBuffs > 0) {
struct ncclWorkRegElem* regElem = (struct ncclWorkRegElem*)(work->elems+s);
// For CollNet
for (int i=0; i<NCCL_MAX_DIRECT_ARITY; i++) {
int peer = channel->collTree.down[i];
if (peer == -1) break;
int j = comm->rankToIntraNodeRank[peer];
if (j < 0) {
WARN("Invalid intra-node rank %d for peer %d", j, peer);
return ncclInternalError;
}
regElem->dnInputs[i] = regInfo->sendbuffs[j];
regElem->dnOutputs[i] = regInfo->recvbuffs[j];
}
for (int i=0; i<NCCL_MAX_DIRECT_ARITY; i++) {
int peer = channel->collTree.up[i];
if (peer == -1) break;
int j = comm->rankToIntraNodeRank[peer];
if (j < 0) {
WARN("Invalid intra-node rank %d for peer %d", j, peer);
return ncclInternalError;
}
regElem->upOutputs[i] = regInfo->recvbuffs[j];
}
work->elems[s].regUsed = 1;
}
return ncclSuccess;
}
@ -820,9 +924,9 @@ ncclResult_t ncclEnqueueP2pKernel(struct ncclComm* comm, struct ncclQueueElem* e
int opIndex = (channel->workFifoTail-1+NCCL_MAX_OPS)%NCCL_MAX_OPS;
struct ncclWork* w = channel->workFifo+opIndex;
int segment = -1;
if (channel->workCount && w->elems[0].funcIndex == FUNC_INDEX_P2P && w->elems[NCCL_MAX_WORK_ELEMENTS-1].active == 0) {
if (channel->workCount) {
// Try to pack more segments into a single operation
segment = getSegment(P2P_SEGMENT, workElem->p2p.delta, w);
segment = getSegment(P2P_Segment, workElem->p2p.delta, w);
}
if (segment == -1) {
NCCLCHECK(getNextOp(channel, &w, NULL));
@ -831,7 +935,7 @@ ncclResult_t ncclEnqueueP2pKernel(struct ncclComm* comm, struct ncclQueueElem* e
// store work element into FIFO
NCCLCHECK(ncclProxySaveP2p(comm, proxyArgs));
NCCLCHECK(enqueueSegOp(P2P_SEGMENT, workElem, w, segment));
NCCLCHECK(enqueueSegOp(P2P_Segment, workElem, w, segment, &eqElem->buffRegInfo, channel, comm));
return ncclSuccess;
}
@ -861,15 +965,18 @@ ncclResult_t ncclSetupP2pKernel(struct ncclInfo* info) {
return ncclSuccess;
}
ncclResult_t ncclEnqueueAsyncKernel(struct ncclComm* comm, struct ncclQueueElem* eqElem) {
// Dynamic enqueue function for collective kernels
// Supports both aggregated and non-aggregated modes
ncclResult_t ncclEnqueueCollKernel(struct ncclComm* comm, struct ncclQueueElem* eqElem, int aggMode) {
struct ncclWorkElem* work = &eqElem->work;
struct ncclProxyArgs* proxyArgs = &eqElem->proxyArgs;
int nChannels = work->coll.nChannels;
size_t channelSize = work->coll.count*ncclTypeSize(proxyArgs->dtype)/work->coll.nChannels;
int segmentType = proxyArgs->redOp == ncclNumOps ? RingTree_Segment : CollNet_Segment; // redOp is only set when using CollNet
for (int bid=0; bid<nChannels; bid++) {
int channelId;
NCCLCHECK(getNextChannel(comm, &channelId));
int channelId = getNextChannel(comm, aggMode);
struct ncclChannel* channel = comm->channels+channelId;
// Proxy
@ -878,18 +985,19 @@ ncclResult_t ncclEnqueueAsyncKernel(struct ncclComm* comm, struct ncclQueueElem*
proxyArgs->commOpCount = comm->opCount;
if (proxyArgs->subs[0].nsteps) NCCLCHECK(ncclProxySaveColl(proxyArgs, comm->nRanks));
// Try to reuse last work if not full yet
work->coll.bid = bid % nChannels;
int opIndex = (channel->workFifoTail-1+NCCL_MAX_OPS)%NCCL_MAX_OPS;
struct ncclWork* w = channel->workFifo+opIndex;
struct ncclWork* w = NULL;
int segment = -1;
if (channel->workCount && w->elems[NCCL_MAX_WORK_ELEMENTS-1].active == 0 &&
// All elems in work must have same (funcIndex,nThreads),
// see "src/collectives/device/common.h"
w->elems[0].funcIndex == work->funcIndex &&
w->elems[0].nThreads == work->nThreads) {
if (aggMode && channel->workCount) {
// Try to pack more segments into a single operation
segment = getSegment(COLL_SEGMENT, 0, w);
int opIndex = (channel->workFifoTail-1+NCCL_MAX_OPS)%NCCL_MAX_OPS;
w = channel->workFifo+opIndex;
// All elems in work must have same (funcIndex,nThreads),
// see "src/collectives/device/common.h"
if (w->elems[0].funcIndex == work->funcIndex &&
w->elems[0].nThreads == work->nThreads) {
segment = getSegment(segmentType, 0, w);
}
}
if (segment == -1) {
NCCLCHECK(getNextOp(channel, &w, NULL));
@ -897,7 +1005,7 @@ ncclResult_t ncclEnqueueAsyncKernel(struct ncclComm* comm, struct ncclQueueElem*
}
// store work element into FIFO
NCCLCHECK(enqueueSegOp(COLL_SEGMENT, work, w, segment));
NCCLCHECK(enqueueSegOp(segmentType, work, w, segment, &eqElem->buffRegInfo, channel, comm));
channel->totalSize += channelSize;
}
comm->collOpCount++;
@ -909,17 +1017,15 @@ void CUDART_CB ncclEnqueueHostSetup(void* arg) {
ncclResult_t ret;
struct ncclQueueInfo* eqInfo = (struct ncclQueueInfo*)arg;
ncclComm_t comm = eqInfo->comm;
int aggMode = eqInfo->elemList->count() > 1 ? 1 : 0;
// Iterate through the element list
struct ncclQueueElem* eqElem = eqInfo->elemList->begin();
while (eqElem != NULL) {
if (eqElem->work.funcIndex == FUNC_INDEX_P2P) {
NCCLCHECKGOTO(ncclEnqueueP2pKernel(comm, eqElem), ret, cb_end);
} else if (eqInfo->elemList->count() > 1) {
// We have more than one operation, hence aggregating
NCCLCHECKGOTO(ncclEnqueueAsyncKernel(comm, eqElem), ret, cb_end);
} else {
NCCLCHECKGOTO(ncclEnqueueCollKernel(comm, eqElem), ret, cb_end);
NCCLCHECKGOTO(ncclEnqueueCollKernel(comm, eqElem, aggMode), ret, cb_end);
}
eqElem = eqInfo->elemList->getNext();
}
@ -937,6 +1043,41 @@ cb_end:
template void CUDART_CB ncclEnqueueHostSetup<0>(void*);
template void CUDART_CB ncclEnqueueHostSetup<1>(void*);
void* graphHelperFunc(void *args) {
struct ncclGraphHelperResources* res = (struct ncclGraphHelperResources*)args;
if (res == NULL) {
WARN("CUDA Graph helper resource is null");
return NULL;
}
int dev = res->comm->cudaDev;
CUDACHECKIGNORE(cudaSetDevice(dev));
INFO(NCCL_COLL, "CUDA Graph helper thread created for device %d", dev);
volatile enum helperThreadState* state = &res->threadState;
volatile int* ipcTail = &res->ipcTail;
while (1) {
int ipcTailMark = *ipcTail;
int ipcCount = 0;
while (res->ipcHead != ipcTailMark) {
if (res->ipcBases[res->ipcHead] != NULL)
CUDACHECKIGNORE(cudaIpcCloseMemHandle(res->ipcBases[res->ipcHead]));
res->ipcBases[res->ipcHead] = NULL;
res->ipcHead = (res->ipcHead+1)%NCCL_IPC_POOL_SIZE;
ipcCount++;
}
TRACE(NCCL_COLL, "CUDA Graph helper thread closed %d IPC handles", ipcCount);
pthread_mutex_lock(&res->threadLock);
while (res->ipcHead == *ipcTail && *state != ThreadStop) {
pthread_cond_wait(&res->threadCond, &res->threadLock);
}
pthread_mutex_unlock(&res->threadLock);
if (*state == ThreadStop) {
INFO(NCCL_COLL, "CUDA Graph helper thread for device %d returning", dev);
return NULL;
}
}
}
ncclResult_t ncclGetCudaGraph(ncclComm_t comm, cudaGraph_t* graph) {
comm->usingCudaGraph = 0;
#if CUDART_VERSION >= 11030
@ -961,6 +1102,15 @@ ncclResult_t ncclGetCudaGraph(ncclComm_t comm, cudaGraph_t* graph) {
}
if (comm->launchMode == ncclComm::GROUP) comm->launchMode = ncclComm::GROUP_GRAPH;
comm->usingCudaGraph = 1;
// Create helper thread that closes IPC handles during graph destruction
// Only create this thread when buffer registration is enabled
if ((!comm->graphHelperThread) && comm->graphRegister == 1 && comm->disableGraphHelper == 0) {
pthread_mutex_init(&comm->graphHelperResources->threadLock, NULL);
pthread_cond_init(&comm->graphHelperResources->threadCond, NULL);
comm->graphHelperResources->threadState = ThreadStart;
pthread_create(&comm->graphHelperThread, NULL, graphHelperFunc, comm->graphHelperResources);
}
}
#endif
return ncclSuccess;
@ -990,18 +1140,92 @@ ncclResult_t ncclCudaGraphHostSetup(ncclComm_t comm, cudaGraph_t graph) {
#endif
}
ncclResult_t ncclEnqueueCheck(struct ncclInfo* info) {
// Launch asynchronously if needed
if (ncclAsyncMode()) {
ncclResult_t ret = ncclSuccess;
int savedDev = -1;
// Check arguments
NCCLCHECK(PtrCheck(info->comm, info->opName, "comm"));
if (info->comm->checkPointers) {
CUDACHECKGOTO(cudaGetDevice(&savedDev), ret, end);
CUDACHECKGOTO(cudaSetDevice(info->comm->cudaDev), ret, end);
static ncclResult_t hostToDevRedOp(
ncclDevRedOpFull *opFull, ncclRedOp_t op, ncclDataType_t datatype, ncclComm *comm
) {
union {
int8_t i8;
uint8_t u8;
int32_t i32;
uint32_t u32;
int64_t i64;
uint64_t u64;
half f16;
#if defined(__CUDA_BF16_TYPES_EXIST__)
__nv_bfloat16 bf16;
#endif
float f32;
double f64;
void *ptr;
};
u64 = 0;
opFull->scalarArgIsPtr = false;
switch (int(op)) {
case ncclSum: opFull->op = ncclDevSum; break;
case ncclProd: opFull->op = ncclDevProd; break;
case ncclMax: opFull->op = ncclDevMax; break;
case ncclMin: opFull->op = ncclDevMin; break;
case ncclAvg:
switch ((int)datatype) {
case ncclInt8: case ncclInt32: case ncclInt64:
case ncclUint8: case ncclUint32: case ncclUint64:
opFull->op = ncclDevSumPostDiv;
u64 = comm->nRanks;
break;
case ncclFloat16:
opFull->op = ncclDevPreMulSum;
f16 = __float2half(float(1.0/comm->nRanks)); // __double2half not supported pre CUDA 11.x
break;
#if defined(__CUDA_BF16_TYPES_EXIST__)
case ncclBfloat16:
opFull->op = ncclDevPreMulSum;
bf16 = __float2bfloat16(float(1.0/comm->nRanks));
break;
#endif
case ncclFloat32:
opFull->op = ncclDevPreMulSum;
f32 = float(1.0/comm->nRanks);
break;
case ncclFloat64:
opFull->op = ncclDevPreMulSum;
f64 = 1.0/comm->nRanks;
break;
}
NCCLCHECKGOTO(ArgsCheck(info), ret, end);
opFull->scalarArgIsPtr = false;
opFull->scalarArg = u64;
break;
default: // user created
int ix = int(ncclUserRedOpMangle(comm, op)) - int(ncclNumOps);
ncclUserRedOp *user = &comm->userRedOps[ix];
if (datatype != user->datatype) {
WARN("Data type supplied to user-created ncclRedOp_t does not match type "
"given to reduction operation");
return ncclInvalidArgument;
}
*opFull = user->opFull;
break;
}
return ncclSuccess;
}
ncclResult_t ncclEnqueueCheck(struct ncclInfo* info) {
ncclResult_t ret = ncclSuccess;
bool isAsync = ncclAsyncMode();
int savedDev = -1;
// Check arguments
NCCLCHECK(PtrCheck(info->comm, info->opName, "comm"));
if (isAsync && info->comm->checkPointers) {
CUDACHECKGOTO(cudaGetDevice(&savedDev), ret, end);
CUDACHECKGOTO(cudaSetDevice(info->comm->cudaDev), ret, end);
}
NCCLCHECKGOTO(ArgsCheck(info), ret, end);
// Copy reduction op state from op handle into info struct here since the
// op handle may be destroyed before ncclGroupEnd().
NCCLCHECKGOTO(hostToDevRedOp(&info->opFull, info->op, info->datatype, info->comm), ret, end);
// Launch asynchronously if needed
if (isAsync) {
// Always register comm even in case of error to make sure ncclGroupEnd
// cleans it up.
NCCLCHECKGOTO(ncclAsyncColl(info->comm), ret, end);
@ -1016,14 +1240,8 @@ ncclResult_t ncclEnqueueCheck(struct ncclInfo* info) {
} else {
NCCLCHECKGOTO(ncclSaveAsyncColl(info), ret, end);
}
end:
if (savedDev != -1) CUDACHECK(cudaSetDevice(savedDev));
ncclAsyncErrCheck(ret);
return ret;
} else {
NCCLCHECK(PtrCheck(info->comm, info->opName, "comm"));
NCCLCHECK(ArgsCheck(info));
NCCLCHECK(checkSetStream(info));
NCCLCHECKGOTO(checkSetStream(info), ret, end);
INFO(NCCL_COLL,"%s: opCount %lx sendbuff %p recvbuff %p count %zi datatype %d op %d root %d comm %p [nranks=%d] stream %p",
info->opName, info->comm->opCount, info->sendbuff, info->recvbuff, info->count,
@ -1032,24 +1250,82 @@ end:
// Check whether we are in cuda graph mode
cudaGraph_t graph;
ncclComm_t comm = info->comm;
NCCLCHECK(ncclGetCudaGraph(comm, &graph));
NCCLCHECKGOTO(ncclGetCudaGraph(comm, &graph), ret, end);
// Common part between graph mode and non-graph mode
NCCLCHECK(ncclSetupCollKernel(info));
NCCLCHECKGOTO(ncclSetupCollKernel(info), ret, end);
// Host setup
if (comm->usingCudaGraph) {
NCCLCHECK(ncclCudaGraphHostSetup(comm, graph));
NCCLCHECKGOTO(ncclCudaGraphHostSetup(comm, graph), ret, end);
} else {
ncclEnqueueHostSetup<0>(comm->enqueueInfo);
NCCLCHECK(comm->enqueueInfo->ret);
NCCLCHECKGOTO(comm->enqueueInfo->ret, ret, end);
}
// Common part between graph mode and non-graph mode
NCCLCHECK(ncclLaunchBarrier(comm));
NCCLCHECK(ncclLaunchKernel(comm));
NCCLCHECK(ncclRecordEvents(comm));
NCCLCHECK(ncclLaunchReset(comm));
return ncclSuccess;
NCCLCHECKGOTO(ncclLaunchBarrier(comm), ret, end);
NCCLCHECKGOTO(ncclLaunchKernel(comm), ret, end);
NCCLCHECKGOTO(ncclRecordEvents(comm), ret, end);
NCCLCHECKGOTO(ncclLaunchReset(comm), ret, end);
}
end:
if (isAsync && savedDev != -1) CUDACHECK(cudaSetDevice(savedDev));
if (isAsync) ncclAsyncErrCheck(ret);
return ret;
}
NCCL_API(ncclResult_t, ncclRedOpCreatePreMulSum, ncclRedOp_t *op, void *scalar, ncclDataType_t datatype, ncclScalarResidence_t residence, ncclComm_t comm);
ncclResult_t ncclRedOpCreatePreMulSum(ncclRedOp_t *op, void *scalar, ncclDataType_t datatype, ncclScalarResidence_t residence, ncclComm_t comm) {
if (comm->userRedOpFreeHead == comm->userRedOpCapacity) {
// double capacity and resize
int cap = 2*comm->userRedOpCapacity;
if (cap < 4) cap = 4;
ncclUserRedOp *ops = new ncclUserRedOp[cap];
std::memcpy(ops, comm->userRedOps, comm->userRedOpCapacity*sizeof(ncclUserRedOp));
for(int ix=comm->userRedOpCapacity; ix < cap; ix++)
ops[ix].freeNext = ix + 1;
delete[] comm->userRedOps;
comm->userRedOps = ops;
comm->userRedOpCapacity = cap;
}
// pop from free list
int ix = comm->userRedOpFreeHead;
ncclUserRedOp *user = &comm->userRedOps[ix];
comm->userRedOpFreeHead = user->freeNext;
user->freeNext = -1; // allocated
user->datatype = datatype;
user->opFull.op = ncclDevPreMulSum;
if (residence == ncclScalarHostImmediate) {
user->opFull.scalarArgIsPtr = false;
std::memcpy(&user->opFull.scalarArg, scalar, ncclTypeSize(datatype));
} else {
user->opFull.scalarArgIsPtr = true;
user->opFull.scalarArg = reinterpret_cast<uint64_t>(scalar);
}
*op = ncclRedOp_t(int(ncclNumOps) + ix);
*op = ncclUserRedOpMangle(comm, *op);
return ncclSuccess;
}
NCCL_API(ncclResult_t, ncclRedOpDestroy, ncclRedOp_t op, ncclComm_t comm);
ncclResult_t ncclRedOpDestroy(ncclRedOp_t op, ncclComm_t comm) {
if (0 <= int(op) && int(op) < int(ncclNumOps)) {
WARN("ncclRedOpDestroy : operator is a NCCL builtin.");
return ncclInvalidArgument;
}
if (int(op) < 0 || int(ncclMaxRedOp) < int(op)) {
WARN("ncclRedOpDestroy : operator is garbage.");
return ncclInvalidArgument;
}
int ix = int(ncclUserRedOpMangle(comm, op)) - int(ncclNumOps);
if (comm->userRedOpCapacity <= ix || comm->userRedOps[ix].freeNext != -1) {
WARN("ncclRedOpDestroy : operator unknown to this communicator.");
return ncclInvalidArgument;
}
// push to free list
comm->userRedOps[ix].freeNext = comm->userRedOpFreeHead;
comm->userRedOpFreeHead = ix;
return ncclSuccess;
}

View File

@ -368,7 +368,10 @@ ncclResult_t ncclTopoAddGpu(struct ncclXmlNode* xmlGpu, struct ncclTopoSystem* s
}
struct kvDict kvDictPciClass[] = { { "0x060400", PCI }, { "0x068000", NVS }, { "0x068001", CPU }, { "0x03", GPU }, { "0x02", NIC }, { NULL, PCI /* Default fallback value */ } };
struct kvDict kvDictPciGen[] = { { "2.5 GT/s", 15 }, { "5 GT/s", 30 }, { "8 GT/s", 60 }, { "16 GT/s", 120 }, { NULL, 60 /* Default fallback */ } }; // x100 Mbps per lane
struct kvDict kvDictPciGen[] = {
{ "2.5 GT/s", 15 }, { "5 GT/s", 30 }, { "8 GT/s", 60 }, { "16 GT/s", 120 }, /* Kernel 5.6 and earlier */
{ "2.5 GT/s PCIe", 15 }, { "5.0 GT/s PCIe", 30 }, { "8.0 GT/s PCIe", 60 }, { "16.0 GT/s PCIe", 120 }, { "32.0 GT/s PCIe", 240 }, { "64.0 GT/s PCIe", 480 },
{ NULL, 60 /* Default fallback */ } }; // x100 Mbps per lane
ncclResult_t ncclTopoAddPci(struct ncclXmlNode* xmlPci, struct ncclTopoSystem* system, struct ncclTopoNode* parent) {
const char* str;

View File

@ -625,7 +625,7 @@ ncclResult_t ncclTopoGetXmlFromGpu(struct ncclXmlNode* pciNode, nvmlDevice_t nvm
NCCLCHECK(xmlGetAttrInt(gpuNode, "sm", &sm));
struct ncclXmlNode* nvlNode = NULL;
NCCLCHECK(xmlGetSub(pciNode, "nvlink", &nvlNode));
NCCLCHECK(xmlGetSub(gpuNode, "nvlink", &nvlNode));
if (nvlNode == NULL) {
// NVML NVLink detection
int maxNvLinks = (sm < 60) ? 0 : (sm < 70) ? 4 : (sm < 80) ? 6 : 12;

View File

@ -7,6 +7,11 @@
#ifndef XML_H_
#define XML_H_
#include "nccl.h"
#include "debug.h"
#include "checks.h"
#include <stdlib.h>
// A few constraints to make the implementation easy
#define MAX_STR_LEN 255
#define MAX_ATTR_COUNT 16

View File

@ -11,6 +11,9 @@
#include "checks.h"
#include "align.h"
#include <sys/mman.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
template <typename T>
static ncclResult_t ncclCudaHostCallocDebug(T** ptr, size_t nelem, const char *filefunc, int line) {
@ -27,7 +30,7 @@ static inline ncclResult_t ncclCudaHostFree(void* ptr) {
}
template <typename T>
static ncclResult_t ncclCallocDebug(T** ptr, size_t nelem, const char *filefunc, int line) {
static ncclResult_t ncclCalloc(T** ptr, size_t nelem) {
void* p = malloc(nelem*sizeof(T));
if (p == NULL) {
WARN("Failed to malloc %ld bytes", nelem*sizeof(T));
@ -35,10 +38,8 @@ static ncclResult_t ncclCallocDebug(T** ptr, size_t nelem, const char *filefunc,
}
memset(p, 0, nelem*sizeof(T));
*ptr = (T*)p;
INFO(NCCL_ALLOC, "%s:%d Mem Alloc Size %ld pointer %p", filefunc, line, nelem*sizeof(T), *ptr);
return ncclSuccess;
}
#define ncclCalloc(...) ncclCallocDebug(__VA_ARGS__, __FILE__, __LINE__)
template <typename T>
static ncclResult_t ncclCudaCallocDebug(T** ptr, size_t nelem, const char *filefunc, int line) {

View File

@ -16,7 +16,8 @@ ncclResult_t bootstrapInit(ncclUniqueId* id, int rank, int nranks, void** commSt
ncclResult_t bootstrapAllGather(void* commState, void* allData, int size);
ncclResult_t bootstrapSend(void* commState, int peer, int tag, void* data, int size);
ncclResult_t bootstrapRecv(void* commState, int peer, int tag, void* data, int size);
ncclResult_t bootstrapBarrier(void* commState, int *ranks, int tag, int rank, int nranks);
ncclResult_t bootstrapBarrier(void* commState, int *ranks, int rank, int nranks, int tag);
ncclResult_t bootstrapIntraNodeAllGather(void* commState, int *ranks, int rank, int nranks, void* allData, int size);
ncclResult_t bootstrapRemAlloc(size_t size, int rank, void* commState, int* id, cudaIpcMemHandle_t* ipc, void** ptr);
ncclResult_t bootstrapRemFree(int id, int rank, void* commState);
ncclResult_t bootstrapClose(void* commState);

View File

@ -7,74 +7,104 @@
#ifndef NCCL_COLLECTIVES_H_
#define NCCL_COLLECTIVES_H_
enum ncclDevRedOp_t {
ncclDevSum, ncclDevProd, ncclDevMax, ncclDevMin,
ncclDevPreMulSum, ncclDevSumPostDiv,
ncclNumDevRedOps
};
struct ncclDevRedOpFull {
ncclDevRedOp_t op;
bool scalarArgIsPtr;
uint64_t scalarArg;
};
#define FUNC_INDEX_P2P 0
#define FUNC_INDEX(func, redop, ncclType, al, pr) (1+(((((func)*ncclNumOps + (redop))*ncclNumTypes) + (ncclType))*NCCL_NUM_ALGORITHMS+(al))*NCCL_NUM_PROTOCOLS+(pr))
#define FUNC_INDEX(func, devredop, ncclType, al, pr) (1+ncclNumTypes+(((((func)*ncclNumDevRedOps + (devredop))*ncclNumTypes) + (ncclType))*NCCL_NUM_ALGORITHMS+(al))*NCCL_NUM_PROTOCOLS+(pr))
#define NCCL_FUNC_NAME(func, algo, proto, redop, type) \
ncclFunction_##func##_##algo##_##proto##_##redop##_##type
#define NCCL_FUNC_NAME(func, algo, proto, devredop, type) \
ncclFunction_##func##_##algo##_##proto##_##devredop##_##type
#define NCCL_KERN_NAME(func, algo, proto, redop, type) \
ncclKernel_##func##_##algo##_##proto##_##redop##_##type
#define NCCL_ONERANK_REDUCE_NAME(devredop, type) \
ncclFunction_OneRankReduce_##devredop##_##type
#define NCCL_KERN_NAME(func, algo, proto, devredop, type) \
ncclKernel_##func##_##algo##_##proto##_##devredop##_##type
#define NCCL_IMPL_NAME(func, algo, proto) \
nccl##func##algo##proto
/* Declare all collective operations */
#define DECL5(func, algo, proto, redop, type) \
extern __device__ void NCCL_FUNC_NAME(func, algo, proto, redop, type)(); \
extern __global__ void NCCL_KERN_NAME(func, algo, proto, redop, type)(ncclWorkElem c); \
#define DECL5(func, algo, proto, devredop, type) \
extern __device__ void NCCL_FUNC_NAME(func, algo, proto, devredop, type)(); \
extern __global__ void NCCL_KERN_NAME(func, algo, proto, devredop, type)(ncclWorkElem c); \
#define DECL4(func, algo, redop, type) \
DECL5(func, algo, SIMPLE, redop, type) \
DECL5(func, algo, LL, redop, type) \
DECL5(func, algo, LL128, redop, type)
#define CONCAT(a,b) a##b
#define MACRO_IF(cond, t, f) CONCAT(MACRO_IF_, cond)(t, f)
#define MACRO_IF_0(t, f) f
#define MACRO_IF_1(t, f) t
#define DECL3(func, redop, type) \
DECL4(func, RING, redop, type) \
DECL4(func, TREE, redop, type) \
DECL4(func, COLLNET, redop, type)
#define DECL4(func, algo, devredop, type, undef) \
MACRO_IF(undef, /*undefined*/, DECL5(func, algo, SIMPLE, devredop, type)) \
MACRO_IF(undef, /*undefined*/, DECL5(func, algo, LL, devredop, type)) \
MACRO_IF(undef, /*undefined*/, DECL5(func, algo, LL128, devredop, type))
#define DECL3(func, devredop, type, undef) \
DECL4(func, RING, devredop, type, undef) \
DECL4(func, TREE, devredop, type, undef) \
DECL4(func, COLLNET, devredop, type, undef)
#if defined(__CUDA_BF16_TYPES_EXIST__)
#define DECL2(func, redop) \
DECL3(func, redop, int8_t) \
DECL3(func, redop, uint8_t) \
DECL3(func, redop, int32_t) \
DECL3(func, redop, uint32_t) \
DECL3(func, redop, int64_t) \
DECL3(func, redop, uint64_t) \
DECL3(func, redop, half) \
DECL3(func, redop, float) \
DECL3(func, redop, double) \
DECL3(func, redop, __nv_bfloat16)
#define DECL2(func, devredop, undefForFloat) \
DECL3(func, devredop, int8_t, /*undef=*/0) \
DECL3(func, devredop, uint8_t, /*undef=*/0) \
DECL3(func, devredop, int32_t, /*undef=*/0) \
DECL3(func, devredop, uint32_t, /*undef=*/0) \
DECL3(func, devredop, int64_t, /*undef=*/0) \
DECL3(func, devredop, uint64_t, /*undef=*/0) \
DECL3(func, devredop, half, /*undef=*/undefForFloat) \
DECL3(func, devredop, float, /*undef=*/undefForFloat) \
DECL3(func, devredop, double, /*undef=*/undefForFloat) \
DECL3(func, devredop, __nv_bfloat16, /*undef=*/undefForFloat)
#else
#define DECL2(func, redop) \
DECL3(func, redop, int8_t) \
DECL3(func, redop, uint8_t) \
DECL3(func, redop, int32_t) \
DECL3(func, redop, uint32_t) \
DECL3(func, redop, int64_t) \
DECL3(func, redop, uint64_t) \
DECL3(func, redop, half) \
DECL3(func, redop, float) \
DECL3(func, redop, double)
#define DECL2(func, devredop, undefForFloat) \
DECL3(func, devredop, int8_t, /*undef=*/0) \
DECL3(func, devredop, uint8_t, /*undef=*/0) \
DECL3(func, devredop, int32_t, /*undef=*/0) \
DECL3(func, devredop, uint32_t, /*undef=*/0) \
DECL3(func, devredop, int64_t, /*undef=*/0) \
DECL3(func, devredop, uint64_t, /*undef=*/0) \
DECL3(func, devredop, half, /*undef=*/undefForFloat) \
DECL3(func, devredop, float, /*undef=*/undefForFloat) \
DECL3(func, devredop, double, /*undef=*/undefForFloat)
#endif
#define DECL(func) \
DECL2(func, Sum) \
DECL2(func, Prod) \
DECL2(func, Min) \
DECL2(func, Max) \
DECL2(func, Avg)
DECL2(func, Sum, /*undefForFloat=*/0) \
DECL2(func, Prod, /*undefForFloat=*/0) \
DECL2(func, Min, /*undefForFloat=*/0) \
DECL2(func, Max, /*undefForFloat=*/0) \
DECL2(func, PreMulSum, /*undefForFloat=*/0) \
DECL2(func, SumPostDiv, /*undefForFloat=*/1)
#define DECL_ALL \
DECL2(Broadcast, Sum) \
DECL(Reduce) \
DECL2(AllGather, Sum) \
DECL(ReduceScatter) \
DECL(AllReduce) \
DECL5(SendRecv, RING, SIMPLE, Sum, int8_t) \
DECL2(Broadcast, Sum, /*undefForFloat=*/0)
DECL(Reduce)
DECL2(AllGather, Sum, /*undefForFloat=*/0)
DECL(ReduceScatter)
DECL(AllReduce)
DECL5(SendRecv, RING, SIMPLE, Sum, int8_t)
DECL_ALL
extern __device__ void NCCL_ONERANK_REDUCE_NAME(PreMulSum, int8_t)();
extern __device__ void NCCL_ONERANK_REDUCE_NAME(PreMulSum, uint8_t)();
extern __device__ void NCCL_ONERANK_REDUCE_NAME(PreMulSum, int32_t)();
extern __device__ void NCCL_ONERANK_REDUCE_NAME(PreMulSum, uint32_t)();
extern __device__ void NCCL_ONERANK_REDUCE_NAME(PreMulSum, int64_t)();
extern __device__ void NCCL_ONERANK_REDUCE_NAME(PreMulSum, uint64_t)();
extern __device__ void NCCL_ONERANK_REDUCE_NAME(PreMulSum, half)();
#if defined(__CUDA_BF16_TYPES_EXIST__)
extern __device__ void NCCL_ONERANK_REDUCE_NAME(PreMulSum, __nv_bfloat16)();
#endif
extern __device__ void NCCL_ONERANK_REDUCE_NAME(PreMulSum, float)();
extern __device__ void NCCL_ONERANK_REDUCE_NAME(PreMulSum, double)();
// CHUNKSIZE must be a multiple of SLICESIZE
#define ALLREDUCE_SLICESTEPS (NCCL_STEPS/4)
@ -88,5 +118,6 @@ DECL_ALL
#define REDUCE_SLICESTEPS 1
#define REDUCE_CHUNKSTEPS 1
#define SENDRECV_SLICEFACTOR 4
#define NCCL_MAX_SLICE_PER_CHUNK 2 // max value for CHUNKSTEPS/SLICESTEPS, must accord with above
#endif

View File

@ -9,6 +9,7 @@
#include "transport.h"
#include "p2p.h"
#include "collectives.h"
#if CUDART_VERSION < 9000
struct cudaLaunchParams {
@ -30,13 +31,16 @@ struct cudaLaunchParams {
#define NCCL_LL128_THREAD_THRESHOLD 8
#define NCCL_SIMPLE_THREAD_THRESHOLD 64
#define NCCL_MAX_INTRA_RANKS 32
struct ncclSendMem {
union {
struct {
uint64_t head;
char pad1[CACHE_LINE_SIZE-sizeof(uint64_t)];
void* ptrExchange;
char pad2[CACHE_LINE_SIZE-sizeof(void*)];
uint64_t redOpArgExchange[2];
char pad2[CACHE_LINE_SIZE-sizeof(void*)-2*sizeof(uint64_t)];
};
char pad3[MEM_ALIGN];
};
@ -56,6 +60,28 @@ struct ncclRecvMem {
char buff[1]; // Actually larger than that
};
typedef cudaError_t(*pfn_cuMemGetAddressRange_t)(void**, size_t*, void*);
enum helperThreadState {ThreadStart, ThreadStop};
#define NCCL_IPC_POOL_SIZE (2*NCCL_MAX_INTRA_RANKS*NCCL_MAX_OPS)
struct ncclGraphHelperResources {
ncclComm* comm;
pthread_mutex_t threadLock;
pthread_cond_t threadCond;
enum helperThreadState threadState;
void* ipcBases[NCCL_IPC_POOL_SIZE];
int ipcTail;
int ipcHead;
};
struct ncclUserRedOp {
int freeNext; // -1=allocated, otherwise index of next free entry in array
ncclDataType_t datatype;
ncclDevRedOpFull opFull;
};
struct ncclComm {
struct ncclChannel channels[MAXCHANNELS];
@ -76,7 +102,12 @@ struct ncclComm {
int node;
int nNodes;
// Intra-node rank info
int intraNodeGlobalRanks[NCCL_MAX_INTRA_RANKS];
int localRanks;
int intraNodeRank;
int8_t* rankToIntraNodeRank;
enum { GROUP, PARALLEL, GROUP_GRAPH } launchMode;
cudaStream_t userStream;
@ -142,6 +173,7 @@ struct ncclComm {
// Whether this communicator uses collNet
int collNetSupport;
int intraHighestTransportType;
// Store info of async operations
struct ncclInfo* asyncOps;
@ -160,9 +192,38 @@ struct ncclComm {
// Store info for cudaGraph
int usingCudaGraph; // Only use it during capture time, not launch time
struct ncclQueueInfo* enqueueInfo;
int nQueueInfoCreated;
int nQueueInfoDestroyed;
cudaGraphNode_t lastSetupNode;
unsigned long long lastCudaGraphId;
int driverVersion;
pfn_cuMemGetAddressRange_t pfnCuMemGetAddressRange;
pthread_t graphHelperThread;
struct ncclGraphHelperResources* graphHelperResources;
int disableGraphHelper;
int graphRegister;
// user-created reduction ops
int userRedOpCapacity, userRedOpFreeHead;
ncclUserRedOp *userRedOps;
};
// Scrambles the bits of non-builtin values of ncclRedOp_t according to the
// communicator memory address. Used to catch bugs so that integer handles
// associated with this communicator won't collide with handles of other
// communicatrs. This function is its own inverse.
static inline ncclRedOp_t ncclUserRedOpMangle(ncclComm *comm, ncclRedOp_t op) {
// Preserve the built-in values.
if(int(op) < int(ncclNumOps))
return op;
uint64_t h = reinterpret_cast<uint64_t>(comm);
h ^= h >> 32;
h *= 0x9e3779b97f4a7c13u; // Knuth's 64-bit magical hash constant
h >>= 32; // h is now an excellent 32-bit hash of the comm pointer
h &= int(ncclMaxRedOp); // ncclMaxRedOp is a power of 2 minus 1
int op1 = int(h) ^ int(op);
// Since builtin values are preserved, we also have to preserve their preimage.
return op1 < int(ncclNumOps) ? op : ncclRedOp_t(op1);
}
#endif

View File

@ -7,17 +7,14 @@
#ifndef NCCL_DEBUG_H_
#define NCCL_DEBUG_H_
#include "core.h"
#include "nccl_net.h"
#include <stdio.h>
#include <chrono>
#include <sys/syscall.h>
#include <limits.h>
#include <string.h>
#include "nccl_net.h"
#define gettid() (pid_t) syscall(SYS_gettid)
#include <pthread.h>
extern int ncclDebugLevel;
extern uint64_t ncclDebugMask;

View File

@ -72,8 +72,11 @@ static_assert(NCCL_LL_CLEAN_MASK % NCCL_STEPS == 0, "Invalid NCCL_LL_CLEAN_MASK
#define NCCL_LL128_SHMEM_ELEMS_PER_THREAD 8
#define NCCL_LL128_SHMEM_SIZE (NCCL_LL128_SHMEM_ELEMS_PER_THREAD*NCCL_LL128_MAX_NTHREADS)
#define NCCL_DIRECT_GPU 0x01
#define NCCL_DIRECT_NIC 0x10
#define NCCL_DIRECT_WRITE 0x01
#define NCCL_DIRECT_READ 0x02
#define NCCL_DIRECT_NIC 0x04
#define NCCL_IPC_WRITE 0x08
#define NCCL_IPC_READ 0x10
struct ncclConnInfo {
// Regular comm mechanism
@ -84,6 +87,7 @@ struct ncclConnInfo {
int direct; // Direct communication
int shared; // Buffers are shared
void **ptrExchange; // Pointer exchange for direct communication
uint64_t* redOpArgExchange; // PreOp scaler exchange for direct pull case
int *sizesFifo; // Sizes fifo from GPU to proxy
void* *ptrsFifo; // Buffer fifo from proxy to GPU
@ -154,8 +158,9 @@ struct ncclWorkElem {
struct ncclDevComm* comm;
uint16_t nThreads;
uint16_t funcIndex;
uint16_t index;
uint16_t active;
uint8_t regUsed;
uint8_t direct;
uint8_t active, redOpArgIsPtr;
const void * sendbuff;
void * recvbuff;
@ -168,6 +173,7 @@ struct ncclWorkElem {
uint32_t root;
uint8_t bid;
uint8_t nChannels;
uint64_t redOpArg;
} coll;
struct {
size_t sendCount;
@ -180,11 +186,24 @@ struct ncclWorkElem {
uint64_t align[4];
};
};
struct ncclWork {
struct ncclWorkElem elems[NCCL_MAX_WORK_ELEMENTS];
};
static_assert(sizeof(struct ncclWorkElem) == (0x10*sizeof(int)), "ncclWorkElem must have a pow2 size");
struct ncclWorkRegElem {
struct ncclWorkElem elem;
void* dnInputs[NCCL_MAX_DIRECT_ARITY+1];
void* dnOutputs[NCCL_MAX_DIRECT_ARITY+1];
void* upOutputs[NCCL_MAX_DIRECT_ARITY+1];
};
#define NCCL_REG_ELEM_FACTOR 4
static_assert(sizeof(struct ncclWorkRegElem) == (NCCL_REG_ELEM_FACTOR*sizeof(struct ncclWorkElem)), "ncclWorkRegElem size must be pow2 times ncclWorkElem size");
struct ncclWork {
union {
struct ncclWorkElem elems[NCCL_MAX_WORK_ELEMENTS];
struct ncclWorkRegElem regElems[NCCL_MAX_WORK_ELEMENTS/NCCL_REG_ELEM_FACTOR];
};
};
struct ncclChannel {
union {
struct {

View File

@ -30,10 +30,19 @@ void CUDART_CB ncclEnqueueHostSetup(void* arg);
ncclResult_t ncclGetCudaGraph(ncclComm_t comm, cudaGraph_t* graph);
ncclResult_t ncclCudaGraphHostSetup(ncclComm_t comm, cudaGraph_t graph);
struct ncclBuffRegInfo {
void* sendbuffsBase[NCCL_MAX_INTRA_RANKS];
void* recvbuffsBase[NCCL_MAX_INTRA_RANKS];
void* sendbuffs[NCCL_MAX_INTRA_RANKS];
void* recvbuffs[NCCL_MAX_INTRA_RANKS];
int nBuffs;
};
// Enqueue information (for kernel and proxy) for each operation
struct ncclQueueElem {
struct ncclWorkElem work;
struct ncclProxyArgs proxyArgs;
struct ncclBuffRegInfo buffRegInfo;
};
typedef ncclRecyclableList<struct ncclQueueElem> ncclQueueElemList;
@ -43,6 +52,7 @@ struct ncclQueueInfo {
ncclComm_t comm;
int maxChannels; // Dynamic version of gridDim
ncclResult_t ret; // Return value of host setup call
int nRegBuffs;
ncclQueueElemList* elemList;
};
@ -50,6 +60,7 @@ static ncclResult_t ncclCreateQueueInfo(struct ncclQueueInfo** eqInfo, ncclComm_
NCCLCHECK(ncclCalloc(eqInfo, 1));
(*eqInfo)->comm = comm;
(*eqInfo)->elemList = new ncclQueueElemList();
(*eqInfo)->comm->nQueueInfoCreated++;
return ncclSuccess;
}
@ -58,6 +69,7 @@ static ncclResult_t ncclResetQueueInfo(struct ncclQueueInfo* eqInfo) {
if (eqInfo == NULL) return ncclInternalError;
eqInfo->maxChannels = 0;
eqInfo->ret = ncclSuccess;
eqInfo->nRegBuffs = 0;
eqInfo->elemList->recycle();
return ncclSuccess;
}
@ -67,7 +79,54 @@ static ncclResult_t ncclResetQueueInfo(struct ncclQueueInfo* eqInfo) {
static void ncclDestroyQueueInfo(void* ptr) {
if (ptr == NULL) return;
struct ncclQueueInfo* eqInfo = (struct ncclQueueInfo*)ptr;
struct ncclComm* comm = eqInfo->comm;
// Close IPC mem handles for registered buffers
struct ncclQueueElem* eqElem = eqInfo->elemList->begin();
#if 0
// Ideally, the deregistration should happen here
// but currently the destroy function of CUDA objects does not allow CUDA API calls
while (eqElem != NULL) {
for (int i=0; i<eqElem->buffRegInfo.nBuffs; i++) {
if (i == eqInfo->comm->intraNodeRank) continue;
CUDACHECKIGNORE(cudaIpcCloseMemHandle(eqElem->buffRegInfo.sendbuffsBase[i]));
CUDACHECKIGNORE(cudaIpcCloseMemHandle(eqElem->buffRegInfo.recvbuffsBase[i]));
}
eqElem = eqInfo->elemList->getNext();
}
#else
// Instead, we push these pointers to a pool owned by ncclComm
// and asks a helper thread to close mem handles
struct ncclGraphHelperResources* res = comm->graphHelperResources;
int ipcTailOld = 0;
if (res == NULL || (!comm->graphHelperThread) || eqInfo->nRegBuffs == 0) goto skip;
pthread_mutex_lock(&res->threadLock);
ipcTailOld = res->ipcTail;
while (eqElem != NULL) {
for (int i=0; i<eqElem->buffRegInfo.nBuffs; i++) {
if (eqElem->buffRegInfo.sendbuffsBase[i] != NULL) {
res->ipcBases[res->ipcTail] = eqElem->buffRegInfo.sendbuffsBase[i];
res->ipcTail = (res->ipcTail+1)%NCCL_IPC_POOL_SIZE;
}
if (eqElem->buffRegInfo.recvbuffsBase[i] != NULL) {
res->ipcBases[res->ipcTail] = eqElem->buffRegInfo.recvbuffsBase[i];
res->ipcTail = (res->ipcTail+1)%NCCL_IPC_POOL_SIZE;
}
}
eqElem = eqInfo->elemList->getNext();
}
if (res->ipcTail != ipcTailOld) {
res->threadState = ThreadStart;
TRACE(NCCL_COLL, "CUDA Graph destroy function signaling helper thread with %d IPC handles", res->ipcTail-ipcTailOld);
pthread_cond_signal(&res->threadCond);
}
pthread_mutex_unlock(&res->threadLock);
#endif
skip:
delete eqInfo->elemList;
free(eqInfo);
comm->nQueueInfoDestroyed++;
return;
}
#endif // End include guard

View File

@ -10,6 +10,7 @@
#include "nccl.h"
#include <stdint.h> // for standard [u]intX_t types
#include <stdio.h>
#include <stdlib.h>
// These can be used if the GDR library isn't thread safe
#include <pthread.h>

View File

@ -9,6 +9,7 @@
#include "nccl.h"
#include "devcomm.h"
#include "collectives.h"
typedef enum {
ncclPatternRing,
@ -38,6 +39,7 @@ struct ncclInfo {
int chunkSteps;
int sliceSteps;
// Computed later
ncclDevRedOpFull opFull;
int algorithm;
int protocol;
ncclPattern_t pattern;

View File

@ -7,6 +7,7 @@
#ifndef NCCL_PARAM_H_
#define NCCL_PARAM_H_
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>

View File

@ -55,7 +55,7 @@ struct ncclTransport {
};
ncclResult_t ncclTransportP2pConnect(struct ncclComm* comm, struct ncclChannel* channel, int nrecv, int* peerRecv, int nsend, int* peerSend, int connIndex);
ncclResult_t ncclTransportP2pSetup(struct ncclComm* comm, struct ncclTopoGraph* graph, int connIndex);
ncclResult_t ncclTransportP2pSetup(struct ncclComm* comm, struct ncclTopoGraph* graph, int connIndex, int* highestTransportType=NULL);
enum { collNetRecv=0, collNetSend=1 };
int ncclTransportCollNetSetup(struct ncclComm* comm, struct ncclTopoGraph* collNetGraph, struct ncclChannel* channel, int masterRank, int masterPeer, int collNetGraphChannelId, int type);

View File

@ -67,13 +67,21 @@ ncclResult_t initCollNet(ncclCollNet_t* collnet) {
}
ncclResult_t initNetPlugin(ncclNet_t** net, ncclCollNet_t** collnet) {
void* netPluginLib = dlopen("libnccl-net.so", RTLD_NOW | RTLD_LOCAL);
char ncclNetPluginName[128];
const char* envPluginName = getenv("NCCL_NET_PLUGIN");
if (envPluginName && strlen(envPluginName)) {
snprintf(ncclNetPluginName, 128, "libnccl-net-%s.so", envPluginName);
INFO(NCCL_INIT, "Plugin name set by env to %s\n", ncclNetPluginName);
} else {
sprintf(ncclNetPluginName, "libnccl-net.so");
}
void* netPluginLib = dlopen(ncclNetPluginName, RTLD_NOW | RTLD_LOCAL);
if (netPluginLib == NULL) {
// dlopen does not guarantee to set errno, but dlerror only gives us a
// string, so checking errno doesn't hurt to try to provide a better
// error message
if (errno == ENOENT) {
INFO(NCCL_INIT|NCCL_NET, "NET/Plugin : No plugin found (libnccl-net.so), using internal implementation");
INFO(NCCL_INIT|NCCL_NET, "NET/Plugin : No plugin found (%s), using internal implementation", ncclNetPluginName);
} else {
INFO(NCCL_INIT|NCCL_NET, "NET/Plugin : Plugin load returned %d : %s.", errno, dlerror());
}
@ -185,6 +193,9 @@ void NCCL_NO_OPTIMIZE commPoison(ncclComm_t comm) {
static ncclResult_t commFree(ncclComm_t comm) {
if (comm == NULL)
return ncclSuccess;
delete[] comm->userRedOps;
free(comm->connectSend);
free(comm->connectRecv);
for (int peer=0; peer<comm->nRanks; peer++) {
@ -216,8 +227,6 @@ static ncclResult_t commFree(ncclComm_t comm) {
CUDACHECK(cudaStreamDestroy(comm->groupStream));
}
ncclDestroyQueueInfo(comm->enqueueInfo);
// Last rank frees shared resources between threads
int isLast;
NCCLCHECK(ncclCpuBarrierIn(comm, &isLast));
@ -238,6 +247,8 @@ static ncclResult_t commFree(ncclComm_t comm) {
}
NCCL_PARAM(AggChannelSize, "AGG_CHANNEL_SIZE", -2);
NCCL_PARAM(DisableGraphHelper, "GRAPH_HELPER_DISABLE", 0);
NCCL_PARAM(GraphRegister, "GRAPH_REGISTER", 0);
static ncclResult_t commAlloc(ncclComm_t* comret, int ndev, int rank) {
if (ndev < 1) {
@ -294,11 +305,20 @@ static ncclResult_t commAlloc(ncclComm_t* comret, int ndev, int rank) {
comm->asyncAllocMode = ncclComm::ROUND_ROBIN;
}
CUDACHECK(cudaDriverGetVersion(&comm->driverVersion));
NCCLCHECK(ncclCreateQueueInfo(&comm->enqueueInfo, comm));
comm->lastSetupNode = NULL;
comm->lastCudaGraphId = -1;
CUDACHECK(cudaDriverGetVersion(&comm->driverVersion));
comm->disableGraphHelper = ncclParamDisableGraphHelper();
comm->graphRegister = ncclParamGraphRegister();
#if CUDART_VERSION >= 11030
NCCLCHECK(ncclCalloc(&comm->graphHelperResources, 1));
comm->graphHelperResources->comm = comm;
if (comm->driverVersion >= 11030)
// cudaGetDriverEntryPoint requires R465 or above (enhanced compat need)
CUDACHECK(cudaGetDriverEntryPoint("cuMemGetAddressRange", (void**)&comm->pfnCuMemGetAddressRange, cudaEnableDefault));
#endif
static_assert(MAXCHANNELS <= sizeof(*comm->connectSend)*8, "comm->connectSend must have enough bits for all channels");
static_assert(MAXCHANNELS <= sizeof(*comm->connectRecv)*8, "comm->connectRecv must have enough bits for all channels");
@ -309,6 +329,10 @@ static ncclResult_t commAlloc(ncclComm_t* comret, int ndev, int rank) {
NCCLCHECK(ncclCalloc(&comm->p2pSends, comm->nRanks));
NCCLCHECK(ncclCalloc(&comm->p2pRecvs, comm->nRanks));
// Create a map between global rank and intra-node rank
NCCLCHECK(ncclCalloc(&comm->rankToIntraNodeRank, comm->nRanks));
memset(comm->rankToIntraNodeRank, -1, comm->nRanks*sizeof(comm->rankToIntraNodeRank[0]));
// Mark channels as non initialized.
for (int c=0; c<MAXCHANNELS; c++) comm->channels[c].id = -1;
@ -528,13 +552,14 @@ static ncclResult_t initTransportsRank(struct ncclComm* comm, ncclUniqueId* comm
int intraNodeRank0 = -1, intraNodeRank = -1, intraNodeRanks = 0;
int myCompCap = allGather1Data[rank].cudaCompCap;
int minCompCap = myCompCap, maxCompCap = myCompCap;
int intraNodeGlobalRanks[256];
for (int i = 0; i < nranks; i++) {
if (allGather1Data[i].peerInfo.hostHash == allGather1Data[rank].peerInfo.hostHash) {
// Rank is on same node
if (intraNodeRanks == 0) intraNodeRank0 = i;
if (i == rank) intraNodeRank = intraNodeRanks;
intraNodeGlobalRanks[intraNodeRanks++] = i;
comm->intraNodeGlobalRanks[intraNodeRanks] = i;
comm->rankToIntraNodeRank[i] = intraNodeRanks;
intraNodeRanks++;
if (allGather1Data[i].peerInfo.pidHash == allGather1Data[rank].peerInfo.pidHash) {
// Rank is in same process
if (intraProcRanks == 0) intraProcRank0 = i;
@ -563,6 +588,7 @@ static ncclResult_t initTransportsRank(struct ncclComm* comm, ncclUniqueId* comm
}
struct ncclComm* intraProcRank0Comm = allGather1Data[intraProcRank0].comm;
uint64_t intraNodeRank0pidHash = allGather1Data[intraNodeRank0].peerInfo.pidHash;
comm->intraNodeRank = intraNodeRank;
free(allGather1Data);
@ -792,6 +818,7 @@ static ncclResult_t initTransportsRank(struct ncclComm* comm, ncclUniqueId* comm
// Check if we can setup CollNet
if (comm->collNetSupport > 0) {
int collNetSetupFail = 0;
int highestTypes[NCCL_MAX_INTRA_RANKS] = {TRANSPORT_P2P};
// Find all head ranks
int nHeads = collNetGraph.nChannels;
int *heads;
@ -817,16 +844,26 @@ static ncclResult_t initTransportsRank(struct ncclComm* comm, ncclUniqueId* comm
TRACE(NCCL_INIT, "rank %d Connected inter-node CollNet", rank);
// Connect intra-node CollNet
int highestTransportType0, highestTransportType1;
for (int c=0; c<comm->nChannels; c++) {
struct ncclChannel* channelRecv = comm->channels+c;
NCCLCHECKGOTO(ncclTransportP2pConnect(comm, channelRecv, NCCL_MAX_DIRECT_ARITY, channelRecv->collTree.up, NCCL_MAX_DIRECT_ARITY, channelRecv->collTree.down, 0), ret, collnet_cleanup);
}
NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &collNetGraph, 0), ret, collnet_cleanup);
NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &collNetGraph, 0, &highestTransportType0), ret, collnet_cleanup);
for (int c=0; c<comm->nChannels; c++) {
struct ncclChannel* channelSend = comm->channels+c;
NCCLCHECKGOTO(ncclTransportP2pConnect(comm, channelSend, NCCL_MAX_DIRECT_ARITY, channelSend->collTree.down, NCCL_MAX_DIRECT_ARITY, channelSend->collTree.up, 1), ret, collnet_cleanup);
}
NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &collNetGraph, 1), ret, collnet_cleanup);
NCCLCHECKGOTO(ncclTransportP2pSetup(comm, &collNetGraph, 1, &highestTransportType1), ret, collnet_cleanup);
// Exchange highest intra-node transport type among ranks
// because we need to know whether all ranks can p2p each other to determine whether we can directly read/write registered user buffer
comm->intraHighestTransportType = highestTypes[comm->intraNodeRank] = highestTransportType0 > highestTransportType1 ? highestTransportType0 : highestTransportType1;
NCCLCHECK(bootstrapIntraNodeAllGather(comm->bootstrap, comm->intraNodeGlobalRanks, comm->intraNodeRank, comm->localRanks, highestTypes, sizeof(int)));
for (int i=0; i<comm->localRanks; i++) {
if (highestTypes[i] > comm->intraHighestTransportType)
comm->intraHighestTransportType = highestTypes[i];
}
INFO(NCCL_INIT, "rank %d Connected CollNet", rank);
collnet_cleanup:
@ -874,7 +911,7 @@ collnet_cleanup:
NCCLCHECK(ncclCommSetIntraProc(comm, intraProcRank, intraProcRanks, intraProcRank0Comm));
/* Local intra-node barrier */
NCCLCHECK(bootstrapBarrier(comm->bootstrap, intraNodeGlobalRanks, (int)intraNodeRank0pidHash, intraNodeRank, intraNodeRanks));
NCCLCHECK(bootstrapBarrier(comm->bootstrap, comm->intraNodeGlobalRanks, intraNodeRank, intraNodeRanks, (int)intraNodeRank0pidHash));
if (comm->nNodes) NCCLCHECK(ncclProxyCreate(comm));
@ -974,6 +1011,22 @@ ncclResult_t ncclCommInitAll(ncclComm_t* comms, int ndev, const int* devlist) {
return ncclSuccess;
}
static ncclResult_t ncclGraphHelperDestroy(ncclComm* comm) {
auto res = comm->graphHelperResources;
if (comm->graphHelperThread && res) {
pthread_mutex_lock(&res->threadLock);
res->threadState = ThreadStop;
pthread_cond_signal(&res->threadCond);
pthread_mutex_unlock(&res->threadLock);
pthread_join(comm->graphHelperThread, NULL);
}
if (res) {
free(res);
res = NULL;
}
return ncclSuccess;
}
static ncclResult_t commDestroy(ncclComm_t comm) {
int savedDevice;
CUDACHECK(cudaGetDevice(&savedDevice));
@ -987,6 +1040,11 @@ static ncclResult_t commDestroy(ncclComm_t comm) {
CUDACHECK(cudaStreamSynchronize(comm->groupStream));
NCCLCHECK(ncclProxyDestroy(comm));
ncclDestroyQueueInfo(comm->enqueueInfo);
#if CUDART_VERSION >= 11030
NCCLCHECK(ncclGraphHelperDestroy(comm));
#endif
INFO(NCCL_COLL, "Created %d queue info, destroyed %d", comm->nQueueInfoCreated, comm->nQueueInfoDestroyed);
NCCLCHECK(commFree(comm));
if (savedDevice != commDevice)

View File

@ -51,10 +51,16 @@ ncclResult_t ArgsCheck(struct ncclInfo* info) {
}
if (info->coll == ncclFuncAllGather || info->coll == ncclFuncReduceScatter) info->nBytes *= info->comm->nRanks; // count is per rank
if (info->op < 0 || info->op >= ncclNumOps) {
if (info->op < 0 || ncclMaxRedOp < info->op) {
WARN("%s : invalid reduction operation %d", info->opName, info->op);
return ncclInvalidArgument;
}
int opIx = int(ncclUserRedOpMangle(info->comm, info->op)) - int(ncclNumOps);
if (ncclNumOps <= info->op &&
(info->comm->userRedOpCapacity <= opIx || info->comm->userRedOps[opIx].freeNext != -1)) {
WARN("%s : reduction operation %d unknown to this communicator", info->opName, info->op);
return ncclInvalidArgument;
}
if (info->comm->checkPointers) {
if (info->coll == ncclFuncSendRecv) {

View File

@ -60,7 +60,7 @@ ncclResult_t wrap_ibv_symbols(void) {
if (!ibvhandle) {
ibvhandle=dlopen("libibverbs.so.1", RTLD_NOW);
if (!ibvhandle) {
WARN("Failed to open libibverbs.so[.1]");
INFO(NCCL_INIT, "Failed to open libibverbs.so[.1]");
goto teardown;
}
}

View File

@ -19,7 +19,7 @@
#define NCCL_SUFFIX "${nccl:Suffix}"
#define NCCL_VERSION_CODE ${nccl:Version}
#define NCCL_VERSION(X,Y,Z) (((X) >= 2 && (Y) >= 9) ? (X) * 10000 + (Y) * 100 + (Z) : (X) * 1000 + (Y) * 100 + (Z))
#define NCCL_VERSION(X,Y,Z) (((X) <= 2 && (Y) <= 8) ? (X) * 1000 + (Y) * 100 + (Z) : (X) * 10000 + (Y) * 100 + (Z))
#ifdef __cplusplus
extern "C" {
@ -102,12 +102,23 @@ ncclResult_t ncclCommUserRank(const ncclComm_t comm, int* rank);
ncclResult_t pncclCommUserRank(const ncclComm_t comm, int* rank);
/* Reduction operation selector */
typedef enum { ncclNumOps_dummy = 5 } ncclRedOp_dummy_t;
typedef enum { ncclSum = 0,
ncclProd = 1,
ncclMax = 2,
ncclMin = 3,
ncclAvg = 4,
ncclNumOps = 5 } ncclRedOp_t;
/* ncclNumOps: The number of built-in ncclRedOp_t values. Also
* serves as the least possible value for dynamic ncclRedOp_t's
* as constructed by ncclRedOpCreate*** functions. */
ncclNumOps = 5,
/* ncclMaxRedOp: The largest valid value for ncclRedOp_t.
* It is defined to be the largest signed value (since compilers
* are permitted to use signed enums) that won't grow
* sizeof(ncclRedOp_t) when compared to previous NCCL versions to
* maintain ABI compatibility. */
ncclMaxRedOp = 0x7fffffff>>(32-8*sizeof(ncclRedOp_dummy_t))
} ncclRedOp_t;
/* Data types */
typedef enum { ncclInt8 = 0, ncclChar = 0,
@ -127,6 +138,40 @@ typedef enum { ncclInt8 = 0, ncclChar = 0,
#endif
} ncclDataType_t;
/* ncclScalarResidence_t: Location and dereferencing logic for scalar arguments. */
typedef enum {
/* ncclScalarDevice: The scalar is in device-visible memory and will be
* dereferenced while the collective is running. */
ncclScalarDevice = 0,
/* ncclScalarHostImmediate: The scalar is in host-visible memory and will be
* dereferenced before the ncclRedOpCreate***() function returns. */
ncclScalarHostImmediate = 1
} ncclScalarResidence_t;
/*
* ncclRedOpCreatePreMulSum
*
* Creates a new reduction operator which pre-multiplies input values by a given
* scalar locally before reducing them with peer values via summation. For use
* only with collectives launched against *comm* and *datatype*. The
* *residence* argument indicates how/when the memory pointed to by *scalar*
* will be dereferenced. Upon return, the newly created operator's handle
* is stored in *op*.
*/
ncclResult_t ncclRedOpCreatePreMulSum(ncclRedOp_t *op, void *scalar, ncclDataType_t datatype, ncclScalarResidence_t residence, ncclComm_t comm);
ncclResult_t pncclRedOpCreatePreMulSum(ncclRedOp_t *op, void *scalar, ncclDataType_t datatype, ncclScalarResidence_t residence, ncclComm_t comm);
/*
* ncclRedOpDestroy
*
* Destroys the reduction operator *op*. The operator must have been created by
* ncclRedOpCreatePreMul with the matching communicator *comm*. An operator may be
* destroyed as soon as the last NCCL function which is given that operator returns.
*/
ncclResult_t ncclRedOpDestroy(ncclRedOp_t op, ncclComm_t comm);
ncclResult_t pncclRedOpDestroy(ncclRedOp_t op, ncclComm_t comm);
/*
* Collective communication operations
*

View File

@ -19,7 +19,7 @@ struct ncclTransport ncclTransports[NTRANSPORTS] = {
};
template <int type>
static ncclResult_t selectTransport(struct ncclComm* comm, struct ncclTopoGraph* graph, struct ncclConnect* connect, int channelId, int peer, int connIndex) {
static ncclResult_t selectTransport(struct ncclComm* comm, struct ncclTopoGraph* graph, struct ncclConnect* connect, int channelId, int peer, int connIndex, int* transportType) {
struct ncclPeerInfo* myInfo = comm->peerInfo+comm->rank;
struct ncclPeerInfo* peerInfo = comm->peerInfo+peer;
struct ncclConnector* connector = (type == 1) ? comm->channels[channelId].peers[peer].send + connIndex :
@ -32,6 +32,7 @@ static ncclResult_t selectTransport(struct ncclComm* comm, struct ncclTopoGraph*
if (ret) {
connector->transportComm = transportComm;
NCCLCHECK(transportComm->setup(comm, graph, myInfo, peerInfo, connect, connector, channelId, connIndex));
if (transportType) *transportType = t;
return ncclSuccess;
}
}
@ -64,10 +65,11 @@ void dumpData(struct ncclConnect* data, int ndata) {
}
}
ncclResult_t ncclTransportP2pSetup(struct ncclComm* comm, struct ncclTopoGraph* graph, int connIndex) {
ncclResult_t ncclTransportP2pSetup(struct ncclComm* comm, struct ncclTopoGraph* graph, int connIndex, int* highestTransportType/*=NULL*/) {
// Stream used during transport setup; need for P2P pre-connect + CUDA Graph
cudaStream_t transportSetupStream;
CUDACHECK(cudaStreamCreateWithFlags(&transportSetupStream, cudaStreamNonBlocking));
int highestType = TRANSPORT_P2P; // track highest transport type
struct ncclConnect data[2*MAXCHANNELS];
for (int i=1; i<comm->nRanks; i++) {
@ -79,15 +81,18 @@ ncclResult_t ncclTransportP2pSetup(struct ncclComm* comm, struct ncclTopoGraph*
struct ncclConnect* recvData = data;
int sendChannels = 0, recvChannels = 0;
int type;
for (int c=0; c<MAXCHANNELS; c++) {
if (recvMask & (1<<c)) {
NCCLCHECK(selectTransport<0>(comm, graph, recvData+recvChannels++, c, recvPeer, connIndex));
NCCLCHECK(selectTransport<0>(comm, graph, recvData+recvChannels++, c, recvPeer, connIndex, &type));
if (type > highestType) highestType = type;
}
}
struct ncclConnect* sendData = recvData+recvChannels;
for (int c=0; c<MAXCHANNELS; c++) {
if (sendMask & (1<<c)) {
NCCLCHECK(selectTransport<1>(comm, graph, sendData+sendChannels++, c, sendPeer, connIndex));
NCCLCHECK(selectTransport<1>(comm, graph, sendData+sendChannels++, c, sendPeer, connIndex, &type));
if (type > highestType) highestType = type;
}
}
@ -125,6 +130,7 @@ ncclResult_t ncclTransportP2pSetup(struct ncclComm* comm, struct ncclTopoGraph*
}
CUDACHECK(cudaStreamSynchronize(transportSetupStream));
CUDACHECK(cudaStreamDestroy(transportSetupStream));
if (highestTransportType != NULL) *highestTransportType = highestType;
return ncclSuccess;
}
@ -218,22 +224,18 @@ cleanup:
}
ncclResult_t ncclTransportCollNetCheck(struct ncclComm* comm, int collNetSetupFail) {
int rank = comm->rank;
int nranks = comm->nRanks;
// AllGather collNet setup results
int* allGatherFailures;
NCCLCHECK(ncclCalloc(&allGatherFailures, nranks));
allGatherFailures[rank] = collNetSetupFail;
NCCLCHECK(bootstrapAllGather(comm->bootstrap, allGatherFailures, sizeof(int)));
for (int i=0; i<nranks; i++) {
int allGatherFailures[NCCL_MAX_INTRA_RANKS] = {0};
allGatherFailures[comm->intraNodeRank] = collNetSetupFail;
NCCLCHECK(bootstrapIntraNodeAllGather(comm->bootstrap, comm->intraNodeGlobalRanks, comm->intraNodeRank, comm->localRanks, allGatherFailures, sizeof(int)));
for (int i=0; i<comm->localRanks; i++) {
if (allGatherFailures[i] != 0) {
collNetSetupFail = 1;
break;
}
}
free(allGatherFailures);
if (collNetSetupFail) {
if (rank == 0) WARN("Cannot initialize CollNet, using point-to-point network instead");
if (comm->intraNodeRank == 0) WARN("Cannot initialize CollNet, using point-to-point network instead");
return ncclSystemError;
}
return ncclSuccess;

View File

@ -88,6 +88,8 @@ static ncclResult_t ncclIbGetPciPath(char* devName, char** path, int* realPort)
} else {
// Merge multi-port NICs into the same PCI device
p[strlen(p)-1] = '0';
// Also merge virtual functions (VF) into the same device
p[strlen(p)-3] = '0';
// And keep the real port aside (the ibv port is always 1 on recent cards)
*realPort = 0;
for (int d=0; d<ncclNIbDevs; d++) {

View File

@ -21,6 +21,7 @@ struct p2pSendResources {
void* ipcPtr;
int remoteId;
int memRank;
void* remIpcPtr;
void* bootstrap;
};
@ -29,6 +30,7 @@ struct p2pRecvResources {
void* ipcPtr;
int remoteId;
int memRank;
void* remIpcPtr;
void* bootstrap;
};
@ -87,6 +89,21 @@ ncclResult_t p2pCanConnect(int* ret, struct ncclTopoSystem* topo, struct ncclTop
*ret = 0;
return ncclSuccess;
}
// Check that legacy IPC support is available
if (p2p != 0) {
char *dummy;
cudaIpcMemHandle_t ipc;
NCCLCHECK(ncclCudaCalloc(&dummy, CUDA_IPC_MIN));
if (cudaIpcGetMemHandle(&ipc, dummy) != cudaSuccess) {
INFO(NCCL_INIT|NCCL_P2P,"Legacy IPC not supported on dev %d(=%lx)",
cudaDev1, info1->busId);
*ret = 0;
}
CUDACHECK(cudaFree(dummy));
return ncclSuccess;
}
if (p2p == 0) {
INFO(NCCL_INIT|NCCL_P2P,"Could not enable P2P between dev %d(=%lx) and dev %d(=%lx)",
cudaDev1, info1->busId, cudaDev2, info2->busId);
@ -164,10 +181,11 @@ ncclResult_t p2pSendSetup(struct ncclComm* comm, struct ncclTopoGraph* graph, st
NCCLCHECK(ncclCudaCalloc((char**)&info.directPtr, sendSize));
info.rank = myInfo->rank;
if (myInfo->pidHash == peerInfo->pidHash) {
if (info.read == 0) send->conn.direct |= NCCL_DIRECT_GPU;
send->conn.direct |= info.read ? NCCL_DIRECT_READ : NCCL_DIRECT_WRITE;
INFO(NCCL_INIT|NCCL_P2P, "Channel %02d : %d[%lx] -> %d[%lx] via P2P/direct pointer%s",
channelId, myInfo->rank, myInfo->busId, peerInfo->rank, peerInfo->busId, useReadStr);
} else {
send->conn.direct |= info.read ? NCCL_IPC_READ : NCCL_IPC_WRITE;
CUDACHECK(cudaIpcGetMemHandle(&info.devIpc, info.directPtr));
INFO(NCCL_INIT|NCCL_P2P,"Channel %02d : %d[%lx] -> %d[%lx] via P2P/IPC%s",
channelId, myInfo->rank, myInfo->busId, peerInfo->rank, peerInfo->busId, useReadStr);
@ -212,8 +230,9 @@ ncclResult_t p2pRecvSetup(struct ncclComm* comm, struct ncclTopoGraph* graph, st
NCCLCHECK(ncclCudaCalloc((char**)&info.directPtr, recvSize));
info.rank = myInfo->rank;
if (myInfo->pidHash == peerInfo->pidHash) {
if (info.read == 0) recv->conn.direct |= NCCL_DIRECT_GPU;
recv->conn.direct |= info.read ? NCCL_DIRECT_READ : NCCL_DIRECT_WRITE;
} else {
recv->conn.direct |= info.read ? NCCL_IPC_READ : NCCL_IPC_WRITE;
CUDACHECK(cudaIpcGetMemHandle(&info.devIpc, info.directPtr));
}
} else {
@ -235,7 +254,7 @@ static ncclResult_t p2pSendConnect(struct ncclComm* comm, struct ncclConnect* co
struct ncclRecvMem* remDevMem;
struct p2pConnectInfo* info = (struct p2pConnectInfo*)connectInfo;
NCCLCHECK(p2pMap(comm->peerInfo+rank, comm->peerInfo+info->rank, info, (void**)&remDevMem, &resources->ipcPtr));
NCCLCHECK(p2pMap(comm->peerInfo+rank, comm->peerInfo+info->rank, info, (void**)&remDevMem, &resources->remIpcPtr));
int offset = 0;
for (int p=0; p<NCCL_NUM_PROTOCOLS; p++) {
@ -250,6 +269,7 @@ static ncclResult_t p2pSendConnect(struct ncclComm* comm, struct ncclConnect* co
send->conn.tail = &remDevMem->tail;
send->conn.head = &resources->devMem->head;
send->conn.ptrExchange = &resources->devMem->ptrExchange;
send->conn.redOpArgExchange = resources->devMem->redOpArgExchange;
return ncclSuccess;
}
@ -259,7 +279,7 @@ ncclResult_t p2pRecvConnect(struct ncclComm* comm, struct ncclConnect* connectIn
struct ncclSendMem* remDevMem;
struct p2pConnectInfo* info = (struct p2pConnectInfo*)connectInfo;
NCCLCHECK(p2pMap(comm->peerInfo+rank, comm->peerInfo+info->rank, info, (void**)&remDevMem, &resources->ipcPtr));
NCCLCHECK(p2pMap(comm->peerInfo+rank, comm->peerInfo+info->rank, info, (void**)&remDevMem, &resources->remIpcPtr));
int offset = 0;
for (int p=0; p<NCCL_NUM_PROTOCOLS; p++) {
@ -274,6 +294,7 @@ ncclResult_t p2pRecvConnect(struct ncclComm* comm, struct ncclConnect* connectIn
recv->conn.tail = &resources->devMem->tail;
recv->conn.head = &remDevMem->head;
recv->conn.ptrExchange = &remDevMem->ptrExchange;
recv->conn.redOpArgExchange = remDevMem->redOpArgExchange;
return ncclSuccess;
}
@ -281,6 +302,8 @@ ncclResult_t p2pSendFree(void* resources) {
struct p2pSendResources* sendRes = (struct p2pSendResources*)resources;
if (sendRes->ipcPtr)
CUDACHECK(cudaIpcCloseMemHandle(sendRes->ipcPtr));
if (sendRes->remIpcPtr)
CUDACHECK(cudaIpcCloseMemHandle(sendRes->remIpcPtr));
if (sendRes->remoteId != -1) {
NCCLCHECK(bootstrapRemFree(sendRes->remoteId, sendRes->memRank, sendRes->bootstrap));
sendRes->devMem = NULL;
@ -294,6 +317,8 @@ ncclResult_t p2pRecvFree(void* resources) {
struct p2pRecvResources* recvRes = (struct p2pRecvResources*)resources;
if (recvRes->ipcPtr)
CUDACHECK(cudaIpcCloseMemHandle(recvRes->ipcPtr));
if (recvRes->remIpcPtr)
CUDACHECK(cudaIpcCloseMemHandle(recvRes->remIpcPtr));
if (recvRes->remoteId != -1) {
NCCLCHECK(bootstrapRemFree(recvRes->remoteId, recvRes->memRank, recvRes->bootstrap));
recvRes->devMem = NULL;